Information Extraction from Broadsides

Results of the Group Work
What are the *Broadsides*?

- Single sheet
- Street Literature
- Similar to modern tabloid press
Example:

http://www.nls.uk/broadsides/broadside.cfm/id/15552/criteria/haddington
Material:

• 240 articles concerning murder
• Transcriptions in Html
• Uploaded at www.nls.uk/broadsides/
• Number of texts: 157
• Number of words: 125,139
• Size of the files: 1 MB
• Most from 1820 to 1837
Questions:

• Which instruments of murder are mentioned?
• Which places are mentioned?
• Why are most articles from 1820 to 1837?
Historical Context:

• Economical Crisis in Europe
• Political Crisis in England and Scotland
Also:
• Printing becomes easier and cheaper
• Rise of the newspapers
George IV. (1762-1830)

- Prince Regent since 1811
- 1820-1830 King of UK and Hannover
- Very young
- Many scandals
- Inable in politics

http://commons.wikimedia.org/wiki/File:George_IV_van_het_Verenigd_Koninkrijk.jpg
William IV. (1765-1837)

- 1830-1837 King of UK and Hannover
- *Sailor King*
- Not prepared for reign

http://en.wikipedia.org/wiki/File:Martin_Archer_Shee_-_King_William_IV_-_c.1800.jpg
Victoria (1819-1901)

- 1837-1901 Queen of UK, since 1876 Empress of India
- Young and unexperienced
- Political situation consolidated

http://commons.wikimedia.org/wiki/File:Victoria_in_her_Coronation.jpg
Opportunities:

• List of popular murder tools
• 'Murder Map' of Scotland
• Comparison to English / Scottish fiction of that time
• Comparison to Scottish newspapers of that time
...and how can CoLi help?

- Extraction of articles correlating with your task:
 - For example „How many articles mention Edinburgh as a place of murder in the Broadsides?“
 - Image of certain places in the public media in that period
- „murder-map“ of Scotland in 19th century
Example:
...and how can CoLi help?

- Extracting Names
 - Gender of victims and murderers
 - Search for a certain person
 - Surnames in case of migration stories

- Listing all weapons and kinds of murder
Task

- Information Extraction
 - manners of murdering
- Domain-specific
 - only “Murder“ domain
- Unsupervised
 - no annotations and other human intervention
- Open challenge
 - all possible external resources can be used
- Limited in time
 - Only 10 days for the whole task
Preparation

- Extraction of texts and conversion into best format for the task:
 html → normalized text
- Done with scripts developed by group

<html>
 <p>He has never denied his own guilt, and he is said to have been employed, almost without intermission, in reading the Scriptures and other serious books.</p>
</html>

HTML

Processed Format
Data

- Problems:
- Broadsides:
 - Language of the 19th century
 - Stylistically and statistically different from resources based on WSJ or the like
 - Very diverse content
- Large amount of data:
 - Difficult to preprocess
 - Difficult to make an impression of the data
Approach

- General Idea of the Approach:
 - Shorten the data by deleting irrelevant parts
 - Preprocess the shortened version
 - Use syntactic and semantic information to retrieve relevant relations
Extracting Synonyms

- First strategy (offline):
 - Define few seed words that you think are relevant (e.g. to murder, knife)
 - Look at the patterns in which seed words occur in the data
 - Query a search engine with this pattern in order to find other words that can occur in the same context
 - Keep semantically related and filter out semantically unrelated results by using WordNet
Extracting Synonyms

• Second strategy (online):
 • Judging the relevance of words according to WordNet is done online during reading in the data

• Advantages: easier to get the desired list of synonyms, since one inevitably considers all the relevant words (whereas search engines definitely won’t find some of the peculiar words)

• Disadvantages: poor runtime performance
Examples

• We take “to murder, to stab, to kill“ as seeds
• We find the following occurrences in the data:
 …of them was killed on the spot…
 …after he had murdered the deceased he…
• We substitute the seed word by a wildcard:
 “of them was * on the spot”
 “after he had * the deceased he”
• And query Yahoo!:
 [fired, put, killed, fixed, shot, jenny, executed, arrested, trampolening, stopped, there, caught, dead, built, standing]
 [hit, stabbed, shot, assaulted]
sets of possible words out of first 100 results occurring in place of the wildcard
WordNet

- WordNet® is a large lexical database of English
- Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept
- Synsets are interlinked by means of conceptual-semantic and lexical relations
Semantic Similarity

• We use WordNet in order to judge whether a word is similar to our seeds or not:
• We use two different similarity measures:
 - Resnik (Resnik)
 Similarity between two concepts is the information content of their lowest super-ordinate taking into account the probability of encountering an instance of a synset of the concept

murder#v#1 enjoy#v#3 0.061
 murder#v#1 execute#v#2 0.33
 murder#v#1 slay#v#1 2.02
 - Jiang and Conrath (JC)
 Information content of both concept nodes and of their lowest super-ordinate is taken into account

murder#v#1 enjoy#v#3 0.0
 murder#v#1 execute#v#2 0.84
 murder#v#1 slay#v#1 1.0
Morphological Variants

- Morphological analysis tool: RASP
 - http://www.informatics.susx.ac.uk/research/groups/nlp/rasp/
- Output format: inflected forms of given verbs (third person, past simple, past participle, present participle).

<table>
<thead>
<tr>
<th>Word</th>
<th>Slas</th>
<th>Slew</th>
<th>Slain</th>
<th>Slaying</th>
</tr>
</thead>
<tbody>
<tr>
<td>slay</td>
<td>slays</td>
<td>slew</td>
<td>slain</td>
<td>slaying</td>
</tr>
<tr>
<td>massacre</td>
<td>massacres</td>
<td>massacred</td>
<td>massacred</td>
<td>massacring</td>
</tr>
<tr>
<td>shoot</td>
<td>shoots</td>
<td>shot</td>
<td>shot</td>
<td>shooting</td>
</tr>
<tr>
<td>poke</td>
<td>pokes</td>
<td>poked</td>
<td>poked</td>
<td>poking</td>
</tr>
<tr>
<td>pip</td>
<td>pipe</td>
<td>piped</td>
<td>piped</td>
<td>pipping</td>
</tr>
<tr>
<td>stab</td>
<td>stabs</td>
<td>stabbed</td>
<td>stabbed</td>
<td>stabbing</td>
</tr>
<tr>
<td>pound</td>
<td>pounds</td>
<td>pounded</td>
<td>pounded</td>
<td>pounding</td>
</tr>
</tbody>
</table>
Sample Result

- **Original** (contains 28 sentences)
- **Processed version** contains only 6 sentences
- Remaining sentences are parsed with a dependency parser
- A lot of fine distinctions of different objects are obtained
Preprocessing

- Done by external tools:
 - Tools used:
 - POS tagging script (Python NLTK)
 - Named Entity Recognition (Stanford NER Tool)
 - Parsing (Stanford Parser)
POS Tagging:

- **Tools:** Python Script based on Natural Language Processing Tool Kit
 - www.nltk.org
- **Output:** tagged tokens:

 At_IN this_DT reproach_NN he_PRP called_VBD her_PRP by_IN the_DT most_RBS horrid_JJ names_NNS ,_, and_CC beat_VBD and_CC kicked_VBD her_PRP shockingly_RB ._. She_PRP had_VBD indeed_RB a_DT miserable_JJ time_NN of_IN it_PRP ._.

Preprocessing: Named Entity Recognition

• Tools: Stanford Named Entity Recognizer
 – *Nota Bene:* ANNIE and Open Calais were tested, but they do not return efficient result for our task.

• Output: Tagged txt (Person, Location).

<PERSON>WILLIAM BURKE</PERSON>, late of <LOCATION>Portsburgh</LOCATION>, who is to be Executed at <LOCATION>Edinburgh</LOCATION>, on the 28th January, 1829, for <PERSON>Murder</PERSON>, and his body given for Public Dissection.
Preprocessing: Parsing

• Tool: Stanford Parser (statistical parser)
• Motivation: “Dependencies representation was designed to provide a simple description of the grammatical relationships in a sentence that can easily be understood and effectively used by people without linguistic expertise who want to extract textual relations“
• Output: dependency-based parses of sentences
… he/PRP appointed/VBN to/TO meet/VB her/PRP at/IN Lime/NNP Wood/NNP ,/, where/WRB ,/, in/IN a/DT lonely/JJ spot/NN ,/, he/PRP stabbed/VBD her/PRP with/IN a/DT knife/NN …

nsubj(appointed-47, he-46) xsubj(meet-49, he-46)
conj_and(n-28, appointed-47) aux(meet-49, to-48)
xcomp(appointed-47, meet-49) dobj(meet-49, her-50)
nn(Wood-53, Lime-52) prep_at(meet-49, Wood-53)
advmod(stabbed-63, where-55) rel(stabbed-63, where-55)
dep(stabbed-63, in-57) det(spot-60, a-58)
amod(spot-60, lonely-59) pobj(in-57, spot-60)
nsubj(stabbed-63, he-62) nsubj(threw-71, he-62)
rcmod(Wood-53, stabbed-63) dobj(stabbed-63, her-64)
det(knife-67, a-66) prep_with(stabbed-63, knife-67)
Using WordNet Definitions

• In case no potential weapon can be found as object of the verb (e.g. verb implicitly contains the weapon), we could back off to WordNet definitions of the verb:
 - knife, stab (use a knife on)
 - kick (strike with the foot)
 - poison (kill with poison)
Example

• The deceased Roger Haldon, a labourer, residing in a small cottage near Blackburn was poisoned by his wife.

• In this case one has to back off to the word definition.

• In this case one has to back off to the word definition.
Further Problems

- Several victims in the same article:
- Use NEs (and reference resolution) together with dependency relations: (fortunately victims are almost always named in the header of the article)
- E.g. Murder of Mrs. Franks and her daughter Magdalene
 - Two different NEs appearing as objects:
 poss(throat-15, her-14) (her standing for Mrs. Franks)
 dobj(cut-13, throat-15)
 prep_with(cut-13, penknife-18)
 amod(Franks-6, murdered-4)
 nn(Franks-6, Magdalene-5) (another weapon has to be found)