Montague Grammar

Stefan Thater Blockseminar "Underspecification" 10.04.2006

Overview

- Introduction
- Type Theory
- A Montague-Style Grammar
- Scope Ambiguities
- Summary

Introduction

- The basic assumption underlying Montague Grammar is that the meaning of a sentence is given by its truth conditions.
 - "Peter reads a book" is true iff Peter reads a book
- Truth conditions can be represented by logical formulae
 - "Peter reads a book" $\rightarrow \exists x(book(x) \land read(p^*, x))$
- Indirect interpretation:
 - natural language \rightarrow logic \rightarrow models

Compositionality

• An important principle underlying Montague Grammar is the so called "principle of compositionality"

The meaning of a complex expression is a function of the meanings of its parts, and the syntactic rules by which they are combined (Partee & al, 1993)

Compositionality

Representing Meaning

- First order logic is in general not an adequate formalism to model the meaning of natural language expressions.
- Expressiveness
 - "John is an intelligent student" \Rightarrow intelligent(j*) \land stud(j*)
 - "John is a good student" \Rightarrow good(j*) \land stud(j*) ??
 - "John is a former student" \Rightarrow former(j*) \land stud(j*) ???
- Representations of noun phrases, verb phrases, ...
 - "is intelligent" \Rightarrow intelligent(\cdot) ?
 - "every student" $\Rightarrow \forall x(student(x) \Rightarrow \cdot)$???

Type Theory

- First order logic provides only n-ary first order relations, which is insufficient to model natural language semantics.
- Type theory is more expressive and flexible it provides higher-order relations and functions of different kinds.
- Some type theoretical expressions
 - "John is a good student" \Rightarrow good(student)(j*)
 - "is intelligent" \Rightarrow intelligent
 - "every student" $\Rightarrow \lambda P \forall x (student(x) \Rightarrow P(x))$

Types

- A set of basic types, for instance {e, t}
 - e is the type of individual terms ("entity")
 - t is the type of formulas ("truth value")
- The set T of types is the smallest set such that
 - if σ is a basic type, then σ is a type
 - if σ , τ are types, then $\langle \sigma, \tau \rangle$ is a type
- The type $\langle \sigma, \tau \rangle$ is the type of functions that map arguments of type σ to values of type τ .

Some Example Types

- One-place predicate constant: sleep, walk, student, ...
 - <e, t>
- Two-place relation: read, write, ...
 - <e, <e, t>>
- Attributive adjective: good, intelligent, former, ...
 - ‹‹e,t›, ‹e,t››

Vocabulary

- Pairwise disjoint, possibly empty sets of non-logical constants:
 - Con $_{\tau}$, for every type T
- Infinite and pairwise disjoint sets of variables:
 - Var $_{\tau}$, for every type T
- Logical constants:
 - $\forall, \exists, \land, \neg, ..., \lambda$

Syntax

- For every type T, we define the set of meaningful expressions ME_{T} as follows:
 - $Con_{\tau} \subseteq ME_{\tau}$ and $Var_{\tau} \subseteq ME_{\tau}$, for every type τ
 - If $\alpha \in ME_{\langle \sigma, \tau \rangle}$ and $\beta \in ME_{\sigma}$, then $\alpha(\beta) \in ME_{\tau}$.
 - If A, B \in ME_t, then so are \neg A, (A \land B), (A \Rightarrow B), ...
 - If $A \in ME_t$, then so are $\forall xA$ and $\exists xA$, where x is a variable of arbitrary type.
 - If α , β are well-formed expressions of the same type, then $\alpha = \beta \in ME_t$.
 - If $\alpha \in ME_{\tau}$ and $x \in Var_{\sigma}$, then $\lambda x \alpha \in ME_{\langle \sigma, \tau \rangle}$.

Some Examples

Semantics

- Let U be a non-empty set of entities. For every type T, the domain of possible denotations D_T is given by
 - $D_e = U$
 - $D_t = \{0, I\}$
 - $D_{(\sigma, \tau)}$ = the set of functions from D_{σ} to D_{τ}
- A model structure is a structure $M = (U_M, V_M)$
 - U_M is a non-empty set of individuals
 - V_M is a function that assigns every non-logical constant of type T an element of D_T .
- Variable assignment g: $Var_{\tau} \rightarrow D_{\tau}$

Semantics

- Let M be a model structure and g a variable assignment
 - $[[\alpha]]^{M,g} = V_M(\alpha)$, if α is a constant
 - $[[\alpha]]^{M,g} = g(\alpha)$, if α is a variable
 - $[[\alpha(\beta)]]^{M,g} = [[\alpha]]^{M,g}([[\beta]]^{M,g})$
 - $[[\neg \phi]]^{M,g} = I \text{ iff } [[\phi]]^{M,g} = 0$
 - $[[\phi \land \psi]]^{M,g} = I \text{ iff } [[\phi]]^{M,g} = I \text{ and } [[\psi]]^{M,g} = I, \text{ etc.}$
 - $[[\exists v \phi]]^{M,g} = I$ iff there is $a \in D_{\tau}$ such that $[[\phi]]^{M,g[v/a]} = I$
 - $[[\forall v \phi]]^{M,g} = I$ iff for all $a \in D_{\tau}$, $[[\phi]]^{M,g[v/a]} = I$
 - $[[\alpha = \beta]]^{M,g} = \text{Iiff } [[\alpha]]^{M,g} = [[\beta]]^{M,g}$

Semantics of λ -Expressions

- Let M be a model structure and g a variable assignment
 - If $\alpha \in ME_{\tau}$ and $v \in Var_{\sigma}$, then $[[\lambda v \alpha]]^{M,g}$ is that function f from D_{σ} to D_{τ} such that for any $a \in D_{\sigma}$, $f(a) = [[\alpha]]^{M,g[v/a]}$
- "Syntactic shortcut:" β -reduction
 - $(\lambda x \phi)(\psi) = \phi[\psi/x]$

if all free variables in ψ are free for x in ϕ

- A variable y is free for x in ϕ if no free occurence of x in ψ is in the scope of a $\exists y, \forall y, \lambda y$

Noun Phrases

- "John works" \rightarrow work(j*)
- "A student works." $\rightarrow \exists x(student(x) \land work(x))$
- "Every student works." $\rightarrow \forall x(student(x) \Rightarrow work(x))$
- "John and Mary work." \rightarrow work(j*) \land work(m*)

Noun Phrases

- Using λ-abstraction, noun phrases can be given a uniform interpretation as "generalized quantifiers"
 - "John" $\rightarrow \lambda P.P(j^*)$
 - "A student" $\rightarrow \lambda P \exists x (student(x) \land P(x))$
 - "Every student" $\rightarrow \lambda P \forall x (student(x) \Rightarrow P(x))$
 - − "John and Mary" → λ P.P(j*) ∧ P(m*)

Noun Phrases

- "John works" $\begin{array}{l} \lambda P.P(j^*) \in \mathsf{ME}_{\langle\langle e, t \rangle, t \rangle} \quad \text{work} \in \mathsf{ME}_{\langle e, t \rangle} \\ \hline (\lambda P.P(j^*))(\text{work}) \in \mathsf{ME}_t \\ \hline \text{work}(j^*) \in \mathsf{ME}_t \end{array}$
- "Every student works."

 $\lambda P \forall x (student(x) \Rightarrow P(x)) \in ME_{\langle (e, t \rangle, t \rangle} \ work \in ME_{\langle e, t \rangle}$

 $(\lambda P \forall x(student(x) \Rightarrow P(x)))(work) \in ME_t$

 $\forall x(student(x) \Rightarrow work(x)) \in ME_t$

Determiners

 Determiners like "a," "every," "no" denote higher order functions taking (denotations of) common nouns and return a higher order relation.

- "every"
$$\rightarrow \lambda P \lambda Q \forall x (P(x) \Rightarrow Q(x))$$

- "some" $\rightarrow \lambda P \lambda Q \exists x (P(x) \land Q(x))$
- "no" $\rightarrow \lambda P \lambda Q \neg \exists x (P(x) \land Q(x))$
- "Every student"

$$\begin{split} \lambda P \lambda Q \forall x (P(x) \Rightarrow Q(x)) & \text{student} \\ \frac{(\lambda P \lambda Q \forall x (P(x) \Rightarrow Q(x)))(\text{student})}{\lambda Q \forall x (\text{student}(x) \Rightarrow Q(x))} \end{split}$$

A Montague-Style Grammar for a Fragment of English

Syntactic Component

- Montague Grammar is based upon (a particular version of) categorial grammar.
- The set of categories is the smallest set such that
 - S, IV, CN are categories
 - If A, B are categories, then A/B is a category
- Some categories
 - IV/T [=TV] transitive verbs
 - S/IV [=T] terms (= noun phrases)
 - T/CN determiners

Lexicon

- For each category A, we assume a possibly empty set B_A of basic expressions of category A.
- For instance
 - $B_T = \{ John, Mary, he_0, he_1, \dots \}$
 - $B_{CN} = \{$ student, man, woman, ... $\}$
 - $B_{IV} = \{ sleep, work, ... \}$
 - $B_{IV/T} = \{ read, \dots \}$
 - $B_{T/CN} = \{ a, every, no, the, ... \}$

Syntactic Rules (Simplified)

- General rule schema:
 - $B_A \subseteq P_A$
 - If $\alpha \in P_A$ and $\delta \in P_{B/A}$, then $\delta \alpha \in P_B$
- "Every student works"

Translation into Type Theory

- A translation of natural language into type theory is a homomorphism that assigns each $\alpha \in P_A$ an $\alpha' \in ME_{f(A)}$
- f maps categories to types as follows
 - f(S) = t
 - $f(CN) = f(IV) = \langle e, t \rangle$
 - $f(A/B) = \langle f(B), f(A) \rangle$

Translation: Lexical Categories

- "John" $\rightarrow \lambda P.P(j^*)$
- "every" $\rightarrow \lambda P \lambda Q \forall x (P(x) \Rightarrow Q(x))$
- "a" $\rightarrow \lambda P \lambda Q \exists x (P(x) \land Q(x))$
- "student" \rightarrow student
- "book" → book
- "works" \rightarrow work
- ...

Translation: Phrasal Categories

- Syntactic rule:
 - If $\alpha \in P_A$ and $\delta \in P_{B/A}$, then $\delta \alpha \in P_B$
- Corresponding translation rule:
 - If $\alpha \rightarrow \alpha', \delta \rightarrow \delta'$, then $\delta \alpha \rightarrow \delta'(\alpha')$

"Every student works"

- "every" $\rightarrow \lambda P \lambda Q \forall x (P(x) \Rightarrow Q(x))$
- "student" \rightarrow student
- "every student" $\rightarrow \lambda P \lambda Q \forall x (P(x) \Rightarrow Q(x)) (student)$
 - $= \lambda Q \forall x (student(x) \Rightarrow Q(x))$
- "every student works" $\rightarrow \lambda Q \forall x (student(x) \Rightarrow Q(x)) (work)$
 - $= \forall x(student(x) \Rightarrow work(x))$

Transitive Verbs

- Transitive verbs have category IV/T (= IV/(S/IV)), the corresponding type is ‹‹‹e, t›, t›, ‹e, t››
- On the other hand, transitive verbs like "read," "present," ... denote a two-place first order relation (type <e, <e, t>>)
 - "John reads a book" $\rightarrow \exists y(book(y) \land read(y)(j^*))$
- "read" $\rightarrow \lambda Q \lambda x. Q(\lambda y. read^*(y)(x))$
 - read* $\in ME_{\langle e, \langle e, t \rangle \rangle}$

"Every student reads a book"

"Every student reads a book"

- "a book" $\rightarrow \lambda P \exists z (book(z) \land P(z))$
- "reads" $\rightarrow \lambda Q \lambda x. Q(\lambda y. read^*(y)(x))$
- "reads a book"
 - → $\lambda Q \lambda x. Q(\lambda y. read^*(y)(x))(\lambda P \exists z(book(z) \land P(z)))$
 - → $\lambda x.\lambda P \exists z(book(z) \land P(z))(\lambda y.read^*(y)(x))$
 - → $\lambda x.\exists z(book(z) \land (\lambda y.read^*(y)(x))(z))$
 - → $\lambda x.\exists z(book(z) \land read^*(z)(x))$
- "every student reads a book"
 - → $\lambda P \forall w(student(w) \Rightarrow P(w))(\lambda x.\exists z(book(z) \land read^*(z)(x)))$
 - → \forall w(student(w) \Rightarrow \exists z(book(z) \land read*(z)(w)))

Scope

- Sentences with multiple scope bearing operators e.g., quantified noun phrases or negations – are often ambiguous.
- "Every student reads a book"
 - $\forall x(student(x) \Rightarrow \exists y(book(y) \land read(y)(x)))$
 - $\exists y(book(y) \land \forall x(student(x) \Rightarrow read(y)(x)))$
- "Every student did not pay attention"
 - $\forall x(student(x) \Rightarrow \neg pay attention(x))$
 - ¬ \forall x(student(x) ⇒ pay attention(x))

The Problem

- The principle of compositionality implies that syntactic derivation trees are mapped to a unique type theoretical semantic representation.
- Hence the second reading cannot be derived, unless ...

"Montague's Trick"

- Special rule of quantification (aka "Quantifying-in")
 - Terms $\alpha \in P_T$ can combine with sentences $\xi \in P_S$ to form a sentence $\xi' \in P_S$,
 - where ξ ' is obtained from ξ by replacing all occurrences of "he_i" with α .
 - For instance: "a book" + "... he₁ ..." = "... a book ..."
- Sentences can be assigned distinct syntactic derivations

"Montague's Trick"

- "he₀" $\rightarrow \lambda P.P(x_0)$
- "every student reads he_0 " $\rightarrow \forall y(student(y) \Rightarrow read(x_0)(y))$
- "every student reads a book"
 - → $\lambda P \exists x(book(x) \land P(x))(\lambda x_0 \forall y(student(y) \Rightarrow read(x_0)(y)))$
 - → $\exists x(book(x) \land \forall y(student(y) \Rightarrow read(x)(y)))$

"Montague's Trick"

- The quantification rule allows to derive different scope readings of ambiguous sentences, but ...
 - the syntax is made more ambiguous than it actually is
 - no surface oriented analysis

Summary

- The principle of compositionality
 - links syntax and semantics of natural language
- Type theory offers
 - flexibility
 - expressiveness
- Montague like semantics construction ...
 - follows the principle of compositionality
 - assumes a strict one-to-one correspondence between syntax and corresponding semantic representations,
 - but needs a "trick" to model scope ambiguities