
Learning the Meaning of Words
Architectural Design

January 14th, 2011

by Till Maurer, Stefan Helfrich, Simon Loew, Karsten Knuth, and Eva König

supervised by Birgit Schwarz

project provided by
Afra Alishahi



Class diagram
The class-diagram designed according to the MVC architectural pattern. Therefore the 
model, the view and the controller are separated and organized individually.

The model contains all data needed in the application domain.

The view will be implemented as a GUI. Since this implementation is quite dependent on a 
programming language, the design of the view is purposely left unspecific. For testing 
purposes the GUI could be replaced by an automated interface which can test the program 
without involving user input.

The controller supervises the flow of data through the application and is responsible for 
computations.





Sequence diagram: Algorithm
This sequence diagram shows the processing of the situations with a learning algorithm. In 
a previous preprocessing step, a list of situations has been compiled from the utterance 
input file in respect to the set parameters. A situation represents an event observed and 
thus has a list of of words (from one utterance) and its corresponding scene (a list of 
meanings).
The processing of the situation is triggered by the user by clicking on the 'build' button in 
the GUI. This action is passed to the Controller, which requests the preprocessed 
situations from the Model. Then the Controller instantiates the Processor, which then 
instantiates the LearningAlgorithm. For each situation, the Learning Algorithm calls the 
step method, which performs one iteration of the algorithm. Here, for each word of the 
situation its state (which represents the possible meanings of the word with their 
associated probabilities) is updated.





Sequence diagram: Preprocessing
This sequence-diagram describes the preprocessing of the input data to build up the data-
objects required by the algorithm to simulate the learning process.

When the program is started, it creates the three modules needed i.e. model (the data-
model), controller (main controller for communication between view and model as well as 
for computing), and view (presentation-layer, usually the GUI) and links them.

The diagram begins after selection of all parameters by the user in the view, which 
represents the parameter-input-screen (see use-cases/GUI-design). Then the user selects 
the preprocess button and the view triggers the method setParameters(...) and 
preprocess() in the controller.

In the setParameter(...)-method the controller stores the given parameters in the model.
In the preprocess()-method the controller generates a parser which takes the given 
utterance-file and parses it to a list (sentences of the utterance-file) of a list (words of the 
utterances) of stemmed words.

This list of list of strings is returned to the controller who generates a situation-factory to 
create the list of situations. The controller further fills the word-table for performance 
reasons. The situation-factory loops with an outer loop over the sentences from the 
utterance-file and creates for each sentence a new situation-object. Within this loop the 
inner loop iterates over the words in each sentence and creates for each word an 
appropriate word-object and its associated meaning-object. These objects are stored in a 
situation-object (the word-objects are stored additionally in the word-table as mentioned 
above).

When the inner loop finishes, the situation-object is stored in a situations-list.
Finally, the preprocessing is done and the user can start the algorithm (see algorithm-
sequence-diagram).





Sequence diagram: Logging
This sequence diagram depicts the process of writing the information storing classes 
(model classes) to XML. However, this process is not only logging but also a kind of 
serialization. This is due to the fact that that later on model classes are instantiated and 
initialized with the data contained in the XML file. For the purpose of reading and writing 
XML we plan to use the external API JDOM.
Before p (a preprocessor) calls run() on a (an implementation of an algorithm) the 
parameters and situations have been generated by the according classes. In the temporal 
order the parameters and situations are logged before the algorithm starts execution. 
Since the process of logging those classes to XML is similar to the one depicted in this 
sequence diagram, this part is omitted.
Furthermore, the word that is to be updated has occurred before and therefore no Element 
has to be explicitly created but only updated with the new probability distribution.





Activity diagram
This activity diagram shows an overview over the whole program. The user starts the 
program and can choose between three options. First he/she can start a new program run 
by setting an utterance input file and other parameters. This input is then preprocessed to 
situations by the system. Second, the user can directly load situations, which he/she has 
preprocessed in a previous program run. Now, in both cases, the situations are processed 
by the execution of the learning algorithm. As a third option, the user can load a complete 
program run, which he/she has previously compiled and processed. Now, in all three 
cases, the user can analyse arbitrary iterations of the algorithm by navigating through 
them. For each iteration, the user can view certain features, e.g. the image scene 
corresponding to the situation, the parameters set, word comprehension scores, a word 
table, and the proportion of words learned over time. The latter features can be exported 
and saved as images or tables. The user can further conduct two panels of word where 
he/she can conveniently view their features. Finally, the user can exit the program.




	Class diagram
	Sequence diagram: Algorithm
	Sequence diagram: Preprocessing
	Sequence diagram: Logging
	Activity diagram

