
Classical Linguistic Inference II:
Computational Linguistics and
Theorem Proving in a Computer Game

Seminar „Linguistic Inference and Textual Entailment“

Michaela Regneri 03.07.2007

CL & Proving in a Computer GameMichaela Regneri

Motivation

• First order logic is not decidable; running a prover may take
forever

• user-oriented applications mostly require knowledge
application within two seconds

• restricting the logic‘s expressive power can fasten reasoning
enormously (and make it terminate for sure)

• show that a tradeoff between expressiveness and
computational tractability is possible for some applications

2

CL & Proving in a Computer GameMichaela Regneri

Outline

• Description Logic in a nutshell

• Basics and Terms

• RACER

• Computational Linguistics & Theorem Proving in a Computer
Game

• Motivation and System Overview

• The components in detail

• Summary & Conclusion

3

CL & Proving in a Computer GameMichaela Regneri

Description Logic - basics

• designed for knowledge representations

• allowing to encode general knowledge (as above) as well as
world models (with individuals, s.a. „person(john)“)

4

CL & Proving in a Computer GameMichaela Regneri

Description Logic - basics (cont.)

• T-Box: The world‘s rules (as described in the knowledge base)

• A-Box: Relations between and properties of individuals

person(mary)
person(john)

loves(mary, john)
loves(john, mary)

works_for(mary, c1)
located_in(NY, c1)

woman(mary)
man(john)

man ⊑ person
woman ⊑ person
city ⊑ location
∀located_in.location

...

5

CL & Proving in a Computer GameMichaela Regneri

Description Logic - Terms

• (atomic) concepts C denoting sets of individuals (person)
 ≈ unary predicates in FOL

• (atomic) roles R: (loves) ≈ binary predicates in FOL

• complex concepts:

• conjunction and disjunction of concepts: C1 ⊓ C2 , C1 ⊔ C2

• negation (the complementary concept): ¬C

• existential restriction: ∃R.C (set of all a having an x s.t. R(a,x) & C(x))

• value restriction: ∀R.C (set of all a s.t. for all x s.t. R(a,x), C(x) holds)

6

CL & Proving in a Computer GameMichaela Regneri

Description Logic - Terms (cont.)

• inverse roles R-1: loves(john, mary) ≡ loves-1(mary, john)

• the empty concept ⊥ and the universal concept

• concept equality: C1 ≐ C2
(abbreviates C1 ⊑ C2 ∧ C2 ⊑ C1)

• ‚at most‘ and ‚at least‘ number restrictions:
∃≤mR: Set of all a s.t. there are at most m (different) x for which

 R(a,x) holds

7

⊥

Description Logic - Example

man(john)
woman(mary)
man(sam)
woman(sue)

loves(john,mary)
loves(mary,sam)
married(sam,sue)
happy(sam)

A-BOX

T-BOX
bachelor ≐ ¬ ∃married.⊤ ⊓ man „bachelors are unmarried men“

married ≐ married-1 (being married to so. is reflexive)
∃married.⊤ ⊑ happy „all married people are happy“

∃≧2 love ⊑ ⊥ „you can love at most one person“

∃married.woman ⊑ ∃love.woman „someone married to a woman also

 loves a woman“

Some assertions...

...and some rules:

8

CL & Proving in a Computer GameMichaela Regneri

Description Logic - RACER

• a reasoner for description logic

• provides reasoning with T-Boxes and (multiple) A-Boxes

• performs consistency checks (of A-Boxes, T-Boxes or both)

• several retrieval tasks:

• all individuals of a concept, all concepts of an individual

• check for subsumption („are cities locations?“)

9

CL & Proving in a Computer GameMichaela Regneri

Description Logic - RACER (cont.)

• several retrieval tasks:

• find the parent concepts parents of C are the most specific
C‘ s.t. C ⊑ C‘ (children analogously)

• find predecessors (successors): predecessors of C are all C‘
s.t. C ⊑* C‘ (successors analogously)

• determine domain and fillers of a role:
 fillers of R are all f s.t. ∃x.R(x,f) (≐ ∃R-1.⊤)

 domain of R consists of all d s.t. ∃x.R(d,x) (≐ ∃R.⊤)

10

CL & Proving in a Computer GameMichaela Regneri

Description Logic - RACER (cont.)

• Example queries:

Is Sue happy?
(Does ‚happy‘ contain Sue?)

Can Mary love John?
(loves(mary, john) -> consistent?)

What properties does Mary have?
(Concepts containing mary)

11

man(john)
woman(mary)
man(sam)
woman(sue)

loves(john,mary)
loves(mary,sam)
married(sam,sue)
happy(sam)

A-BOX

T-BOX
bachelor ≐ ¬ ∃married.⊤ ⊓ man

married ≐ married-1

∃married.⊤ ⊑ happy

∃≧2 love ⊑ ⊥
∃married.woman ⊑ ∃love.woman

CL & Proving in a Computer GameMichaela Regneri

Computational Linguistics & Theorem Proving
in a Computer Game

• see Koller et al. 2004

• task (of a student software project): Make use of syntactic and
semantic processing to make the user input as convenient as
possible, i.e. provide flexible possibilities to refer to things

• example for interaction in a text adventure („A Bear‘s Night Out“):

12

Your warm winter jacket is here,
which may be just as well, it's a
little chilly.

>look at the jacket
A smart green jacket with big
pockets, teddy bear sized.

>take the smart green jacket
You can't see any such thing.

>take the jacket with big pockets
I only understood you as far as
wanting to take the green jacket.

>take the teddy bear sized jacket
You can't see any such thing.

>take the jacket
Taken.

System Overview

13

Parsing

Reference
Resolution

Actions
Content

Determination

Reference
Generation

Realization
System OutputUser Input

T-Box

A-Box:
World Model

A-Box:
User Model

Discourse
Model

The knowledge base

14

Parsing

Reference
Resolution

Actions
Content

Determination

Reference
Generation

Realization
System OutputUser Input

T-Box

A-Box:
World Model

A-Box:
User Model

Discourse
Model

CL & Proving in a Computer GameMichaela Regneri

The knowledge base

15

• two A-Boxes: one for the user, one for the world model

• user knowledge and world model may be contradicting (but
usually, the first is a subset of the latter)

• one unique individual ‚myself‘ representing the (only) player

room(kitchen)
player(myself)
table(t1)
apple(a1)
apple(a2)
worm(w1)

red(a1)
green(a2)
bowl(b1)
bowl(b2)
has-location(t1, kitchen)
has-location(b1, t1)

has-location(a1, b2)
has-location(a2, kitchen)
has-detail(a2,w1)
has-location(myself, kitchen)
has-location(b2, kitchen)
kitchen(kitchen)

CL & Proving in a Computer GameMichaela Regneri

The knowledge base (cont.)

• T-Box: Axioms holding for the user and the world model

• concept hierarchies: apple ⊑ object, red ⊑ color

• complex concepts:
 here ≐ ∃has-location-1.player

 accessible ≐ ∀has-location.here ⊔

 ∀has-location (accessible ⊓ open)

16

Parsing &
Syntax-Semantics Interface

17

Parsing

Reference
Resolution

Actions
Content

Determination

Reference
Generation

Realization
System OutputUser Input

T-Box

A-Box:
World Model

A-Box:
User Model

Discourse
Model

CL & Proving in a Computer GameMichaela Regneri

Parsing

• parse user input with a constraint-based TDG (Topological
Dependency Grammar) parser; use the syntax output:

 Eat the big red apple.

18

eat

obj

apple

the

big

red

det adj
adj

lexical entries

...

CL & Proving in a Computer GameMichaela Regneri

Syntax-Semantics Interface

• specify additional semantic constraints (depending on syntax)
to get semantic dependency trees:

19

eat

obj

apple

the

big

red

det adj
adj

...

+ agreement features
+ (in) definiteness

eat

patient

'big-sized' red

apple

gender: [neut]
number: [sing]
spec: [def]

nmod nmod

Reference Resolution

20

Parsing

Reference
Resolution

Actions
Content

Determination

Reference
Generation

Realization
System OutputUser Input

T-Box

A-Box:
World Model

A-Box:
User Model

Discourse
Model

CL & Proving in a Computer GameMichaela Regneri

Reference Resolution

• relate the semantics of the user input to the knowledge base
with help of RACER

• all inferences on base of the user‘s A-Box (to avoid
unnecessary ambiguity)

• ask racer for individuals which are ‚visible‘ in the game

• definite NPs:
the apple: apple ⊓ visible
the apple with the worm: apple ⊓ (∃has-detail.worm) ⊓ visible

21

CL & Proving in a Computer GameMichaela Regneri

Reference Resolution (cont.)

• indefinite NPs are treated like definite NPs, but here a random instance
with the right properties is picked

• pronoun resolution: Find the most salient referent with a discourse
model

• consider agreement features

• find the preferred referent according to a saliency list (entities of the
last utterance are more salient than entities of the preceding
utterances e.g.)

• avoid conflicts (reflexive pronouns e.g.) by restricting the input grammar

22

User Actions

23

Parsing

Reference
Resolution

Actions
Content

Determination

Reference
Generation

Realization
System OutputUser Input

T-Box

A-Box:
World Model

A-Box:
User Model

Discourse
Model

CL & Proving in a Computer GameMichaela Regneri

User Actions

• user input may change the state of the world

• input is interpreted as action, like in STRIPS operators:

24

preconditions accessible(x), takable(x), not(inventory-object(x)

effects (world
model)

add: related(x myself has-location)
delete: related(x individual-filler(x, has-location),
 has-location)

effects (user
knowledge)

add: related(x myself has-location)
delete: related(x individual-filler(x, has-location),
 has-location)

take(patient: x)

CL & Proving in a Computer GameMichaela Regneri

User Actions (cont.)

• pre-defined action operators contain several unresolved
„placeholders“ (as the model changes in the game):

• ‚x‘ will be instantiated with some individual in the knowledge base if
the preconditions are fulfilled

• ‚individual-filler(x, R)‘ will be resolved to a current individual i for
which R(x,i) holds

• if there are ambiguities (due to parsing or pronoun resolution), all
readings are tried:

• if only one reaches a consistent knowledge base, this one is taken

• if there are still ambiguities, the user has to resolve them

25

Content Determination

26

Parsing

Reference
Resolution

Actions
Content

Determination

Reference
Generation

Realization
System OutputUser Input

T-Box

A-Box:
World Model

A-Box:
User Model

Discourse
Model

CL & Proving in a Computer GameMichaela Regneri

Content Determination

• decide what to tell the user as a reaction to his / her input

• straight forward for actions like ‚take‘: inform the user about the
new assertions („add“), assume the removal of information
(„delete“) can be inferred

• more complex actions for ‚describe‘ (no knowledge base
change):

• describe(x) triggers enumeration of x‘s properties

• query RACER for the parent concepts of x and roles with x

27

CL & Proving in a Computer GameMichaela Regneri

Content Determination (cont.)

• in a description output, every concept or role of x gets one
sentence

• store this in a list of sentences (each of them has a ‚goal‘ of
the content, which is a variable to refer to the sentence‘s
content):
 describe the apple!

28

[content(goal: l1
 sem : [l1#apple(a2) green(a2)])
 content(goal: l2
 sem : [l2#has-location(a2, ki)])
 content(goal: l3
 sem : [l3#has-detail(a2, w1)])
]

Generating
Referring Expressions

29

Parsing

Reference
Resolution

Actions
Content

Determination

Reference
Generation

Realization
System OutputUser Input

T-Box

A-Box:
World Model

A-Box:
User Model

Discourse
Model

CL & Proving in a Computer GameMichaela Regneri

Generating
Referring Expressions

• individual variables (x, a2 w1,...) are meaningful to the system, but
not to the user; NPs for the output have to be generated

• if an individual is not in the user‘s A-Box, simply generate an
indefinite NP with the concept and perhaps the color:
 the bowl contains a red apple

• objects known to the user need unique definite descriptions:

• query RACER for the individual (e.g. a2) and all individuals of
the same concept (e.g. all apples)

• add as many modifiers as necessary to describe the object
uniquely (e.g. the green apple, if the other apples are red)

30

CL & Proving in a Computer GameMichaela Regneri

Generating
Referring Expressions (cont.)

• add information necessary for the referring expressions to the
content of a sentence:

(w1 is a worm, a2 is the apple which shall be described)

[content(goal: l3
 sem : [l3#has-detail (a2, w1)])]

31

[content(goal: l3
 sem : [l3#has-detail (a2, w1),
 indef(w1), worm(w1),
 def(a2), apple(a2), green(a2)])]

a worm

the green apple

Surface Realization

32

Parsing

Reference
Resolution

Actions
Content

Determination

Reference
Generation

Realization
System OutputUser Input

T-Box

A-Box:
World Model

A-Box:
User Model

Discourse
Model

CL & Proving in a Computer GameMichaela Regneri

Surface Realization

• A variant of Tree Adjoining Grammars as generation grammar;
lexical entries associated with semantics:

33

S

VP

PPis

in

! NP:x

! NP:y

has_location(x,y) NP:y

the
! N:y

def(y)

apple:z

N:zapple(z)

kitchen:z

N:zkitchen(z)

sem :
[l2#has-location(a2, ki),

def(a2), apple(a2),
def(ki), kitchen(ki)]

Generator Input:

CL & Proving in a Computer GameMichaela Regneri

Performance

• (surprisingly) fast: Most user inputs are answered within 10 ms
(upper bound: 500ms; only a few slower than 100ms)

• parsing and generation performs well for the given grammars

• RACER allows for fluent game playing; to fasten the game
engine, A-BOX reasoning in RACER has been optimized further

• restrictions in DL (compared to FOL) don‘t harm the game
(closed world, no actions in the knowledge base, user can only
refer to what he knows)

34

CL & Proving in a Computer GameMichaela Regneri

Summary & Conclusion

• Description Logic as a decidable fragment of FOL for which fast
reasoners (RACER) exit

• A computer game which employs CL-techniques and RACER in
various stages of linguistic analysis and generation

• Limitations of DL don‘t harm the „closed world“ of the computer
game, and RACER‘s efficiency makes the game playable

• There might be other NLP applications which can make use of the
DL framework and its efficiency

35

CL & Proving in a Computer GameMichaela Regneri

References

• A. Koller, R. Debusmann, M. Gabsdil, and K. Striegnitz: Put my galakmid coin into the
dispenser and kick it: Computational Linguistics and Theorem Proving in a Computer Game.
Journal of Logic, Language, and Information, 2004.

• Ian Horrocks and Ulrike Sattler: Tutorial on description logics.
Slides: http://www.cs.man.ac.uk/~horrocks/Slides/IJCAR-tutorial/Display/

• V. Haarslev and R. Möller. RACER System Description. In Proceedings of IJCAR-01, 2001.

• Alexander Koller and Kristina Striegnitz: Generation as dependency parsing. In Proceedings
of ACL-02, Philadelphia, 2002.

36

http://www.cs.man.ac.uk/~horrocks/Slides/IJCAR-tutorial/Display/
http://www.cs.man.ac.uk/~horrocks/Slides/IJCAR-tutorial/Display/

