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ABSTRACT 
 
In automatic speech recognition (ASR) the non-linear 
data projection provided by a one hidden layer multi-
layer perceptron (MLP), trained to recognise phonemes, 
has previously been shown to provide feature 
enhancement which can substantially increase ASR 
performance, especially in noise. Previous attempts to 
apply an analogous approach to speaker identification 
have not succeeded in improving performance, except by 
combining MLP processed features with other features. 
We present test results for the TIMIT database which show 
that the advantage of MLP preprocessing for open set 
speaker identification increases with the number of 
speakers used to train the MLP and that improved 
identification is obtained as this number increases beyond 
sixty. We also present a method for selecting the speakers 
used for MLP training which further improves 
identification performance. 
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1. INTRODUCTION 

It has previously been shown that the projection provided 
by the pre-squashed outputs from a one hidden layer MLP 
[1], pre-trained to output a probability for each phoneme, 
can significantly increase automatic speech recognition 
(ASR) performance [9]. In attempting to apply the same 
technique to speaker (rather than speech) recognition, a 
number of questions arise. What target classes should the 
MLP be trained to recognise if we want the features it 
generates to provide enhanced discrimination between 
speakers? If the MLP is trained to recognise some closed 
subset of speakers, would the mapping learnt also provide 
discriminative features for speakers not seen during 
training? The number of classes which an MLP can 
successfully learn to separate with a manageable amount 
of training data is quite limited. If speech data is available 
for a large number of speakers, which subset of these 
speakers would be most effective for MLP training? In 
Section 2 we briefly outline the models most commonly 

used for speaker recognition. In Section 3 we discuss 
related research in the area of MLP enhancement for 
speaker recognition, introducing the MLP architecture 
which was found to be most effective for this purpose [6]. 
In Section 4 we present the method we have developed for 
selecting a suitable speaker subset whose speech data is to 
be used for MLP training. In Section 5 we present the 
model details and experimental design which we use to 
test the effect on identification performance of different 
MLP architectures, different numbers of training speakers 
and random versus systematic training speaker selection. 
Section 6 presents the test results. This is followed by a 
discussion and conclusion in Sections 7 and 8. 

2. SPEAKER RECOGNITION BASELINE 

The speaker recognition problem may be one of 
identification or verification. Given a certain amount of 
preprocessed speech data X, in the case of identification 
the problem is to identify the speaker from some given set 
of speakers, while with verification it is to decide whether 
or not the speaker is who they claim to be. 

2.1. Speaker identification 

A Gaussian mixture model (GMM), with some fixed 
number of Gaussians and diagonal covariance, is trained to 
model the speech frame pdf for each speaker [7]. When 
training data is very limited it can be advantageous to train 
each GMM by MAP mean adaptation from a universal 
background model (UBM). Speaker identification is then 
performed by selecting the speaker Sj with the largest 
posterior probability, P(Sj|X) (which corresponds to the 
largest data likelihood p(X| Sj) if all speaker priors P(Sj) 
are equal). 

For identification the ideal speech features must be 
independent of the true speaker identity, which is not 
known. Speaker independent feature enhancement is 
therefore well suited to speaker identification. 

2.2. Speaker verification 

For speaker verification a GMM is trained for each 
speaker as with identification, but the claimant is accepted 



iff the likelihood ratio of p(X|Sj)/p(X|U) exceeds some 
fixed threshold, where p(X|U) is the UBM which models 
the likelihood that X is from any speaker but Sj. 

For verification the problem is to distinguish a given 
speaker from all other speakers, so the optimal feature 
enhancement may be speaker dependent and therefore not 
so well suited to the approach used here, although this is 
the application to which it was first applied. 

3. RELATED RESEARCH 

The method of training an MLP to classify a small subset 
of speakers was first investigated in [5, 6] in the context of 
speaker verification with the NIST 1998 SRE database. It 
was found that preprocessing by an MLP with just one 
hidden layer gave no advantage. This could be because 
speaker data, being clustered around every phoneme, 
requires more highly non-linear separation than speech 
data. However, the separating power of an MLP can be 
increased by using more hidden layers. In [6] an MLP with 
three hidden layers was trained to recognise 35 speakers 
and discriminative features were taken from the pre-
squashed outputs from the central bottle-neck hidden layer 
(see Fig.1). In this case it was found that these features 
still did not provide performance enhancement except 
when concatenated with the original MFCC features. 

In initial tests with TIMIT in [10] and noisy TIMIT in 
[11] we showed that the performance of the features 
provided by this MLP architecture increases with the 
number of speakers which the MLP is trained to separate. 
Due to various factors, test results are subject to 
significant random fluctuation. The tests we report here 
show that open set identification improves over the MFCC 
baseline when using data from upwards of 128 speakers. 

Fig. 1.Three MLP types tested for data enhancement. Each 
active layer is shown as a (net-input function / non-linear 
activation function) sandwich. Light sections are used only in 
MLP training, not for enhancement. 

In [10] MLPs with from 1 to 3 hidden layers were 
tested (see Figure 1) and best identification performance 
was obtained taking enhanced features as the net-input 
values to the second hidden layer from an MLP which was 
trained with 3 hidden layers. Single frames were used for 

MLP training instead of the input vector of 9 concatenated 
frames (100 ms) which works best in ASR. These are the 
three MLPs we test in Section 6. 

4. SPEAKER BASIS SELECTION 

A random selection of the speaker subset which the MLP 
is trained to separate (which we call the speaker basis) 
would be expected to represent the open set speaker 
population. However, classifier training can be more 
effective when training data is selected from class 
boundaries, while many errors in speaker identification are 
often traceable to a small number of problem speakers [3]. 

We have tested several strategies for speaker basis 
selection based on a matrix of the distances between each 
speaker GMM pdf. We show here that this distance matrix 
can be estimated using only the speaker posterior 
probabilities Pji = P(Sj|X i) for a set of development test 
data. Pji are obtained by dividing the development data log 
likelihood for each speaker by their sum over all speakers 
for one utterance. 

As a distance measure between speaker pdfs we use the 
symmetric Kullback-Leibler distance KL(Sj, Sk) (1). This 
cannot be evaluated in closed form when p(X|Sj) is 
modelled by a GMM. However, provided P(Sj)=P(Sk), 
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The resulting speaker-distance matrix KLjk can then be 
used in various ways to select a subset of speakers for 
MLP training. Of the methods we have tested, that which 
has given the best results is to choose speakers in order of 
decreasing average distance from every other speaker. We 
refer to this as the Maximum Average Distance (MaxAD) 
method for speaker basis selection. 

5. MLP AND GMM TRAINING  

The TIMIT speech database [4] was selected because, 
although it is only read speech, it is well suited for proof 
of concept tests and it is well known. As in [8], we first 
down-sampled TIMIT from 16 kHz to 8 kHz. At 16 kHz 
our baseline system (as in [8]) obtains 100% correct 

MLP 1 MLP 2 MLP 3 



speaker identification. However, it is of interest here to 
work with speech data which is close to telephone quality. 

5.1. Baseline feature processing 

As in [7,8] we used 20 ms frames and 20 Mel scaled 
filterbank log power features were extracted every 10 ms, 
using a Hamming window and a pre-emphasis factor of 
0.97. A DCT was then applied to obtain MFCC features, 
from which the c0 energy coefficient was dropped. Neither 
silence removal, dynamic features nor cepstral mean 
subtraction were used, since none of these improved 
performance with TIMIT. 

5.2. Train and test set divisions 

The experiments we make are intended to test the use of 
MLP data enhancement for identification systems which 
are both speaker and text independent. The standard 
TIMIT division into training and test data is not suitable 
for this purpose so we defined our own gender and dialect 
region balanced division into speaker-disjoint training, 
development and evaluation sets, comprising 300, 168 and 
162 speakers, respectively, which we denote SpkTr, 
SpkDv and SpkEv. Each of the 630 speakers in TIMIT has 
10 utterances which are labelled as belonging to three 
sentence types: 6 type “X” , covering a wide range of 
acoustic contexts; 3 type “ I” , being acoustically diverse, 
and 2 type “A”  sentences which were the same for each 
speaker. We also divided these 10 sentences into disjoint 
training, development and evaluation sets: SenTr (SA1-2, 
SI1-2, SX1-2); SenDv (SX3, SI3) and SenEv (SX4, SX5). 

5.3. GMM training 

All GMM and MLP training and testing was performed by 
the Torch machine learning API [2]. GMMs used 32 
Gaussians, a variance threshold factor of 0.01 and 
minimum Gaussian weight of 0.05. With TIMIT MAP 
adaptation did not help and was not used.  

5.4. MLP training 

Hidden layer 1 in MLP2 and also layer 3 in MLP3 used 
100 sigmoid units. The bottle-neck hidden layer, the net-
input values from which comprise the MLP transformed 
features, always had the same number of units as the input 
layer (19). The output layer always had N log-softmax 
units, where N is the number of speakers which the MLP is 
being trained to recognise. MLP training was on-line, with 
an initial learning rate of 0.01 with a learning rate decay 
factor of 0.1. The data in each utterance was first 
normalised to have zero mean and unit variance. The 
training objective was maximum cross entropy. Initial 
MLP tests looked at making use of the learning curve for 
an MLP development set (SpkBŝ SenDv) to decide when 
to stop iterative MLP training. However, for all MLPs 
tested the development set error continued to decrease 

even after several hundred training epochs, while the 
identification performance of GMMs trained on the 
resulting MLP preprocessed features always stopped 
increasing after about 30 training epochs. In all of the tests 
here, MLP training was stopped after 30 training epochs. 

5.5. Feature transformation (MLP and PCA) 

MFCC data is first normalised in the same way as in MLP 
training. For MLP 3 the 19 coefficient MFCC data is then 
passed through the net-input function and sigmoid 
functions in hidden layer 1 (100 units) and through the net-
input function to hidden layer 2 (19 units). As in [9], this 
MLPC data is then orthogonalised by PCA projection 
(onto the unit eigenvectors of the covariance matrix for the 
MLPC features for the MLP training set SpkBŝ SenTr). 

5.6. Train and test set procedures 

For the purpose of speaker basis selection, a GMM is 
trained for each speaker Sj in SpkTr on MFCCs for Sj 
^SenTr (^ denotes set intersection). Each of these GMMs 
is then tested on MFCCs for SpkTr^SenDv. 

Making use of these test likelihoods, a speaker basis 
for MLP training, comprising a given number of speakers, 
N, is selected either at random or by MaxAD (see Section 
4) from SpkTr. Denote this SpkBs. 

The MLP is trained on MFCCs for SpkBŝ SenTr. The 
trained MLP and PCA matrix is then used to transform the 
data to be used for GMM training and testing first from 
MFCCs to MLPCs and then (by PCA) to MLPAs. 

A GMM is then trained for each speaker in Sj in SpkEv 
on MLPA data for Sj^SenTr. Each GMM is then tested 
using MLPA data for every sentence in SpkEv^SenEv. 

6. IDENTIFICATION TESTS 

In order to confirm the MLP architecture previously 
proposed in [6], tests were made with MLPs having 1, 2 
and 3 hidden layers. In each case the number of speakers 
whose data was used for MLP training (the basis size) was 
varied from 2 to 256, using random selection (see Fig.2). 
Each test was repeated 10 times because of the 
randomness introduced either by the random basis 
selection or, when MaxAD basis selection was used, by 
the random MLP weights initialisation, or by the random 
GMM weights initialisation for the GMMs used to set up 
the inter speaker distance matrix. The baseline GMM 
score was also subject to this random factor, so this test 
was also repeated 10 times (and had a % correct variance 
of 0.48). Fig.2 shows percent correct identification for 
enhancement using MLPs 1, 2 or 3, against log2 speaker 
basis size. Basis selection is random. 

Further tests were made to compare the performance of 
random and MaxAD speaker basis selection, again varying 
the basis size from 2 to 256 and repeating each test 10 
times (see Fig.3). 



Fig.2. Identification performance for enhancement using MLPs 
1, 2 or 3, against log2 speaker basis size, using random basis 
selection. Error bars shown only for MLP3. 

Fig.3. Identification performance for enhancement by MLP 3 
using basis selected at random or by MaxAD. 

7. DISCUSSION 

Speaker identification using MLPAs from all three MLPs 
improves with the number of speakers used in MLP 
training, though MLPs with more hidden layers improve 
more consistently. No significant improvement over the 
MFCC baseline occurs until the basis size is at least 26. It 
looks as if performance would continue to increase with 
the basis size going well beyond 210. MaxAD basis 
selection significantly outperforms random selection when 
the basis size is above 25. That MaxAD gives better results 
than random selection even when at 256 selected out of 
300 speakers most of the speakers selected must be the 
same, suggests that it is good at avoiding problem speakers 
rather than selecting useful speakers. 

8. CONCLUSION 

Our test results with TIMIT show that MLP based feature 
enhancement can be used to advantage in speaker 
identification providing that the data used to train the MLP 
comes from a large enough number of speakers. 

Performance cannot continue forever to increase with the 
number of speakers used for MLP training, but it would be 
interesting to explore how much further this approach can 
be taken. Further analysis is needed of the identification 
errors which occur and of the reasons why some speakers 
are more useful or harmful for MLP training than others. It 
remains to be tested whether or not this approach can be 
successfully applied to more challenging databases.  
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