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CRFs: Introduction

� Many speech and language tasks involve predicting a label for an example:

– Part of speech tagging: examples are sentences, labels are whole tag
sequences.

– Parsing: examples are also sentences, labels are parse trees.
– Machine translation: examples are source sentences, labels are target

sentences.
– Etc etc.

� Labels can be chains (POS tagging, NER) or trees (parsing); graphs?
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CRFs: Introduction

� Typically, labels are decomposed into smaller labels for efficiency reasons:

– POS tagging: predict a per-word label (rather than an entire sequence).
– Parsing: predict a local tree (rather than a full parse tree).
– Etc.

� Stochastic context free grammars / HMMs etc all decompose problems in
this manner.

� One consequence: global decision making cannot (easily) be
implemented.

� CRFs allow entire label sequences to be predicted in a computationally
tractable manner.
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CRFs

p � y � x � �

1
Z � x �

exp
T � 1

∑
t� 1

∑
k

λk fk � t � yt� 1 � yt � x �

� λ are the model parameters.

� f �	� � are the feature functions

� T is the length of the sequence.
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CRFs: Problems
Two problems with CRFs:

� They do not scale well in terms of the numbers of possible individual labels.

� They overfit the data to a much greater extent than do other approaches.

The rest of this talk with deal with:

� Using error correcting codes to help scale CRFs.

� Using parameter-free methods to regularise CRFs.
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Scaling

� Conditional random fields are state-of-the-art models

– often very slow to train, with high memory requirements
– particularly expensive for large tasks
– cost of training dominated by the label set size

� Current engineering solutions

– supercomputers or large clusters
– feature induction
– initial parameters taken from simpler model
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Scaling (2)

� We scale CRF estimation to large label sets using error-correcting codes

– renders multi-class problem as a number of binary problems
– training a CRF on each binary problem is cheap

� We show that:

– training time is reduced for current tasks
– generalisation performance is maintained
– CRFs can be applied to larger tasks

� Approach compatible with other CRF scaling methods
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Outline

� Conditional random fields

� Error-correcting codes

– classification tasks
– CRF sequencing tasks

� Experiments and results

� Conclusion and future work
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CRF estimation

� Maximise objective (eg. log-likelihood of the labelled training set)

– numerous methods for optimisation: IIS, GIS, gradient based methods
– LMVM (L-BFGS) most efficient (Malouf 2002, Wallach 2002)

� requires repeated calculation of objective and its derivative

L � ∑
i

log p � y � i � � x � i � �

∂L
∂λk

� Ep̃ � x � y ��� fk � � Ep � y � x ��� fk �

Cohn/Smith/Osborne Progress in CRFs June 2005



9

CRF estimation (2)

Ep � y � x � � fk � � ∑
i

∑
t

∑
y�

∑
y

p � Yt� 1 � y �
� Yt � y � x � i � � fk � t � y

�
� y � x � i � �

� Computation requires iteration over every possible label pair

– complexity O � L
2NT F �

� We attack the leading L2 term here, using ECCs
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Error-correcting codes

� Allow binary classifiers to be used on multi-class problems

– ensemble method, k unique classifiers
– has been applied to text classification (Berger 1999)

� Error-correcting code defines labels used in each binary task
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Error-correcting codes (2)

� Training:

– one classifier trained for each column of coding matrix

� Decoding:

– each classifier predicts the highest probability class
– mapped to a label using distance measure: eg. Hamming

Label Code
LOC 1 1 0
MISC 0 1 0
ORG 1 0 0

O 0 0 1

Cohn/Smith/Osborne Progress in CRFs June 2005



12

ECCs for CRFs

� Identical training step

– train a binary CRF for each code
– cheap as there are only two labels

� Decoding performed in three alternative ways:

– standalone
– marginals
– product
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Standalone decoding

� Find Viterbi path for each binary CRF; yields sequence of

�

0 � 1 �

s

� Create vector of predictions for each time

� Choose closest label vector using Hamming distance

model time
1 1 1 1 0 0 0
2 0 1 1 1 0 1
3 0 0 0 1 1 1

� � �
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Marginals decoding

� Find marginal probabilities at each time for each binary CRF

� Create vector of predictions at each time

� Find closest label vector using L1 distance

model time
1 0.9 0.9 0.6 0.5 0.1 0.4
2 0.2 0.8 0.5 0.2 0.8 0.1
3 0.1 0.1 0.6 0.4 0.8 0.7

� � �
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Product decoding

� Assume that probability decomposes into the k binary CRFs

� The probability of a labelling is given by:

p � y � x � �

1
ZP � x �

∏
j

p j � b j � y � � x �

– ZP � x � is a normalising function

– p j is the jth binary CRF
– b j is the relabelling function for column j of the coding matrix

� This product model is itself a CRF – use standard Viterbi decoding
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Experiments: error correcting codes

� Exhaustive

– contains every unique code

� One-vs-all

– simplest code, no error-correcting capacity

� Random

– desirable properties in the limit (Berger, 1999)

� Minimum loss bound

– better error correcting capacity for common labels
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Tasks

� Named entity recognition

– 8 labels

� Part-of-speech tagging

– 45 labels

� Combined part-of-speech tagging and noun-phrase chunking

– 118 labels
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Named Entity Recognition

� Tagged entities: location, person, organisation, miscellaneous

� IOB-2 tagging format used

� CoNLL-2003 data set

� 8 labels and 200,000 training tokens
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Results: NER performance

� Compared multiclass CRF with coded CRF using exhaustive code with 127
binary CRFs

� Same feature sets

Model Decoding MLE Regularised
Multiclass 88.04 89.78

Coded standalone 88.23 � 88.67†

marginals 88.23 � 89.19
product 88.69 � 89.69
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Results: NER timing

� Exhaustive coded CRF training 10 times slower than multiclass

– exhaustive code is too large (127 columns) for this task
– partial codes allow much faster training

� One-vs-all code (8 columns) yields equivalent performance, taking less
than half the time of the multiclass
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NER: alternative codes

� Random codes

– randomly sample columns from exhaustive code

� Minimum loss bound

– attempts to find a good subset of columns
– minimises confusability of commonly occurring labels
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NER: alternative codes (2)
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POS tagging

� Penn Treebank WSJ

� 45 labels and 1 million training tokens
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Results: POS

� Random code of 200 columns and one-vs-all code

Coding Decoding MLE Regularised Training (hrs)
Coded - 200 standalone 95.63 96.03 293

marginals 95.68 96.03
One-vs-all product 94.90 96.57 25

� Attempt to train multiclass CRF failed

– were forced to use a small subset of the training data
– best performance of 95.78
– full training estimated runtime of more than 1,000 hours
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NPC & POS tagging

� Noun phrase chunking – detect whether each token begins or continues a
NP, or is outside of a NP

� Simultaneously POS tagging each token

� Derived from CoNLL-2000 data set

� 118 attested labels and 50,000 training tokens
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Results: POS & NPC

� Used random code of 200 columns

– joint tagging accuracy of 90.78% without regularisation
– training took 100 hours

� Too many labels for tractable multiclass CRF

– estimated multiclass training of 500 hours or more
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Parameter-free smoothing

� Requirement for some form of smoothing when applying CRFs

� Number of techniques to date: priors, feature induction, Bayesian CRFs

� Most popular is Gaussian prior

� Requires fitting hyperparameter(s): “parameterised” method
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Motivation (2)

� Introduce logarithmic opinion pools for CRFs

– involves model averaging in log-space
– limits overfitting through variance reduction
– can be “parameter-free”

� Results competitive with standard regularisation with a prior

� Previous use in other fields: management science (Bordley, 1982)
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Outline

� Logarithmic opinion pools (LOPs)

– introduction
– training and decoding

� Experiments and results
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Logarithmic Opinion Pools

p

p
n

p
2

1

� Pooling of opinions of multiple models

� Each constituent model is an “expert”
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Logarithmic Opinion Pools

p
p

p
n

p
2

LOP
1

� Pooling of opinions of multiple models

� Each constituent model is an “expert”
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Logarithmic Opinion Pools (2)

p
p

w

w2

p
n

p
2

nw
LOP

1
1

� Combines distributions using weighted product

� Weights measure reliability of experts

� Weights specified a priori or found by optimising an objective criterion
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Logarithmic Opinion Pools (3)

pLOP � y � x � �

1
ZLOP � x �

∏
α

pα � y � x �

wα

� pα � y � x � an expert distribution

� ZLOP a normalisation constant

� Weights wα non-negative and normalised
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Ambiguity Decomposition for LOPs

K � q � pLOP � � ∑
α

wαK � q � pα �

� �� �

E

� ∑
α

wαK � pLOP � pα �

� �� �

A

(Heskes, 1998)

� Trade-off between accuracy (E) and diversity (A)

� Diversity through data set, feature set, training procedure...
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LOPs for CRFs

� Multiplicative combination well-suited to CRFs and log-linear models

� LOP is another CRF: LOP-CRF

� Training without approximations

� Decoding using Viterbi, with same complexity as standard CRF

� Avoids problems with additive combination: beam search, etc.
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Training LOP-CRFs

� Two-stage training process

� Stage one

– experts are trained independently, unregularised

� Stage two

– experts are combined under a LOP
– LOP weights trained to maximise LOP log-likelihood
– weights trained unregularised
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Tasks: Named Entity Recognition

� CoNLL-2003

� Entities: PER, LOC, ORG, MISC

� Data split

– training 15,000 sequences
– development 3,500 sequences
– test 3,700 sequences
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Tasks: Simple POS Tagging

� Derived from CoNLL-2000

� Work developed in parallel to (Cohn et al., 2005)

� 45 tags collapsed to 5 tag categories: N, V, J, R, O (McCallum et al., 2003)

� Split training set

– training 7,300 sequences
– development 1,600 sequences
– test 2,000 sequences
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Experiments

� Compare LOP approach to:

– standard CRF unregularised
– standard CRF regularised

� Must define:

– standard CRF with appropriate features
– set of experts for each LOP: feature subsets
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Features: Standard CRF

� NER

– word and POS tag n-grams
– orthographic properties: is capitalised, contains a digit, etc.

� POS tagging

– word n-grams
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Features: Expert Sets

� Partition feature space to create diversity

� Motivate by linguistic intuition

� Expert sets:

– label
– positional
– simple
– random

� Standard CRF is also an expert
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Expert sets: Label

Standard CRF

MISC

PER

LOC

ORG

� Features involving specific label on current clique

� Each expert models specific label distribution
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Expert sets: Positional

Positional 0

Standard CRF

Positional +1
Positional −1

� Features encode events behind, at or ahead of current position

� Each expert models specific positional dependency
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Expert sets: Simple

Standard CRF

Reduced

� Reduced subset of standard CRF features

� Models entire distribution
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Expert sets: Random

Standard CRF

Random 4Random 2

Random 1 Random 3

� Random partition of feature space

� Provides a baseline – not linguistically motivated
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Baseline Results

NER

Model F1

Standard unreg. 88.33
Standard reg. 89.84

Positional -1 73.11
Positional 0 86.96

Positional +1 73.08

POS tagging

Model Accuracy

Standard unreg. 97.92
Standard reg. 98.02

Random 1 75.23
Random 2 80.88
Random 3 76.99
Random 4 78.36

� 15 runs to obtain regularised score
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Trained LOPs: NER

Expert set Development F1 Test F1

Standard unreg. 88.33 81.87
Standard reg. 89.84 83.98

Label 89.30 83.27
Positional 90.35 84.71 �

Simple 90.26 84.22 �

Random 88.84 83.06

� LOPs outperform unregularised standard CRF

� Performance rivals regularised standard CRF

� Random achieves good results
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Trained LOPs: POS tagging

Expert set Development accuracy Test accuracy

Standard unreg. 97.92 97.65
Standard reg. 98.02 97.84

Label 97.99 97.77
Positional 98.03 97.81

Simple 98.31 � 98.12 �

Random 97.99 97.76†

� Similar trends to NER

� Only random significantly underperforms regularised standard CRF
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Learned Weight Distributions

� Positional expert set on NER

Standard 0.45
Positional -1 0.18
Positional 0 0.20
Positional +1 0.17

� Could combine experts under uniform distribution – training required?
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Uniform LOPs: POS tagging

Expert set Uniform Dev. Accuracy Trained Dev. Accuracy

Label 97.85 97.99
Positional 97.97 98.03

Simple 98.30 98.31†

Random 97.82 97.99

� In most cases outperforms unregularised standard CRF

� Underperforms LOP with trained weights

� Demonstrates learning weights is beneficial
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Weight-regularised LOPs

� Possible overfitting without weight regularisation

� Regularising the LOP

– Very small improvement
– Number of experts is small: a prior may be beneficial in larger LOPs
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Conclusion

� Error-correcting coding can make CRF estimation tractable.

� LOPs enable CRFs to be regularised without optimising hyperparameters.

� Future work:

– More efficient codes.
– Co-operative training for LOPs.
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