Abduction for Deep Linguistic Reasoning and RTE

HS Linguistic Inference and Textual Entailment Prof. Dr. Manfred Pinkal

29.05.2007 Anna Mündelein

Outline

- Introduction
 - What Is Abduction?
- Abductive Inference
 - TACITUS System
 - Interpretation as Abduction
 - Weighted Abduction
 - Solving Pragmatic Problems
 - Combining Syntax, Semantics and Pragmatics
- An Abductive Approach to RTE
 - Motivation
 - The Approach in Detail
 - Results
- Conclusion

What Is Abduction?

- imagine you are looking out the window and see a tree waving back and forth – what is your explanation of the tree's movement?
- possible explanations:
 - "The wind is blowing."
 - "There is a man standing below window level and shaking the tree."
 - ..
- most people would go for the first alternative because it is the most plausible one
 - most economical: only few and "normal" assumptions necessary
 - consistent with what we know
- explanations of this kind: **abductive**

What Is Abduction?

• "Abduction, or inference to the best explanation, is a method of reasoning in which one chooses the hypothesis which would, if true, best explain the relevant evidence." [Wikipedia]

	Deduction	Induction	Abduction
Premises	$ \forall x (p(x) \to q(x)) \\ p(A) $	several instances $p(A), q(A)$	$ \forall x(p(x) \rightarrow q(x)) \\ q(A) $
Conclusion	q(A)	$\forall x (p(x) \rightarrow q(x))$	p(A)

- only deduction is valid
- but: abduction is the only logical operation that introduces new ideas

TACITUS System

- The Abductive Commonsense Inference Text Understanding System
 - processing of messages and other texts for a variety of purposes
 - e.g. equipment failure reports perform diagnosis
 - aim: investigate how knowledge is used in the interpretation of discourse
 - large knowledge base of commonsense and domain knowledge

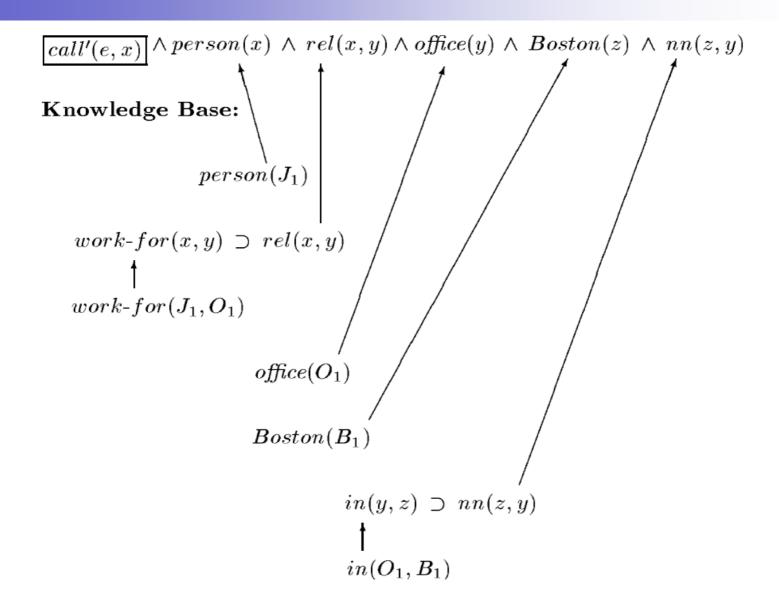
Interpretation as Abduction

- to interpret a sentence:
 - present its content as predications (logical form)
 - prove the predications by using the axioms in the knowledge base
 - allow assumptions in your proof, at various costs
 - pick the proof with the lowest cost

Interpretation: Example

The Boston office called.

- three pragmatic problems:
 - reference resolution: the Boston office
 - metonymy resolution: an office cannot call; what is meant is Some person at the Boston office called
 - compound nominal interpretation: determine the implicit relation between *Boston* and *office*
- logical form:


 $\exists x \exists y \exists z \exists e (call(e, x) \land person(x) \land office(y)) \\ \land rel(x, y) \land Boston(z) \land nn(z, y))$

Interpretation: Example

assume the knowledge base contains:

 $Boston(B_{1})$ $office(O_{1}) \land in(O_{1}, B_{1})$ $person(J_{1})$ $work - for(J_{1}, O_{1})$ $\forall y \forall z (in(y, z) \rightarrow nn(z, y))$ $\forall x \forall y (work - for(x, y) \rightarrow rel(x, y))$

Interpretation: Example

Weighted Abduction

- when parts of the expression cannot be derived, assumptions have to be made
- assumptions: new information
- likelihood for the different conjuncts to be new information varies
 - \rightarrow assign cost to each conjunct
 - example:
 - definite noun phrase: \$10
 - indefinite noun phrase: \$1
 - verb: \$3

 $\dots \wedge office(y)^{\$10} \wedge call(e, x)^{\$3} \wedge \dots$

Weighted Abduction

- scheme of abductive inference:
 - 1) every conjunct in the logical form of a sentence is given an assumability cost:

 $\dots \wedge Q^c \wedge R^d \wedge \dots$

2) this cost is passed back from the consequent literal to the antecedent literals in implications:

$$P_1^{\omega_1} \wedge P_2^{\omega_2} \to Q$$

- the cost of assuming P_1 is $\,\omega_{\!_1}c\,$ and the cost of assuming $\,P_2$ is $\,\omega_{\!_2}c\,$
- if $\omega_1 + \omega_2 < 1 \rightarrow$ most-specific abduction
- if $\omega_1 + \omega_2 > 1 \rightarrow$ least-specific abduction

Weighted Abduction

3) factoring allowed: $\exists x \exists y \exists \dots (\dots \land q(x)^{\$20} \land \dots \land q(y)^{\$10} \land \dots)$ $\rightarrow \exists x \exists \dots (\dots \land q(x)^{\$10} \land \dots)$

 \rightarrow exploits natural redundancy of texts

e.g. Inspection of oil filter revealed metal particles.

 the weights can be chosen according to how much each conjunct contributes semantically to the implication

 $\forall x \left(car(x)^{0.8} \land no - top(x)^{0.4} \rightarrow convertible(x) \right)$

"Et Cetera" Propositions

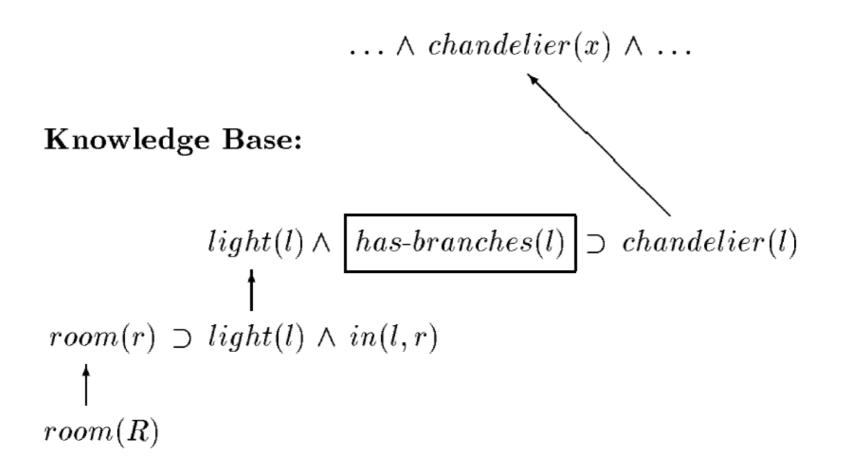
• usually axioms like:

 $\forall x (elephant(x) \rightarrow mammal(x))$

- problem: in the abductive approach backwardchaining and not forward-chaining is used
 - if we encounter elephant(x) in the text, we cannot do anything with it
- solution: $\forall x (mammal(x)^{0.2} \land etc(x)^{0.9} \rightarrow elephant(x))$
 - the *etc* predicate can never be proven, but we can assume it

- the abductive inference approach provides solutions to several pragmatic problems, e.g.:
 - distinguishing the given and the new information in a sentence
 - lexical ambiguity
 - compound nominal interpretation

- distinguishing the given and the new information in a sentence
 - example:

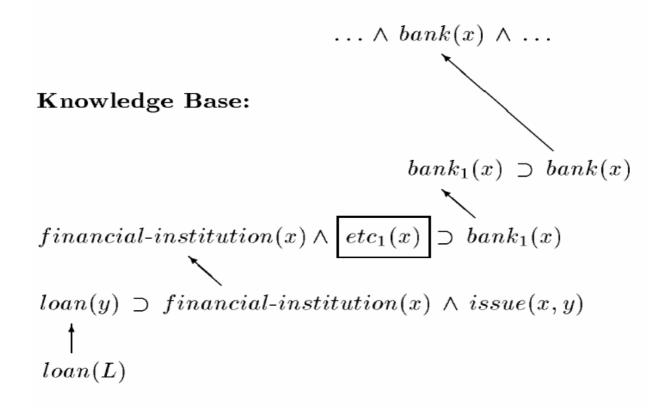

John walked into the room.

The chandelier shone brightly.

- what chandelier is being referred to?
- if we simply assume a chandelier, it cannot be linked to the room
- \rightarrow knowledge base:

 $\forall r(room(r) \rightarrow \exists l(light(l) \land in(l, r))) \\ \forall l(light(l) \land has - branches(l) \rightarrow chandelier(l))$

Logical Form:


- lexical ambiguity
 - example:

John wanted a loan. He went to the bank.

 \rightarrow knowledge base:

 $\forall x (bank_1(x) \rightarrow bank(x))$ $\forall x (bank_2(x) \rightarrow bank(x))$ $\forall y (loan(y) \rightarrow \exists x (financial - institution(x) \land issue(x, y)))$ $\forall x (financial - institution(x) \land etc_1(x) \rightarrow bank_1(x))$ $\forall z (river(z) \rightarrow \exists x (bank_2(x) \land borders(x, z)))$

Logical Form:

 $bank_2(x) \supset bank(x)$

 $river(z) \supset bank_2(x) \land borders(x, z)$

- compound nominals:
 - examples:

Boston office $\dots \land Boston(x) \land office(y) \land nn(x, y) \land \dots$ wine bottle $\dots \land wine(x) \land bottle(y) \land nn(x, y) \land \dots$ oil sample $\dots \land oil(x) \land sample(y, z) \land nn(x, y) \land \dots$

- different types of relations between the nouns
- → express all relations as *nn*, but write different axioms for *nn*:

$$\forall x \forall y (in(y, x) \rightarrow nn(x, y)) \forall e \forall x \forall y (contain(e, y, x) \rightarrow nn(x, y))$$

Combining Syntax, Semantics and Pragmatics

- combining the ideas of:
 - interpretation as abduction
 - parsing as deduction
- example (again):

The Boston office called.

– grammar:

 $\forall w_1 \forall w_2 (np(w_1) \land verb(w_2) \rightarrow s(w_1 \ w_2))$ $\forall w_1 \forall w_2 (det(the) \land noun(w_1) \land noun(w_2) \rightarrow np(the \ w_1 \ w_2))$

- to parse a sentence W is to prove s(W)

Combining Syntax, Semantics and Pragmatics

augment the axioms of the grammar with portions of the logical form:

$$\forall w_1 \forall w_2 \forall y \forall p \forall e \forall x (np(w_1, y) \land verb(w_2, p) \land p(e, x)) \land rel(x, y) \land Req(p, x) \rightarrow s(w_1, w_1, e))$$

 $\forall w_1 \forall w_2 \forall q \forall r \forall y \forall z (det(the) \land noun(w_1, r) \land noun(w_2, q)) \land r(z) \land q(y) \land nn(z, y) \rightarrow np(the w_1 w_2, y))$

 $\begin{array}{ll}p,r,q & : \text{ correspond to } \textit{call, Boston, office}\\ \textit{verb}(w_2,p): \text{ the string } w_2 \text{ is a verb referring to } p\\ \textit{Req}(p,x) & : \text{ requirements that } p \text{ places on } x\\ & \forall x (\textit{person}(x) \rightarrow \textit{Req}(\textit{call},x)) \end{array}$

Combining Syntax, Semantics and Pragmatics

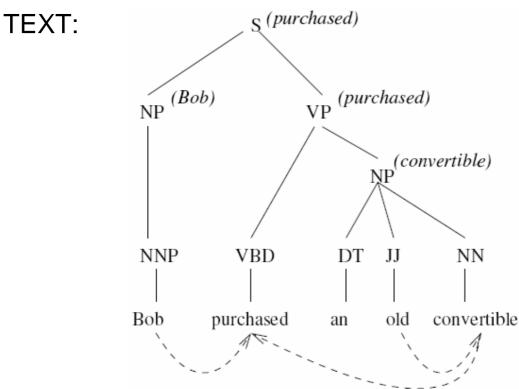
So far

- definition of abduction
- how abduction can be used to interpret (prove) texts
- but what about real applications?
- → use abduction for recognizing textual entailment

An Abductive Approach to RTE

[Raina et al. 2005]

- Idea: combine deep linguistic reasoning and machine learning
 - use abductive reasoning to decide whether a text entails a hypothesis or not
 - logical formalism
 - elegant and precise
 - learn automatically which assumptions are plausible
 - statistical methods
 - robust and scalable


Motivation

- given: text hypothesis pair
 e.g. TEXT: Bob purchased an old convertible.
 HYPOTHESIS: Bob bought an old car.
- in bag-of-words representations there would be no difference between the hypothesis and a hypothesis like

Old Bob bought a car.

 \rightarrow deeper representation needed

- 1) parse text and hypothesis
 - hand-written rules to find the heads of all nodes in the parse tree
 - head discovery leads to a kind of dependency graph

- 2) transform the relations from the two dependency graphs into logical formulas
 - convert each node into a logical term with a unique constant (e.g. $NP^{(Bob)} \rightarrow Bob(A)$)
 - represent edges by sharing arguments across nodes

TEXT:

 $\exists A \exists B \exists C (Bob(A) \land convertible(B) \land old(B) \land purchased(C, A, B))$

HYPOTHESIS:

 $\exists X \exists Y \exists Z (Bob(X) \land car(Y) \land old(Y) \land bought(Z,X,Y))$

- 3) augment the logical formulas with semantic annotations
 - annotations added on predicates (e.g. if the corresponding word is part of a named entity)
 - *"Bob* is a person"
 - annotations added on arguments (e.g. if the argument has a subject/object relation to its predicate)
 - *"convertible* is the object to *purchased*"

- 4) find a proof for the hypothesis given the text
 - resolution refutation proof:
 - add the axioms from the text to the knowledge base
 - add the negation of the hypothesis to the knowledge base
 - derive the null clause through successive resolution steps (unification of terms)
 → contradiction → hypothesis entailed in text

- knowledge base:
 - axiom from TEXT:

 $\exists A \exists B \exists C (Bob(A) \land convertible(B) \land old(B) \land purchased(C, A, B)) \\ - \text{ negation of HYPOTHESIS:}$

 $\neg (\exists X \exists Y \exists Z (Bob(X) \land car(Y) \land old(Y) \land bought(Z,X,Y)))$ $\leftrightarrow \forall X \forall Y \forall Z (\neg Bob(X) \lor \neg car(Y) \lor \neg old(Y) \lor \neg bought(Z,X,Y))$

- unification:
 - $Bob(A), \neg Bob(X)$
 - $old(B), \neg old(Y)$
 - but what about $convertible(B), \neg car(Y)$ and $purchased(C,A,B), \neg bought(Z,X,Y)$?

- unification of $S(s_1, s_2, \dots, s_m)$ and $\neg T(t_1, t_2, \dots, t_n)$
 - standard definition:
 - S = T
 - *m* = *n*
 - each S_i consistently unified with t_i
 - relaxed definition:
 - S and T might be different
 - the numbers of arguments m and n need not be the same
 - two constant arguments could unify with each other

- relaxations: abductive assumptions about the world
- assign a cost to each relaxation depending on its degree of plausibility
- \rightarrow assumption cost model:

the cost C_{ω} of assumption A is $C_{\omega}(A) = \sum_{d=1}^{D} \omega_{d} f_{d}(A)$

 f_1,\ldots,f_D : arbitrary nonnegative feature functions ω_1,\ldots,ω_D : relative weights assigned to the feature functions

- features can be derived from different knowledge sources (e.g. *WordNet*)
- five feature classes:
 - 1) predicate similarity
 - synonyms / similar meaning
 - antonyms (if one predicate is negated)
 - 2) predicate compatibility
 - same POS
 - same word stem
 - same named entity tag (if any)

3) argument compatibility

- e.g. prefer subject argument to be matched with another subject argument
- 4) constant unification
 - different constants might refer to the same physical entity (e.g. because of anaphoric coreference)
 - compute "distance" between constants
- 5) word frequency
 - very commonly used terms can be ignored at some cost (e.g. *rather*)

- 1. Similarity score for S and T.Are S and T antonyms?If S and T are numeric, are they "compatible"?
- 2. Mismatch type for part-of-speech tags of S and T.Do S and T have same word stem?Do S and T have same named entity tag?
- 3. Difference in number of arguments: |m n|. Number of matched arguments with:
 - different dependency types.
 - different semantic roles.
 - each type of part-of-speech mismatch.

Number of unmatched arguments of T.

- 4. Total coreference "distance" between matched constants.
- 5. Inverse word frequency of predicate S.
 - Is S a noun, pronoun, verb or adjective, and is it being "ignored" by this unification?

• proof
$$P = A_1, A_2, \dots, A_N$$

• aggregated feature functions for the proof:

$$f_d(P) = \sum_{s=1}^N f_d(A_s)$$

• total cost of the proof:

$$C_{\omega}(P) = \sum_{d=1}^{D} \omega_d f_d(P) = \omega^T f(P)$$

- consider all possible proofs and pick the one with minimal cost
- if the minimal cost is below a certain threshold → classify hypothesis as entailed
- weights of the vector $\boldsymbol{\omega}^{T}$ are chosen automatically by a learning algorithm

Results

 participated in the PASCAL Recognizing Textual Entailment Challenge 2005

Algorithm	RTE Dev Set		RTE Test Set	
	Acc	CWS	Acc	CWS
Random	50.0%	0.500	50.0%	0.500
TF	52.1%	0.537	49.5%	0.548
TFIDF	53.1%	0.548	51.8%	0.560
ThmProver1	57.8%	0.661	55.5%	0.638
ThmProver2	56.1%	0.672	57.0%	0.651
Partial1	53.9%	0.535	52.9%	0.559
Partial2	52.6%	0.614	53.7%	0.606

ThmProver1 : single threshold for all RTE classes

ThmProver2 : separate threshold for each RTE class

Partial1 : allows only standard unification

Partial2 : allows unification only when predicates match exactly

Results

Class	RTE Dev Set		RTE Test Set	
	Acc	CWS	Acc	CWS
CD	71.4%	0.872	79.3%	0.906
IE	50.0%	0.613	49.2%	0.577
IR	50.0%	0.523	50.0%	0.559
MT	53.7%	0.708	58.3%	0.608
PP	62.2%	0.685	46.0%	0.453
QA	54.4%	0.617	50.0%	0.485
RC	47.6%	0.510	53.6%	0.567

- performance varies heavily by class
- accuracy of 57% competitive with the best reported result (58.6%)
- CWS of 0.651 significantly higher than for all other systems (next best result 0.617)

Conclusion

- abduction is an interesting method for linguistic reasoning
- based on the way humans make inferences
- can be used for a variety of purposes
 - good results for recognizing textual entailment

References

[Hobbs et al. 1988] Jerry R. Hobbs, Mark Stickel, Paul Martin and Douglas Edwards: Interpretation as Abduction. Proceedings of ACL. 1988 <u>http://acl.ldc.upenn.edu/P/P88/P88-1012.pdf</u>

[Hobbs et al. 1993] Jerry R. Hobbs, Mark Stickel, Douglas Appelt and Paul Martin: Interpretation as Abduction. In: Artificial Intelligence, Vol. 63, Nos. 1-2, pp. 69-142. 1993. <u>http://www.isi.edu/%7Ehobbs/interp-abduct-ai.pdf</u>

[Hobbs 1995] Jerry R. Hobbs: Deep Lexical Semantics or Commonsense Knowledge and Lexical Semantics (Lecture). Information Sciences Institute, University of Southern California. 1995. <u>http://www.isi.edu/~pantel/Download/Teaching/2005/CS599/cs599_Fall2005</u> _Lecture_08.ppt

[Raina et al. 2005] Rajat Raina, Andrew Y. Ng and Christopher D. Manning: *Robust textual inference via learning and abductive reasoning.* Twentieth National Conference on Artificial Intelligence (AAAI). 2005. <u>http://nlp.stanford.edu/~manning/papers/aaai05-learnabduction.pdf</u>

[Wikipedia]

http://en.wikipedia.org/wiki/Abductive_reasoning

http://de.wikipedia.org/wiki/Abduktion_%28Wissenschaftstheorie%29