
A comparison of algorithms for maximum entropy parameter estimation
Robert Malouf
Alfa-Informatica

Rijksuniversiteit Groningen
Postbus 716

9700AS Groningen
The Netherlands

malouf@let.rug.nl

Draft of May 15, 2002
Abstract

Conditional maximum entropy (ME) models pro-
vide a general purpose machine learning technique
which has been successfully applied to fields as
various as computer vision and econometrics, and
which is used for a wide variety of classification
problems in natural language processing. However,
the flexibility of ME models is not without cost.
While parameter estimation for ME models is con-
ceptually straightforward, in practice ME models
for typical natural language tasks are very large, and
may well contain many thousands of free parame-
ters. In this paper, we consider a number of algo-
rithms for estimating the parameters of ME mod-
els, including iterative scaling, gradient ascent, con-
jugate gradient, and variable metric methods. Sur-
prisingly, the standardly used iterative scaling algo-
rithms perform quite poorly in comparison to the
others, and for all of the test problems, a limited-
memory variable metric algorithm outperformed the
other choices.

1 Introduction
Maximum entropy (ME) models, variously known
as log-linear, Gibbs, exponential, and multinomial
logit models, provide a general purpose machine
learning technique for classification and prediction
which has been successfully applied to fields as var-
ious as computer vision and econometrics. In natu-
ral language processing, recent years have seen ME
techniques used for sentence boundary detection,
part of speech tagging, parse selection and ambigu-
ity resolution, and stochastic attribute-value gram-
mars, to name just a few applications (Abney, 1997;
Berger et al., 1996; Ratnaparkhi, 1998; Johnson et
al., 1999).

A leading advantage of ME models is their flex-
ibility: they allow stochastic rule systems to be
augmented with additional syntactic, semantic, and
pragmatic features. However, the richness of the

representations is not without cost. Even modest
maximum entropy models can require considerable
computational resources and very large quantities of
annotated training data in order to accurately esti-
mate the model’s parameters. While parameter es-
timation for ME models is conceptually straightfor-
ward, in practice ME models for typical natural lan-
guage tasks are usually quite large, and frequently
contain hundreds of thousands of free parameters.
Estimation of such large models is not only expen-
sive, but also, due to sparsely distributed features,
sensitive to round-off errors. Thus, highly efficient,
accurate, scalable methods are required for estimat-
ing the parameters of practical models.

In this paper, we consider a number of algorithms
for estimating the parameters of ME models, includ-
ing Generalized Iterative Scalingand Improved It-
erative Scaling, as well as general purposed opti-
mization techniques such asgradient ascent, conju-
gate gradient,and variable metricmethods. Sur-
prisingly, the widely used iterative scaling algo-
rithms perform quite poorly, and for all of the test
problems, a limited memory variable metric algo-
rithm outperformed the other choices.

2 Background

Suppose we have a probability distributionp over
a set of eventsX which are characterized by ad
dimensional feature vector functionf : X → R

d.
In the context of a stochastic context-free grammar
(SCFG), for example,X might be the set of possi-
ble trees, and the feature vectors might represent the
number of times each rule applied in the derivation
of each tree. Our goal is to construct a model distri-
butionq which satisfies the constraints imposed by
the empirical distributionp, in the sense that:

Ep[f] = Eq[f] (1)

whereEp[f] is the expected value of the feature vec-
tor under the distributionp:

Ep[f] = ∑
x∈X

p(x) f (x)

In general, this problem is ill posed: a wide range
of models will fit the constraints in (1). As a guide
to selecting one that is most appropriate, we can
call on Jaynes’ (1957) Principle of Maximum En-
tropy: “In the absence of additional information, we
should assume that all events have equal probabil-
ity.” In other words, we should assign the highest
prior probability to distributions which maximize
the entropy:

H(q) =−∑
x∈X

q(x) logq(x) (2)

This is effectively a problem in constrained opti-
mization: we want to find a distributionq which
maximizes (2) while satisfying the constraints im-
posed by (1). It can be straightforwardly shown
(Jaynes, 1957; Good, 1963; Campbell, 1970) that
the solution to this problem has the parametric form:

qθ(x) =
exp
(
θT f (x)

)
∑y∈X exp(θT f (y))

(3)

whereθ is a d-dimensional parameter vector and
θT f (x) is the inner product of the parameter vector
and a feature vector.

One complication which makes models of this
form difficult to apply to problems in natural lan-
guage processing is that the events spaceX is often
very large or even infinite, making the denominator
in (3) impossible to compute. One modification we
can make to avoids this problem is to consider con-
ditional probability distributions instead (Berger et
al., 1996; Chi, 1998; Johnson et al., 1999). Suppose
now that in addition to the event spaceX and the
feature functionf , we have also a set of contexts
W and a functionY which partitions the members
of X. In our SCFG example,W might be the set of
possible strings of words, andY(w) the set of trees
whose yield isw ∈W. Computing the conditional
probabilityqθ(x|w) of an eventx in contextw as

qθ(x|w) =
exp
(
θT f (x)

)
∑y∈Y(w) exp(θT f (y))

(4)

now involves evaluating a more much tractable sum
in the denominator.

ESTIMATE(p)
1 θ0← 0
2 k← 0
3 repeat
4 computeq(k) from θ(k)

5 compute updateδ(k)

6 θ(k+1)← θ(k) + δ(k)

7 k← k+1
8 until converged
9 return θ(k)

Figure 1: General parameter estimation algorithm

3 Maximum likelihood estimation
Given the parametric form of an ME model in (4),
fitting an ME model to a collection of training data
entails finding values for the parameter vectorθ
which minimize the relative entropy between the
modelqθ and the empirical distributionp, or, equiv-
alently, which maximize the log likelihood:

L(θ) = ∑
x,y

p(x,y) logq(y|x,θ) (5)

The gradient of the log likelihood function, or the
vector of its first derivatives with respect to the pa-
rameterθ is:

G(θ) = ∑
x,y

p(x,y) f (y)−∑
x,y

p(x)q(y|x,θ) f (y)

or, simply:

G(θ) = Ep[f]−Eq[f] (6)

Since the likelihood function (5) is concave over
the parameter space, it has a global maximum where
the gradient is zero. Unfortunately, simply setting
G(θ) = 0 and solving forθ does not yield a closed
form solution, so we proceed iteratively, following
the general algorithm in Figure1. At each step, we
adjust an estimate of the parametersθ(k) to a new es-
timateθ(k+1) based on the divergence between the
estimated probability distributionq(k) and the em-
pirical distributionp. We continue until successive
improvements fail to yield a sufficiently large de-
crease in the divergence.

While all parameter estimation algorithms we
will consider take the same general form, the
method for computing the updatesδ(k) at search step
differs substantially. As we shall see, this difference
can have a dramatic impact on the number of up-
dates required to reach convergence.

3.1 Iterative Scaling
One popular method for iteratively refining the
model parameters isGeneralized Iterative Scaling
(GIS), due toDarroch and Ratcliff (1972). An
extension of Iterative Proportional Fitting (Dem-
ing and Stephan, 1940), GIS scales the probabil-
ity distribution q(k) by a factor proportional to the
ratio of Ep[f] to Eq(k) [f], with the restriction that
∑ j f j(x) = C for each eventx in the training data
(a condition which can be easily satisfied by the ad-
dition of a correction feature). We can adapt GIS
to estimate the model parametersθ rather than the
model probabilitiesq, yielding the update rule:

δ(k) = log

(
Ep[f]

Eq(k) [f]

) 1
C

The step size, and thus the rate of convergence,
depends on the constantC: the larger the value of
C, the smaller the step size. In case not all rows of
the training data sum to a constant, the addition of a
correction feature effectively slows convergence to
match the most difficult case. To avoid this slowed
convergence and the need for a correction feature,
Della Pietra et al. (1997) propose anImproved Iter-
ative Scaling(IIS) algorithm, whose update rule is
the solution to the equation:

Ep[f] = ∑
x,y

p(x)q(k)(y|x) f (y)exp(M(y)δ(k))

whereM(y) is the sum of the feature values for an
eventy in the training data. This is a polynomial in
exp
(
δ(k)
)
, and the solution can be found straight-

forwardly using, for example, the Newton-Raphson
method.

3.2 First order methods
Iterative scaling algorithms have a long tradition in
statistics and are still widely used for analysis of
contingency tables. Their primary strength is that on
each iteration they only require computation of the
expected values Eq(k) . They do not depend on evalu-
ation of the gradient of the log-likelihood function,
which, depending on the distribution, could be pro-
hibitively expensive. In the case of maximum en-
tropy models, however, the vector of expected val-
ues required by iterative scaling essentiallyis the
gradientG. Thus, it makes sense to consider meth-
ods which use the gradient directly.

The most obvious way of making explicit use of
the gradient is byCauchy’s method, or the method

Figure 2: Steepest ascent in two dimensions

of steepest ascent. The gradient of a function is a
vector which points in the direction in which the
function’s value increases most rapidly. Since our
goal is to maximize the log-likelihood function, a
natural strategy is to shift our current estimate of
the parameters in the direction of the gradient via
the update rule:

δ(k) = α(k)G(θ(k))

where the step sizeα(k) is chosen to maximize
L(θ(k) + δ(k)). Finding the optimal step size is itself
an optimization problem, though only in one dimen-
sion and, in practice, only an approximate solution
is required to guarantee global convergence.

Since the log-likelihood function is concave, the
method of steepest ascent is guaranteed to find the
global maximum. However, while the steps taken
on each iteration are in a very narrow sense locally
optimal, the global convergence rate of steepest as-
cent is very poor. As shown in Figure2, each new
search direction is orthogonal (or, if an approximate
line search is used, nearly so) to the previous direc-
tion. This leads to a characteristic “zig-zag” ascent,
with convergence slowing as the maximum is ap-
proached.

One way of looking at the problem with steep-
est ascent is that it considers the same search di-
rections many times. We would prefer an algo-
rithm which considered each possible search direc-
tion only once, in each iteration taking a step of ex-

actly the right length in a direction orthogonal to all
previous search directions. This intuition underlies
conjugate gradientmethods (see, e.g., Shewchuk,
1994), which choose a search direction which is a
linear combination of the steepest ascent direction
and the previous search direction. For example, the
Fletcher-Reevesalgorithm uses the update rule:

β(k) =
G(θ(k))TG(θ(k))

G(θ(k−1))TG(θ(k−1))

p(k) = G(θ(k))+ β(k)p(k−1)

δ(k) = α(k)p(k)

where the step sizeα(k) is selected by an approxi-
mate line search, as in the steepest ascent method.
The scalarβ(k) guarantees that the search direction
p(k) is conjugate (i.e., orthogonal, in a particular
sense) to the previous search direction. Other non-
linear conjugate gradient algorithms such asPolak-
Ribièrediffer in the wayβ(k) is computed and thus
show different numeric properties.

3.3 Second order methods
Another way of looking at the problem with steep-
est ascent is that while it takes into account the gra-
dient of the log-likelihood function, it fails to take
into account its curvature, or the gradient of the gra-
dient. The usefulness of the curvature is made clear
if we consider a second-order Taylor series approx-
imation ofL(θ + δ):

L(θ + δ)≈ L(θ)+ δTG(θ)+
1
2

δTH(θ)δ (7)

where H is Hessian matrixof the log-likelihood
function, the d × d matrix of its second partial
derivatives with respect toθ. If we set the deriva-
tive of (7) to zero and solve forδ, we get the update
rule forNewton’s method:

δ(k) = H−1(θ(k))G(θ(k))

Newton’s method converges very quickly (for
quadratic objective functions, in one step), but it re-
quires the computation of the inverse of the Hessian
matrix on each iteration.

While the log-likelihood function for ME models
in (5) is twice differentiable, for large scale prob-
lems the evaluation of the Hessian matrix is com-
putationally impractical, and Newton’s method is
not competitive with iterative scaling or first order
methods.Variable metricor quasi-Newtonmethods

Figure 3: Limited memory variable metric method
(dashed lines show Newton’s method for compari-
son)

avoid explicit evaluation of the Hessian by build-
ing up an approximation of it using successive eval-
uations of the gradient. Variable metric methods
also show excellent convergence properties and can
be much more efficient than using true Newton up-
dates, but for large scale problems with hundreds of
thousands of parameters, even storing the approxi-
mate Hessian is prohibitively expensive. For such
cases, we can applylimited memory variable met-
ric methods, which implicitly approximate the Hes-
sian matrix in the vicinity of the current estimate of
θ(k) using the previousmsearch directions. Since in
practical applications values ofmbetween 3 and 10
suffice, this can offer a substantial savings in storage
requirements over variable metric methods, while
still giving reasonable convergence (see Figure3).1

4 Comparing estimation techniques

The performance of optimization algorithms is
highly dependent on the specific properties of the
problem to be solved. Worst-case analysis typically
does not reflect the actual behavior on actual prob-
lems. Therefore, in order to evaluate the perfor-
mance of the optimization techniques sketched in

1For a detailed analysis and comparison of first and sec-
ond order methods, see, e.g.,Nocedal (1997) or Nocedal and
Wright (1999).

previous section when applied to the problem of pa-
rameter estimation, we need to compare the perfor-
mance of actual implementations on realistic data
sets (Dolan and Moŕe, 2000; Benson et al., 2000;
Dolan and Moŕe, 2002).

Minka (2001) is one earlier attempt to compare
iterative scaling with other algorithms for parame-
ter estimation in logistic regression, a problem sim-
ilar to the one considered here. However, it is dif-
ficult to draw any conclusions from Minka’s results
for three reasons. First, he evaluates the algorithms
with randomly generated training data. The perfor-
mance and accuracy of optimization algorithms can
be sensitive to the specific numerical properties of
the function being optimized; results based on ran-
dom data may or may not carry over to more re-
alistic problems. Second, Minka measures perfor-
mance in terms of the number of floating point op-
erations required to achieve a particular precision.
But, large-scale sparse problems are typically mem-
ory bandwidth-bound, not CPU bound. Therefore,
the number of floating point operations is not very
good indicator of the total time required to find a
solution. And, finally, the test problems Minka con-
siders are relatively small (100–500 dimensions).
As we have seen, though, algorithms which perform
well for small and medium scale problems may not
always be applicable to problems with many thou-
sands of dimensions.

4.1 Implementation

As a basis for the implementation, we have used
PETSc (the “Portable, Extensible Toolkit for Sci-
entific Computation”), a software library designed
to ease development of programs which solve large
systems of partial differential equations (Balay et
al., 2001; Balay et al., 1997; Balay et al., 2002).
PETSc offers data structures and routines for paral-
lel and sequential storage, manipulation, and visu-
alization of very large sparse matrices.

For any of the estimation techniques, the most ex-
pensive operation is computing the probability dis-
tribution q and the expectations Eq[f] for each it-
eration. In order to make use of the facilities pro-
vided by PETSc, we can store the training data as
a (sparse) matrixF , with rows corresponding to
events and columns to features. Then given a pa-
rameter vectorθ, the unnormalized log probabilities
q̇ are the matrix-vector product:

q̇ = Fθ

and the feature expectations are the transposed
matrix-vector product:

Eq[f] = FTq

By expressing these computations as matrix-vector
products, we can take advantage of the high perfor-
mance sparse matrix primitives of PETSc.

For the comparison, we implemented both Gener-
alized and Improved Iterative Scaling in C++ using
the primitives provided by PETSc. For the other op-
timization techniques, we used TAO (the “Toolkit
for Advanced Optimization”), a library layered on
top of the foundation of PETSc for solving non-
linear optimization problems (Benson et al., 2002).
TAO offers the building blocks for writing optimiza-
tion programs (such as line searches and conver-
gence tests) as well as high-quality implementations
of standard optimization algorithms (including con-
jugate gradient and variable metric methods).

Before turning to the results of the comparison,
two additional points need to be made. First, in
order to assure a consistent comparison, we need
to use the same stopping rule for each algorithm.
For these experiments, we judged that convergence
was reached when the relative change in the log-
likelihood between iterations fell below a predeter-
mined threshold. That is, each run was stopped
when:

|L(θ(k))−L(θ(k−1))|
L(θ(k))

< ε (8)

where the relative toleranceε = 10−7. For any par-
ticular application, this may or may not be an appro-
priate stopping rule, but is only used here for pur-
poses of comparison.

Finally, it should be noted that in the current im-
plementation, we have not applied any of the possi-
ble optimizations that appear in the literature (Laf-
ferty and Suhm, 1996; Wu and Khudanpur, 2000;
Lafferty et al., 2001) to speed up normalization of
the probability distributionq. These improvements
take advantage of a model’s structure to simplify the
evaluation of the denominator in (4). The partic-
ular test data sets examined here are unstructured,
and such optimizations are unlikely to give any im-
provement. However, when these optimizations are
appropriate, they will give a proportional speed-up
to all of the algorithms. Thus, the use of such opti-
mizations is independent of the choice of parameter
estimation method.

dataset classes contexts features nz

rules 32,546 2,808 246 803,985
lex 46,769 2,808 135,182 4,324,576
summary 26,554 13,277 198,467 438,050
shallow 9,583,341 416,667 264,142 51,736,113

Table 1: Datasets used in experiments (‘nz’ is the number of non-zero feature values in the sparse training
matrixF)

4.2 Experiments

To compare the algorithms described in§3, we ap-
plied the implementation outlined in the previous
section to four training data sets (described in Ta-
ble 1) drawn from the domain of natural language
processing. The ‘rules’ and ‘lex’ datasets are ex-
amples of stochastic attribute value grammars, one
with a small set of SCFG-like features, and with
with a very large set of fine-grained lexical features
(Bouma et al., 2001). The ‘summary’ dataset is
part of a sentence extraction task (Osborne, to ap-
pear), and the ‘shallow’ dataset is drawn from a
text chunking application (Osborne, 2002). These
datasets vary widely in their size and composition,
and are representative of the kinds of datasets typ-
ically encountered in applying ME models to NLP
classification tasks.

The results of applying each of the parameter es-
timation algorithms to each of the datasets is sum-
marized in Table2. For each run, we report the rela-
tive entropy between the fitted model and the train-
ing data at convergence, the number of iterations re-
quired, the number of log-likelihood and gradient
evaluations required (algorithms which use a line
search may require several function evaluations per
iteration), and the total elapsed time.2

There are a few things to observe about these
results. First, while IIS converges in fewer steps
the GIS, it takes substantially more time. At least
for this implementation, the additional bookkeeping
overhead required by IIS more than cancels any im-
provements in speed offered by accelerated conver-
gence. This may be a misleading conclusion, how-
ever, since a more finely tuned implementation of
IIS may well take much less time per iteration than
the one used for these experiments. However, even
if each iteration of IIS could be made as fast as an
iteration of GIS (which seems unlikely), the bene-

2The reported time does not include the time required to in-
put the training data, which is difficult to reproduce and which
is the same for all the algorithms being tested.

fits of IIS over GIS would in these cases be quite
modest.

Second, note that for three of the four datasets,
the relative entropy at convergence is roughly the
same for all of the algorithms. For the ‘summary’
dataset, however, they differ by up to two orders of
magnitude. This is an indication that the conver-
gence test in (8) is sensitive to the rate of conver-
gence and thus to the choice of algorithm. Any de-
gree of precision desired could be reached by any
of the algorithms, with the appropriate value ofε.
However, GIS, say, would require many more itera-
tions than reported in Table2 to reach the precision
achieved by the limited memory variable metric al-
gorithm.

Finally, the most significant lesson to be drawn
from these results is that, with the exception of
steepest ascent, gradient-based methods outperform
iterative scaling by a wide margin for almost all the
datasets, as measured by both number of function
evaluations and by the total elapsed time. And, in
each case, the limited memory variable metric algo-
rithm performs substantially better than any of the
competing methods.

5 Conclusions

In this paper, we have described experiments com-
paring the performance of a number of different al-
gorithms for estimating the parameters of a con-
ditional ME model. The results show that vari-
ants of iterative scaling, the algorithms which are
most widely used in the literature, perform quite
poorly when compared to general function opti-
mization algorithms such as conjugate gradient and
variable metric methods. And, more specifically,
for the NLP classification tasks considered, the lim-
ited memory variable metric algorithm ofBenson
and Moŕe (2001) outperforms the other choices by
a substantial margin.

This conclusion has obvious consequences for the
field. ME modeling is a commonly used machine

Dataset Method Div. Iter Evals Time (secs)

rules gis 5.19×10−2 1201 1202 23.04
iis 5.14×10−2 923 924 42.48
steepest ascent 5.13×10−2 212 331 6.16
conjugate gradient (fr) 5.07×10−2 74 196 3.74
conjugate gradient (prp) 5.08×10−2 63 154 2.87
limited memory variable metric 5.07×10−2 70 76 1.44

lex gis 1.61×10−3 370 371 36.29
iis 1.52×10−3 241 242 102.18
steepest ascent 3.47×10−3 1041 1641 139.10
conjugate gradient (fr) 1.39×10−3 166 453 39.03
conjugate gradient (prp) 1.62×10−3 150 382 32.46
limited memory variable metric 1.49×10−3 136 143 17.25

summary gis 1.83×10−3 1446 1447 125.46
iis 1.07×10−3 626 627 208.22
steepest ascent 2.64×10−3 1163 3503 227.30
conjugate gradient (fr) 1.01×10−4 175 948 60.91
conjugate gradient (prp) 7.30×10−4 93 428 27.81
limited memory variable metric 3.98×10−5 81 89 10.38

shallow gis 3.57×10−2 3428 3429 27103.62
iis 3.50×10−2 3216 3217 71053.24
steepest ascent† — — — —
conjugate gradient (fr) 2.91×10−2 1094 6056 46958.87
conjugate gradient (prp) 4.13×10−2 421 2170 16477.84
limited memory variable metric 3.26×10−2 429 444 3408.30

Table 2: Results. All tests were run using one CPU of a dual processor 1700MHz Pentium 4 with 2 gigabytes
of main memory. († did not reach convergence within a twenty-four hour time limit)

learning technique, and the application of improved
parameter estimation algorithms will it practical to
construct larger, more complex models. And, since
the parameters of individual models can be esti-
mated quite quickly, this will further open up the
possibility for more sophisticated model and feature
selection techniques which compare large numbers
of alternative model specifications.

In addition, there is a larger lesson to be drawn
from these results. We typically think of computa-
tional linguistics as being primarily a symbolic dis-
cipline. However, statistical natural language pro-
cessing involves non-trivial numeric computations
that require a distinct set of skills and methods. As
these results show, natural language processing can
take great advantage of the algorithms and software
libraries developed by and for more quantitatively
oriented engineering and computational sciences.

6 Acknowledgements

The research of Dr. Malouf has been made pos-
sible by a fellowship of the Royal Netherlands
Academy of Arts and Sciences and by the NWO PI-
ONIER projectAlgorithms for Linguistic Process-
ing. Thanks also to Miles Osborne and Gertjan
van Noord for helpful discussions and test data.

References

Steven P. Abney. 1997. Stochastic attribute-value
grammars.Computational Linguistics, 23:597–
618.

Satish Balay, William D. Gropp, Lois Curfman
McInnes, and Barry F. Smith. 1997. Efficienct
management of parallelism in object oriented nu-
merical software libraries. In E. Arge, A. M. Bru-
aset, and H. P. Langtangen, editors,Modern Soft-

ware Tools in Scientific Computing, pages 163–
202. Birkhauser Press.

Satish Balay, Kris Buschelman, William D. Gropp,
Dinesh Kaushik, Lois Curfman McInnes, and
Barry F. Smith. 2001. PETSc home page.
http://www.mcs.anl.gov/petsc .

Satish Balay, William D. Gropp, Lois Curfman
McInnes, and Barry F. Smith. 2002. PETSc users
manual. Technical Report ANL-95/11–Revision
2.1.2, Argonne National Laboratory.

Steven J. Benson and Jorge J. Moré. 2001. A
limited memory variable metric method for
bound constrained minimization. Preprint
ANL/ACS-P909-0901, Argonne National Lab-
oratory. http://www-unix.mcs.anl.
gov/˜benson/blmvm/blmvm.ps .

Steven Benson, Lois Curfman McInnes, and
Jorge Moŕe. 2000. GPCG: A case study in
the performance and scalability of optimization
algorithms. Technical Report ANL/MCS-
P768-0799, Argonne National Laboratory.
http://www.mcs.anl.gov/home/
more/papers/gpcg.ps.gz .

Steven J. Benson, Lois Curfman McInnes, Jorge J.
Moré, and Jason Sarich. 2002. TAO users
manual. Technical Report ANL/MCS-TM-242–
Revision 1.4, Argonne National Laboratory.

Adam Berger, Stephen Della Pietra, and Vincent
Della Pietra. 1996. A maximum entropy ap-
proach to natural language processing.Compu-
tational Linguistics, 22.

Gosse Bouma, Gertjan van Noord, and Robert Mal-
ouf. 2001. Alpino: wide coverage computational
analysis of Dutch. In W. Daelemans, K. Sima’an,
J. Veenstra, and J. Zavrel, editors,Computational
Linguistics in the Netherlands 2000, pages 45–
59. Rodolpi, Amsterdam.

L.L. Campbell. 1970. Equivalence of Gauss’s prin-
ciple and minimum discrimination information
estimation of probabilities.Annals of Mathemat-
ical Statistics, 41:1011–1015.

Zhiyi Chi. 1998. Probability models for complex
systems. Ph.D. thesis, Brown University.

J. Darroch and D. Ratcliff. 1972. Generalized it-
erative scaling for log-linear models.Ann. Math.
Statistics, 43:1470–1480.

Stephen Della Pietra, Vincent Della Pietra, and
John Lafferty. 1997. Inducing features of ran-
dom fields.IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 19:380–393.

W.E. Deming and F.F. Stephan. 1940. On a least

squares adjustment of a sampled frequency table
when the expected marginals are known.Annals
of Mathematical Statistics, 11:427–444.

Elizabeth D. Dolan and Jorge Moré. 2000. Bench-
marking optimization software with COPS.
Technical Report ANL/MCS-246, Argonne Na-
tional Laboratory.http://www-unix.mcs.
anl.gov/˜more/cops/bcops.ps.gz .

Elizabeth D. Dolan and Jorge J. Moré. 2002.
Benchmarking optimization software with per-
formance profiles.Mathematical Programming,
91:201–213.

I.J. Good. 1963. Maximum entropy for hypothe-
sis formulation, especially for multidimensional
contingency tables. Annals of Mathematical
Statistics, 34:911–934.

E.T. Jaynes. 1957. Information theory and statis-
tical mechanics.Physical Review, 106,108:620–
630.

Mark Johnson, Stuart Geman, Stephen Canon,
Zhiyi Chi, and Stefan Riezler. 1999. Estimators
for stochastic “unification-based” grammars. In
Proceedings of the 37th Annual Meeting of the
ACL, pages 535–541, College Park, Maryland.

John Lafferty and Bernhard Suhm. 1996. Cluster
expansions and iterative scaling for maximum en-
tropy language models. In K. Hanson and R. Sil-
ver, editors, Maximum Entropy and Bayesian
Methods. Kluwer.

John Lafferty, Fernando Pereira, and Andrew Mc-
Callum. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. InInternational Conference on Ma-
chine Learning (ICML).

Thomas P. Minka. 2001. Algorithms for
maximum-likelihood logistic regression. Statis-
tics Tech Report 758, CMU.http://www.
stat.cmu.edu/tr/tr758/tr758.html .

Jorge Nocedal and Stephen J. Wright. 1999.Nu-
merical Optimization. Springer, New York.

Jorge Nocedal. 1997. Large scale unconstrained
optimization. In A. Watson and I. Duff, editors,
The State of the Art in Numerical Analysis, pages
311–338. Oxford University Press.

Miles Osborne. 2002. Shallow parsing using noisy
and non-stationary training material.Journal of
Machine Learning Research, 2:695–719.

Miles Osborne. to appear. Using maximum entropy
for sentence extraction. InProceedings of the
ACL 2002 Workshop on Automatic Summariza-
tion, Philadelphia.

http://www.mcs.anl.gov/petsc
http://www-unix.mcs.anl.gov/~benson/blmvm/blmvm.ps
http://www-unix.mcs.anl.gov/~benson/blmvm/blmvm.ps
http://www.mcs.anl.gov/home/more/papers/gpcg.ps.gz
http://www.mcs.anl.gov/home/more/papers/gpcg.ps.gz
http://www-unix.mcs.anl.gov/~more/cops/bcops.ps.gz
http://www-unix.mcs.anl.gov/~more/cops/bcops.ps.gz
http://www.stat.cmu.edu/tr/tr758/tr758.html
http://www.stat.cmu.edu/tr/tr758/tr758.html

Adwait Ratnaparkhi. 1998. Maximum entropy
models for natural language ambiguity resolu-
tion. Ph.D. thesis, University of Pennsylvania.

Jonathan Richard Shewchuk. 1994. An
introduction to the conjugate gradient
method without the agonizing pain.http:
//www.cs.cmu.edu/˜quake-papers/
painless-conjugate-gradient.ps .

Jun Wu and Sanjeev Khudanpur. 2000. Effi-
cient training methods for methods maximum en-
tropy language modelling. InProceedings of IC-
SLP2000, volume 3, pages 114–117, Beijing.

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.ps
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.ps
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.ps

	Introduction
	Background
	Maximum likelihood estimation
	Iterative Scaling
	First order methods
	Second order methods

	Comparing estimation techniques
	Implementation
	Experiments

	Conclusions
	Acknowledgements

