Text Mining for Historical Documents / Historische Quellen mit (computer-)linguistischen Methoden analysieren
Introduction to Computational Linguistics

Caroline Sporleder and Martin Schreiber
Computational Linguistics & Kultur- und Mediengeschichte
Universität des Saarlandes
Wintersemester 2008/09

17.02.2009
Computational Linguistics (CL) . . .

“...is a discipline between linguistics and computer science which is concerned with the computational aspects of the human language faculty. It belongs to the cognitive sciences and overlaps with the field of artificial intelligence (AI), a branch of computer science aiming at computational models of human cognition.”

Source:
http://www.coli.uni-saarland.de/~hansu/what_is_cl.html
(Hans Uszkoreit)

For our purposes: basically processing human/natural language with a computer (“Natural Language Processing”, NLP)
Some Terminology
Phonology (Phonetics): the study of speech sounds

- **phoneme (phon)**: the smallest meaning-distinguishing unit of language, e.g.
 /cat/ vs. /cut/ ⇒ “a” and “u” are phonemes

- cf. **grapheme**: smallest unit in written language, e.g. a letter (Buchstabe)

- **phoneme to grapheme conversion**: mapping phonemes to graphemes, e.g. in speech recognition

⇒ important for text-mining of audio archives
Morphology: the study of word structure

- **morpheme**: the smallest meaning-carrying unit of language, e.g. reachable \Rightarrow reach and able are morphemes
- **root**: the important bit of the word, e.g. reach
- **affix**: the less important stuff, e.g. -able
 affixes are divided into prefixes (stuff that comes before the root, like mis- in misrepresent (or misunderstandestimate ;-)) and suffixes (stuff that comes after the root, like -able)

\Rightarrow important for methods dealing with non-standard orthography
Lexicography (Lexicology): the study of the words of a language

- **lexeme**: elementary unit in lexicography, “go”, “goes”, “gone” are different words but the same lexeme
- **lemma**: the base (dictionary) form of a word
- **lemmatisation**: mapping word forms to their lemmas, important for further steps of automatic analysis
- **part-of-speech**: (=Wortart), e.g., noun (Nomen, Sustantiv), verb (Tu-Wort), adjective (Wie-Wort) etc.
- **part-of-speech tagging (pos tagging)**: the process of automatically assigning a part-of-speech tag to a word
Syntax: the study of the internal (grammatical) structure of a sentence

- **syntax tree or parse tree**: an abstract representation of the internal structure of a sentence (as determined by a grammar)
- **parsing**: the process of computing sentence structure automatically
- **parser**: a tool which does parsing

Parse tree

```
S
  VP
    NP
      Art NounVerb
      The dog chased
    NP
      Art Noun
      the postman.
```
Semantics: the study of language meaning

- **word sense**: a word like *bank* has several word senses
- **word sense disambiguation**: the process of determining the word sense of a word
- **hyponym**: *flower* is a hyponym of *rose*, *animal* is a hyponym of *cat*
- **hypernym**: the inverse, i.e. *cat* is a hyponym of *animal*
- also semantic argument structure (who did what to whom?)

⇒ important for ontology construction etc.
Automatic Text Processing

Step 1: Tokenisation

- Where are the words in the text? What are the non-word components (punctuation etc.)?
- Where are the sentence boundaries? (sentence splitting)
Tokenisation, isn’t that easy?

Simple solution

- words are delimited by spaces
- sentences are delimited by “.”, “!”,”?”

Neil Budde, general manager of Yahoo! News, said: “Our expanded news search dramatically increases the consumer’s ability to find events that matter to them.”

. . . how many words does 17.2.2009 consist of? What about 3.5 billion euros?
Simple solution

- words are delimited by spaces
- sentences are delimited by “.”, “!” , “?”

Yes, but . . .

. . . where’s the sentence boundary in:

Neil Budde, general manager of Yahoo! News, said: ”Our expanded news search dramatically increases the consumer’s ability to find events that matter to them.”

. . . how many words does 17.2.2009 consist of? What about 3.5 billion euros?
Die Nachrichten aus Karlsbad über das Befinden unseres Königs lauten sehr erfreulich.
Die begonnene Brunnenkur scheint dem hohen Herrn sehr wohl zu thun.
Die Nachrichten aus Karlsbad über das Befinden unseres Königs lauten sehr erfreulich.
Die begonnene Brunnenkur scheint dem hohen Herrn sehr wohl zu thun.

Step 2: Part-of-Speech Tagging (＝Wortarten zuweisen)
- Which parts-of-speech do the words in the text have?
Part-of-Speech Tagging, isn’t that easy?

Simple solution (if you have a dictionary)

- look up the words in a dictionary, e.g. “corner” ⇒ noun, “man” ⇒ noun, “wins” ⇒ verb, “spell” ⇒ verb

Yes, but what about . . .

Maybe the hunters can corner the tiger.

Steward Crowe waited on the port side until he was told to man the boat.

Tiger Woods makes it seven wins in a row.

Readers are still under the spell of Harry Potter.
Part-of-Speech Tagging, isn’t that easy?

Simple solution (if you have a dictionary)

- look up the words in a dictionary, e.g. “corner” ⇒ noun, “man” ⇒ noun, “wins” ⇒ verb, “spell” ⇒ verb

Yes, but what about . . .

- Maybe the hunters can corner the tiger.
- Steward Crowe waited on the port side until he was told to man the boat.
- Tiger Woods makes it seven wins in a row.
- Readers are still under the spell of Harry Potter.
Die Nachrichten aus Karlsbad über das Befinden unseres Königs lauten sehr erfreulich.
Die Nachrichten aus Karlsbad über das Befinden unseres Königs lauten sehr erfreulich.

Step 3:
- what is the syntactic structure of the sentence?
Solution

- apply your grammar rules to the sentence
Solution

- apply your grammar rules to the sentence

Yes, but what about . . .

Peter saw the man with the telescope.
Die Nachrichten aus Karlsbad über das Befinden unseres Königs lauten sehr erfreulich.
Die Nachrichten aus Karlsbad über das Befinden unseres Königs lauten sehr erfreulich.

Step 4: Semantic Analysis

- who did what where and when to whom?
Solution

- build on the syntactic structure
- identify the subject, e.g. “Bismarck” in “Bismarck hat Karlsberg verlassen.”
- subject = Agent (the entity doing something)
- object = Patient (the entity to which something is done, e.g. “Karlsbad”)
Solution

- build on the syntactic structure
- identify the subject, e.g. “Bismarck” in “Bismarck hat Karlsberg verlassen.”
- subject=Agent (the entity doing something)
- object=Patient (the entity to which something is done, e.g. “Karlsbad”)

Yes, but what about . . .

- *Karlsbad wurde von Bismarck verlassen.* (subject=Karlsbad, agent=Bismarck)
- *Bismarcks abrupte Abreise aus Karlsbad* . . .
Other useful things one can do

Named Entity Tagging
- identify person names, locations, dates, numbers etc.

Pronoun resolution
- Who is “he”?

Co-reference resolution
- Do “Obama” and “the president” refer to the same person?
Ok, so how do you do all this?

Basically two possible approaches

- manually defined rules ("if 'corner' follows an article like 'the' it is a noun")
- use machine learning and let the program figure it out itself
a lot of work!

typically high precision (rules are correct) but low coverage (rules don’t cover all possible eventualities)
also a lot of work: we need manually annotated training data
typically robust, but not necessarily always correct
training data can be re-used but only in certain situations (domain and genre should not change), e.g.:
- can train a system on the Wall Street Journal and apply to the New York Times
- cannot train a system on *Der Zauberberg* and apply it to the *Amtspresse Preußens*

When dealing with cultural heritage data this is a challenge because annotation of large amounts of data for each text type is infeasible.
⇒ need to think creatively (e.g. domain adaptation methods)