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Introduction

• The basic assumption underlying Montague Grammar is that 
the meaning of a sentence is given by its truth conditions.

- “Peter reads a book” is true iff Peter reads a book

• Truth conditions can be represented by logical formulae

- “Peter reads a book” → ∃x(book(x) ∧ read(p*, x))

• Indirect interpretation:

- natural language → logic → models



Compositionality

• An important principle underlying Montague Grammar is 
the so called “principle of compositionality”

The meaning of a complex expression is a function of the 
meanings of its parts, and the syntactic rules by which they are 
combined (Partee & al, 1993)



Compositionality

[[ John reads a book ]] =

C1([[ John]], [[reads a book]] ) =

C1([[ John]], C2([[reads]] , [[a book]] ) =

C1([[ John]], C2([[reads]] , C3([[a]], [[book]]))

John reads a book

John reads a book

reads a book

a book



Representing Meaning

• First order logic is in general not an adequate formalism to 
model the meaning of natural language expressions.

• Expressiveness

- “John is an intelligent student” ⇒ intelligent(j*) ∧ stud(j*)

- “John is a good student” ⇒ good(j*) ∧ stud(j*) ??

- “John is a former student” ⇒ former(j*) ∧ stud(j*) ???

• Representations of noun phrases, verb phrases, …

- “is intelligent” ⇒ intelligent( ∙ )  ?

- “every student” ⇒ ∀x(student(x) ⇒ ⋅ )  ???



Type Theory

• First order logic provides only n-ary first order relations, 
which is insufficient to model natural language semantics.

• Type theory is more expressive and flexible – it provides 
higher-order relations and functions of different kinds. 

• Some type theoretical expressions

- “John is a good student” ⇒ good(student)(j*)

- “is intelligent” ⇒ intelligent

- “every student” ⇒ λP∀x(student(x) ⇒ P(x))



Types

• A set of basic types, for instance {e, t}

- e is the type of individual terms (“entity”)

- t is the type of formulas (“truth value”)

• The set T of types is the smallest set such that

- if σ is a basic type, then σ is a type

- if σ, τ are types, then ‹σ, τ› is a type

• The type ‹σ, τ› is the type of functions that map arguments 
of type σ to values of type τ.



Some Example Types

• One-place predicate constant: sleep, walk, student, … 

- ‹e, t›

• Two-place relation: read, write, …

- ‹e, ‹e,t››

• Attributive adjective: good, intelligent, former, …

- ‹‹e,t›, ‹e,t››



Vocabulary

• Pairwise disjoint, possibly empty sets of non-logical 
constants: 

- Conτ, for every type τ
• Infinite and pairwise disjoint sets of variables: 

- Varτ, for every type τ
• Logical constants: 

- ∀, ∃, ∧, ¬, …, λ



Syntax

• For every type τ, we define the set of meaningful 
expressions MEτ as follows:

- Conτ ⊆ MEτ and Varτ ⊆ MEτ, for every type τ
- If α ∈ ME‹σ, τ› and β ∈ MEσ, then α(β) ∈ MEτ.
- If A, B ∈ MEt, then so are ¬A, (A ∧ B), (A ⇒ B), … 

- If A ∈ MEt, then so are ∀xA and ∃xA, where x is a  
variable of arbitrary type. 

- If α, β are well-formed expressions of the same type,  
then α = β ∈ MEt.

- If α ∈ MEτ and x ∈ Varσ, then λxα ∈ ME‹σ, τ›.



Some Examples

• “John works.”

• “Every student works.”

j* ∈ MEe     work ∈ ME‹e, t›

work(j*)

every ∈ ME‹‹e, t›, ‹‹e, t›, t›     student ∈ ME‹e, t›

every(student) ∈ ME‹‹e, t›, ‹‹e, t›, t›    work ∈ ME‹e, t›

every(student)(work) ∈ MEt



Semantics

• Let U be a non-empty set of entities. For every type τ, the 
domain of possible denotations Dτ is  given by

- De = U

- Dt = {0,1}

- D‹σ, τ› = the set of functions from Dσ to Dτ

• A model structure is a structure M = (UM,  VM)

- UM is a non-empty set of individuals

- VM is a function that assigns every non-logical constant of 
type τ an element of Dτ.

• Variable assignment g:  Varτ → Dτ



Semantics

• Let M be a model structure and g a variable assignment

- [[α]]M,g = VM(α), if α is a constant

- [[α]]M,g = g(α), if α is a variable

- [[α(β)]]M,g = [[α]]M,g([[β]]M,g)

- [[¬φ]]M,g = 1 iff [[φ]]M,g = 0

- [[φ∧ψ]]M,g = 1 iff [[φ]]M,g = 1 and [[ψ]]M,g = 1,  etc. 

- [[∃vφ]]M,g = 1 iff there is a ∈ Dτ such that [[φ]]M,g[v/a] = 1 

- [[∀vφ]]M,g = 1 iff for all a ∈ Dτ, [[φ]]M,g[v/a] = 1

- [[α = β]]M,g = 1iff [[α]]M,g = [[β]]M,g



Semantics of λ-Expressions

• Let M be a model structure and g a variable assignment

- If α ∈ MEτ and v ∈ Varσ, then [[λvα]]M,g is that function f 
from Dσ to Dτ such that for any a ∈ Dσ, f(a) = [[α]]M,g[v/a|

• “Syntactic shortcut:” β-reduction

- (λxφ)(ψ) ≡ φ[ψ/x]

" if all free variables in ψ are free for x in φ
- A variable y is free for x in φ if no free occurence of x in 
ψ is in the scope of a ∃y, ∀y, λy



Noun Phrases

• “John works” → work(j*)

• “A student works.” → ∃x(student(x) ∧ work(x))

• “Every student works.” → ∀x(student(x) ⇒ work(x))

• “John and Mary work.” → work(j*) ∧ work(m*)



Noun Phrases

• Using λ-abstraction, noun phrases can be given a uniform 
interpretation as “generalized quantifiers” 

- “John” → λP.P(j*)

- “A student” → λP∃x(student(x) ∧ P(x))

- “Every student” → λP∀x(student(x) ⇒ P(x))

- “John and Mary” → λP.P(j*) ∧ P(m*)



Noun Phrases

• “John works”

• “Every student works.”

λP.P(j*) ∈ ME‹‹e, t›, t›  work ∈ ME‹e, t›

(λP.P(j*))(work) ∈ MEt

work(j*) ∈ MEt

λP∀x(student(x) ⇒ P(x)) ∈ ME‹‹e, t›, t›  work ∈ ME‹e, t›

(λP∀x(student(x) ⇒ P(x)))(work) ∈ MEt

∀x(student(x) ⇒ work(x)) ∈ MEt



Determiners

• Determiners like “a,” “every,” “no” denote higher order 
functions taking (denotations of) common nouns and return 
a higher order relation.

- “every” → λPλQ∀x(P(x) ⇒ Q(x))

- “some” → λPλQ∃x(P(x) ∧ Q(x))

- “no” → λPλQ¬∃x(P(x) ∧ Q(x))

• “Every student”
λPλQ∀x(P(x) ⇒ Q(x))              student

(λPλQ∀x(P(x) ⇒ Q(x)))(student)

λQ∀x(student(x) ⇒ Q(x))



A Montague-Style Grammar
for a Fragment of English



Syntactic Component

• Montague Grammar is based upon (a particular version of) 
categorial grammar.

• The set of categories is the smallest set such that

- S, IV, CN are categories

- If A, B are categories, then A/B is a category

• Some categories

- IV/T	 [= TV]	 	 transitive verbs

- S/IV	 [= T]	 	 terms (= noun phrases)

- T/CN	 	 	 determiners



Lexicon

• For each category A, we assume a possibly empty set BA of 
basic expressions of category A.

• For instance

- BT = { John, Mary, he0, he1, … }

- BCN = { student, man, woman, … }

- BIV = { sleep, work, … }

- BIV/T = { read, … }

- BT/CN = { a, every, no, the, … }



Syntactic Rules (Simplified)

• General rule schema:

- BA ⊆ PA

- If α ∈ PA and δ ∈ PB/A, then δα ∈ PB

• “Every student works”

every student works, S

every student, S/IV works, IV

every, (S/IV)/CN student, CN



Translation into Type Theory

• A translation of natural language into type theory is a 
homomorphism that assigns each α ∈ PA an α’ ∈ MEf(A) 

• f maps categories to types as follows

- f(S) = t

- f(CN) = f(IV) = ‹e, t›

- f(A/B) = ‹f(B), f(A)›



Translation: Lexical Categories

• “John” → λP.P(j*)

• “every” → λPλQ∀x(P(x) ⇒ Q(x))

• “a” → λPλQ∃x(P(x) ∧ Q(x))

• “student” → student

• “book” → book

• “works” → work

• …



Translation: Phrasal Categories

• Syntactic rule:

- If α ∈ PA and δ ∈ PB/A, then δα ∈ PB

• Corresponding translation rule:

- If α → α’, δ → δ’, then δα → δ’(α’)

B ! "'(#') 

B/A ! "' A ! #'



“Every student works”

• “every” → λPλQ∀x(P(x) ⇒ Q(x)) 

• “student” → student

• “every student” → λPλQ∀x(P(x) ⇒ Q(x))(student) 
= λQ∀x(student(x) ⇒ Q(x))

• “every student works” → λQ∀x(student(x) ⇒ Q(x))(work)
= ∀x(student(x) ⇒ work(x))

every student works, S

every student, S/IV works, IV

every, (S/IV)/CN student, CN



Transitive Verbs

• Transitive verbs have category IV/T (= IV/(S/IV)), the 
corresponding type is ‹‹‹e, t›, t›, ‹e, t››

• On the other hand, transitive verbs like “read,” “present,” … 
denote a two-place first order relation (type ‹e, ‹e, t››)

- “John reads a book” → ∃y(book(y) ∧ read(y)(j*))

• “read” → λQλx.Q(λy.read*(y)(x))

- read* ∈ ME‹e, ‹e, t››



“Every student reads a book”

every student reads a book, S

every student, T read a book, IV

reads, IV/Tevery, T/CN student, CN a book, T

a, T/CN book, CN



“Every student reads a book”

• “a book” → λP∃z(book(z) ∧ P(z))

• “reads” → λQλx.Q(λy.read*(y)(x))

• “reads a book” 
→ λQλx.Q(λy.read*(y)(x))(λP∃z(book(z) ∧ P(z)))
→ λx.λP∃z(book(z) ∧ P(z))(λy.read*(y)(x))
→ λx.∃z(book(z) ∧ (λy.read*(y)(x))(z))
→ λx.∃z(book(z) ∧ read*(z)(x))

• “every student reads a book”
→ λP∀w(student(w) ⇒ P(w))(λx.∃z(book(z) ∧ read*(z)(x))
→ ∀w(student(w) ⇒ ∃z(book(z) ∧ read*(z)(w)))



Scope

• Sentences with multiple scope bearing operators – e.g., 
quantified noun phrases or negations – are often 
ambiguous.

• “Every student reads a book”

- ∀x(student(x) ⇒ ∃y(book(y) ∧ read(y)(x)))

- ∃y(book(y) ∧ ∀x(student(x) ⇒ read(y)(x)))

• “Every student did not pay attention”

- ∀x(student(x) ⇒ ¬ pay attention(x))

- ¬ ∀x(student(x) ⇒ pay attention(x))



The Problem

• The principle of compositionality implies that syntactic 
derivation trees are mapped to a unique type theoretical 
semantic representation.

• Hence the second reading cannot be derived, unless …

every student reads a book, S, S2

every student, T read a book, IV, S4

read, IV/Tevery, T/CN student, CN a book, T, S3

a, T/CN book, CN



“Montague’s Trick”

• Special rule of quantification (aka “Quantifying-in”)

- Terms α ∈ PT can combine with sentences ξ ∈ PS to 
form a sentence ξ’ ∈ PS, 

- where ξ’ is obtained from ξ by replacing all occurrences 
of “hei” with α.

- For instance: “a book” + “… he1 …” = “… a book …”

• Sentences can be assigned distinct syntactic derivations



“Montague’s Trick”

• “he0” → λP.P(x0)

• “every student reads he0” → ∀y(student(y) ⇒ read(x0)(y))

• “every student reads a book”
→ λP∃x(book(x) ∧ P(x))(λx0∀y(student(y) ⇒ read(x0)(y)))
→ ∃x(book(x) ∧ ∀y(student(y) ⇒ read(x)(y)))

every student reads he0, S

every student, T reads he0, IV

reads, IV/T he0, T

a book, T

a, T/CN book, CN

every student reads a book, S

every, T/CN student, CN



“Montague’s Trick”

• The quantification rule allows to derive different scope 
readings of ambiguous sentences, but …

- the syntax is made more ambiguous than it actually is

- no surface oriented analysis



Summary

• The principle of compositionality

- links syntax and semantics of natural language

• Type theory offers

- flexibility

- expressiveness

• Montague like semantics construction …

- follows the principle of compositionality

- assumes a strict one-to-one correspondence between 
syntax and corresponding semantic representations,

- but needs a “trick” to model scope ambiguities


