Montague Grammar

Stefan Thater

Blockseminar “Underspecification”
10.04.2006



Overview

Introduction

Type Theory

A Montague-Style Grammar
Scope Ambiguities

Summary



Introduction

® The basic assumption underlying Montague Grammar is that
the meaning of a sentence is given by its truth conditions.

— “Peter reads a book’ is true iff Peter reads a book

e Truth conditions can be represented by logical formulae

— “Peter reads a book” — 3x(book(x) A read(p*, x))

® Indirect interpretation:
— natural language — logic = models



Compositionality

® An important principle underlying Montague Grammar is
the so called “principle of compositionality”

The meaning of a complex expression is a function of the

meanings of its parts, and the syntactic rules by which they are
combined (Partee & al, 1993)



Compositionality

John reads a book

John  reads a book

[[ John reads a book ]] = N

C([[ John]], [[reads a book]] ) = reads  a book
Ci([[ John]], C2([[reads]] , [[a book]] ) = a  book
Ci([[ John]], Ca([[reads]] , C3([[a]], [[book]]))




Representing Meaning

® First order logic is in general not an adequate formalism to
model the meaning of natural language expressions.

® Expressiveness
— “John is an intelligent student” = intelligent(j*) A stud(j*)
— “John is a good student” = good(j*) A stud(j*) ??
— “John is a former student” = former(j*) A stud(j*) ???

® Representations of noun phrases, verb phrases, ...
— “is intelligent” = intelligent( - ) ?
— “every student” = vx(student(x) = - ) 2



Type Theory

First order logic provides only n-ary first order relations,
which is insufficient to model natural language semantics.

Type theory is more expressive and flexible — it provides
higher-order relations and functions of different kinds.

Some type theoretical expressions

— “John is a good student” = good(student)(j*)
— “is intelligent” = intelligent

— “every student” = APvx(student(x) = P(x))



Types

® A set of basic types, for instance {e, t}
— e is the type of individual terms (“entity”)
— tis the type of formulas (“truth value”)

® The setT of types is the smallest set such that
— if O is a basic type, then O is a type
— if O, T are types, then <0, T) is a type

® The type <O, T» is the type of functions that map arguments
of type O to values of type T.



Some Example Types

® One-place predicate constant: sleep, walk, student, ...
- <&,

® J[wo-place relation: read, write, ...
— (e, <e,t)

e Attributive adjective: good, intelligent, former, ...

—  «e,n, e, t»



Vocabulary

® Pairwise disjoint, possibly empty sets of non-logical
constants:

— Conr, for every type T
® Infinite and pairwise disjoint sets of variables:
— Varq, for every type T

® |ogical constants:
- Y, 3, A, A



Syntax

For every type T, we define the set of meaningful
expressions MEr as follows:

Cont € MEr and Varr C MEq, for every type T

If x € ME,r, and B € MEg, then &(B) € ME-.

If A, B € MEg, then so are =A, (A A B), (A = B), ...
If A € ME, then so are VXA and 3xA, where x is a
variable of arbitrary type.

If &, B are well-formed expressions of the same type,
then & = B € ME..

If & € MEt and x € Varg, then Axx € ME . .



Some Examples

® “John works.”

j*€ MEe  work € ME,
work(j*)

® “Every student works.”

every € ME«e, ), «e, O, student € ME(e, ©

cecve rY(StUdent) € M E((e, D, e, 0, O WO I"k € M E(e, ©

every(student)(work) € ME;



Semantics

® |et U be a non-empty set of entities. For every type T, the
domain of possible denotations D+ is given by

- De = U

— D:={0,1}

— Do, 1, = the set of functions from Dg to D+
® A model structure is a structure M = (Um, Vm)

— Uwm is a non-empty set of individuals

— Vwm s a function that assigns every non-logical constant of
type T an element of D-.

® Variable assignment g: Varr = D+



Semantics

® Let M be a model structure and g a variable assignment
- [[x]]™& =VmM(), if & is a constant
— [[x]]™# = g(x), if & is a variable
- [[x(B)]1™ = [[o]]™&([[R1]™e)
= [[~ep]]™e = 1 iff [[¢]]™&= 0
= [[pAw]]™e = I iff [[]]™&= | and [[P]]™e= I, etc.
— [[3vep]]™e = | iff there is a € D+ such that [[¢]]™Mslval = |
— [[vvep]]™e = | iff for all a € Dr, [[p]]™elal = |

— [ = BII™e = liff [[o]]™e = [[B]]™e




Semantics of A-Expressions

® Let M be a model structure and g a variable assighment

— If & € MEr and v € Varg, then [[Ava]]™# is that function f
from Dg to D+ such that for any a € Dg, f(a) = [[o]]™elv

® “Syntactic shortcut:” B-reduction
= (Ax@)(P) = @[Y/X]
if all free variables in P are free for x in

— A variable y is free for x in @ if no free occurence of x in
W is in the scope of a 3y, Vy, Ay



Noun Phrases

“lJohn works” — work(j*)
“A student works.” = Ix(student(x) A work(x))
“Every student works.” = vx(student(x) = work(x))

“lJohn and Mary work.” = work(j*) A work(m¥*)



Noun Phrases

Using A-abstraction, noun phrases can be given a uniform
interpretation as “generalized quantifiers”

— “John” = APP(j*)

— “A student” = APax(student(x) A P(x))

— “Every student” = APvx(student(x) = P(x))
— “John and Mary” — APP(j*) A P(m*)



Noun Phrases

® “John works”
>\PP(]*) S ME«e,t),t) Work S ME<e,t>

(APP(j*))(work) € ME;
work(j*) € ME;

® “Every student works.”

APvx(student(x) = P(x)) € MEe, 0, work € MEc,+,
(APvx(student(x) = P(x)))(work) € ME;
vx(student(x) = work(x)) € ME;




Determiners

® Determiners like “a,” “every,” “no” denote higher order
functions taking (denotations of) common nouns and return

a higher order relation.

— “every” = APAQVx(P(x) = Q(x))

— “some” = APAQ3ax(P(x) A Q(x))

— “no” = APAQ-3x(P(x) A Q(x))

e “Every student”
APAQVx(P(x) = Q(x)) student
(APAQVx(P(x) = Q(x)))(student)
AQvx(student(x) = Q(x))




A Montague-Style Grammar
for a Fragment of English



Syntactic Component

® Montague Grammar is based upon (a particular version of)
categorial grammar.
® The set of categories is the smallest set such that

— S, IV, CN are categories
— If A, B are categories, then A/B is a category

® Some categories
- IVIT [=TV] transitive verbs
- S/IIV [=T] terms (= noun phrases)
- T/CN determiners



Lexicon

For each category A, we assume a possibly empty set Ba of
basic expressions of category A.

For instance

— Bt = {John, Mary, heo, he|, ... }

— Bcn = { student, man, woman, ... }
— B = { sleep, work, ... }

- Bt = { read, ... }

— Brien ={ a, every, no, the, ... }



Syntactic Rules (Simplified)

® General rule schema:
— Ba C Pa
— If & € Paand O € Pg/a, then O € Pg

® “Every student works”

every student works, S
every student, S/IV  works, IV

every, (S/IV)/CN student, CN



Translation into Type Theory

® A translation of natural language into type theory is a
homomorphism that assigns each & € Pa an &’ € MEga)

® f maps categories to types as follows
- f(S) =t
— f(CN) =1{(IV) =<e, »
— f(A/B) = «(B), f(A)»



Translation: Lexical Categories

® “John” = APP(j*)

e “every” = APAQVx(P(x) = Q(x))
® “a” = APAQax(P(x) A Q(x))

® “student” — student

® “book” — book

® ‘“‘works” = work



Translation: Phrasal Categories

® Syntactic rule:

— If & € Pa and O € Pg/a, then 00X € Pg B — 0'(a')
® Corresponding translation rule: BA—=Y A-

- foa = «,0 = 0, then 0&x — d'(X’)



“Every student works”

every student works, S

every student, S/IV  works, IV

every, (S/IV)/CN student, CN

“every” = APAQVx(P(x) = Q(x))
“student” — student
“every student” = APAQVx(P(x) = Q(x))(student)

AQvx(student(x) = Q(x))

“every student works” = AQvx(student(x) = Q(x))(work)

vx(student(x) = work(x))



Transitive Verbs

Transitive verbs have category IV/T (= IV/(S/IV)), the
corresponding type is ««e, t), D, <e, t»

b

On the other hand, transitive verbs like “read,’ “present,’ ...

denote a two-place first order relation (type <e, e, t»)
— “John reads a book” — 3Jy(book(y) A read(y)(j*))

“read” = AQAx.Q(Ay.read*(y)(x))

— read* e ME<e, e, t



“Every student reads a book™

every student reads a book, S

every student, T read a book, IV
every, T/CN student, CN  reads, IV/T a book, T

a, T/CN book, CN



“Every student reads a book™

“a book” — AP3z(book(z) A P(z))

“reads” = AQAx.Q(Ay.read*(y)(x))

“reads a book”

= AQAx.Q(Ay.read*(y)(x))(AP3z(book(z) A P(z)))

—  Ax.AP3z(book(z) A P(z))(Ay.read*(y)(x))

—  Ax.3z(book(z) A (Ay.read*(y)(x))(z))

—  Ax.3z(book(z) A read*(z)(x))

“every student reads a book”

—  APvw(student(w) = P(w))(Ax.3z(book(z) A read*(z)(x))
—  vw(student(w) = 3z(book(z) A read™(z)(w)))



Scope

Sentences with multiple scope bearing operators — e.g.,
quantified noun phrases or negations — are often
ambiguous.

“Every student reads a book”

— Vx(student(x) = Jy(book(y) A read(y)(x)))

— 3y(book(y) A ¥x(student(x) = read(y)(x)))
“Every student did not pay attention”

— VX(student(x) = -1 pay attention(x))

— 1 x(student(x) = pay attention(x))



The Problem

every student reads a book, S, S2

every student, T read a book, IV, $4

every, T/CN student, CN  read, IV/T a book, T, S3

a, [/CN book, CN

® The principle of compositionality implies that syntactic

derivation trees are mapped to a unique type theoretical
semantic representation.

® Hence the second reading cannot be derived, unless ...



“Montague’s Trick”

® Special rule of quantification (aka “Quantifying-in”)

— Terms & € Pt can combine with sentences & € Ps to
form a sentence &’ € Ps,

— where &’ is obtained from & by replacing all occurrences
of “he” with «.

— For instance:“a boolk” +*“... he; ...” =“... abook ...”

® Sentences can be assigned distinct syntactic derivations



“Montague’s Trick”

every student reads a book, S

a book, T every student reads heg, S
A
a, [/CN book, CN every student, T reads heg, IV
every, T/CN student, CN  reads, IV/T heg, T

“heo” — APP(xo)
“every student reads heo

9

— Vy(student(y) = read(xo)(y))
“every student reads a book”

—  APax(book(x) A P(x))(AxoVy(student(y) = read(xo)(y)))
—  3Ix(book(x) A Vy(student(y) = read(x)(y)))



“Montague’s Trick”

® The quantification rule allows to derive different scope
readings of ambiguous sentences, but ...

— the syntax is made more ambiguous than it actually is
— no surface oriented analysis



Summary

® The principle of compositionality

links syntax and semantics of natural language

e Type theory offers

flexibility
expressiveness

® Montague like semantics construction ...

follows the principle of compositionality

assumes a strict one-to-one correspondence between
syntax and corresponding semantic representations,

but needs a “trick” to model scope ambiguities



