Linguistic Inference and Textual Entailment

> Modelling Inference through Logical Deduction 08-05-2007 Manfred Pinkal

- Model-theoretic interpretation
- Deduction calculi
- Deduction procedures
- Implemented deduction systems

Seminar Inference and Entailment, SS 2007 © Manfred Pinkal

Model-theoretic Interpretation

- Formula A is true in the model structure M iff [[A]]^{M,g} = 1 for every variable assignment g.
- A model structure M satisfies a set of formulas Γ (or: M is a model of Γ) iff every formula A∈Γ is true in M.

Central semantic concepts

- A formula A is valid (|= A) iff A is true in every model structure.
- A set of formulas Γ entails formula A (Γ |=
 A) iff A is true in in every model of Γ (i.e., in every model structure that satisfies Γ).
- A set of formulas Γ is satisfiable iff Γ has a model (i.e., there is a model structure that satisfies Γ).

Important Theorems

- ... actually, metatheorems (see below):
- Validity and entailment:
 A |=B iff |= A → B, more general:
 {A₁, ..., A_n} |= B iff |= A₁ ∧ ... ∧ A_n → B
- Entailment and satisfiability:
 Γ |= A iff Γ∪{¬A} is unsatisfiable.

Seminar Inference and Entailment. SS 2007 C Manfred Pinkal

- Model-theoretic interpretation
- Deduction calculi
- Deduction procedures
- Implemented deduction systems

Seminar Inference and Entailment, SS 2007 © Manfred Pinkal

Deduction Calculi

- Computing entailment and other logical concepts through semantic interpretation inefficient and in many cases infeasible.
- Deduction calculi (or proof theoretic systems) provide a strictly syntactic way of checking logical concepts and relations, through symbol manipulation/ rewrite of logical formulas.

Axioms and Deduction Rules

- Deduction calculi are typically made up of (1) axioms and (2) deduction rules.
- Example for a frequently used axiom: – Av ¬A ("Tertium non datur")
- Example for a frequently used deduction rule ("Modus Ponens")

 There is a correspondence between basic semantic and deductive/ proof-theoretic concepts:

Validity	Provability
Entailment	Derivability/Deducibility
Satisfiability	Consistency

Central proof-theoretic concepts

- Formula A is derivable (deducible) from a set of formulas Γ ($\Gamma \mid$ A) iff there is a sequence of formulas A₁, ..., A_n such that A_n = A and for all members A_i of the sequence: either
 - A_i is an (instantiation of an) axiom, or
 - $-A_i \Gamma$, or
 - A_i is the result of the application of a deduction rule, whose conclusion is A_i ,and whose premisses all occur in the sequence before A_i
- A formula A is provable (|- A) iff Ø |- A
- A set of formulas Γ is inconsistent iff there is a formula A such that Γ|- A and Γ|- ¬A
- A set of formulas Γ is consistent iff it is not inconsistent.

Seminar Inference and Entailment, SS 2007 © Manfred Pinkal

Soundness and Completeness

• Soundness: If $\Gamma \mid$ - A, then $\Gamma \mid$ - A.

Seminar Inference and Entailment. SS 2007 © Manfred Pinkal

• Completeness: If $\Gamma \mid$ - A, then $\Gamma \mid$ - A.

Important Metatheorems

- Derivability and Provability: $\{A_1, \dots, A_n\} \mid B \text{ iff } \mid A_1 \land \dots \land A_n \rightarrow B$
- Derivability and Consistency:
 Γ |= A iff Γ∪{¬A} is inconsistent.
- Validity and Provability: |= A iff |- A
- Satisfiability and Consistency:
 Γ Is satisfiable iff Γ is consistent.

Deduction Calculi

- There is one model-theoretic interpretation (for standard predicate logic).
- There is a wide variety of deduction calculi, e.g.:
 - Hilbert calculus
 - Semantic tableau calculus
 - Calculus of natural deduction (Gentzen calculus)
 - Resolution

Seminar Inference and Entailment, SS 2007 © Manfred Pinkal

Semantic Tableau Rules

	Affirmed	Negated
A∧B	{A, B}	{¬A}, {¬B}
AvB	{A}, {B}	{¬A, ¬B}
A→B	{¬A}, {B}	{A, ¬B}
A ↔ B	$\{A \rightarrow B, B \rightarrow A\}$	$\{\neg (A \rightarrow B)\}, \{\neg (B \rightarrow A)\}$
∀xA	A[a/x] for arbitrary a	¬A[a/x] for a new a
AxE	A[a/x] for a new a	$\neg A[a/x]$ for arbitrary a

Semantic Tableau Calculus

- Derivation and proofs through the generation of tableau trees via decomposition rules.
- Semantic Tableaus use rewrite on formulas, so it is a deduction calculus.
- They are called "semantic tableaus" because there is an affinity to semantics.

Seminar Inference and Entailment, SS 2007 © Manfred Pinkal

Semantic Tableau Calculus

- A subtableau is closed, iff it contains A and $\neg A$
- A tableau is closed iff all subtableaus are closed.
- Γ |= A iff the decomposition rules result in a closed tableau for Γ∪{¬A}.
- Refutation proof: To prove A from premisses Γ , add its negation and show that the result is inconsistent.

Deduction procedures

 Deduction procedure = deduction calculus + algorithm

Tractability:

- Propositional calculus is NP-complete (it requires exponential time)
- FOL is undecidable (provable /valid formulas are recursively enumerable)
- To arrive at efficient systems, heuristic knowledge and a lot of fine-tuning is required.

- Model-theoretic interpretation
- Deduction calculi
- Deduction procedures
- Implemented deduction systems

Seminar Inference and Entailment, SS 2007 © Manfred Pinkal

Implemented deduction systems

We distinguish:

- Theorem provers, typically with
 - Refutation proofs
 - Resolution proof procedure
 - Input: Set of formulas (premisses)
 - Output: Yes, if proof sucessful.
 - Examples: Vampire, SPASS, BLIKSEM, OTTER
- Interactive theorem provers ("proof assistants")
 - Provide information about proof steps
 - Ask for guidance
 - Are typically based on mor intuitive calculi (e.g. Gentzen calculus)
 - Example: OMEGA
- Model generators
 - Check consistency
 - Using tableau techniques
 - Output is Yes, if the hypothesis is consistent with the premisses
 - Plus a model for $\Gamma \cup \{A\}$ as an important side effect.
 - Examples: MACE, KIMBA

Problems: Efficiency

- Combination of Theorem Provers (and Model Builders), Distributed Theorem Proving
- Optimization for specific tasks (e.g., mathematical vs. linguistic applications)
- Restriction to a FOL fragment, with
 - Horn Clause Logic (Prolog) and
 - Description Logics (e.g., RACER) as prominent examples

- Required input is logical formulas
- Available linguistic input is text
 - Grammatical analysis, semantic construction
 - Disambiguation, Underspecification
 - Discourse analysis (e.g., coreference resolution)
- Additional input required comprises
 - Lexical semantic information (e.g., WordNet, FrameNet)
 - Extralinguistic Knowledge

Seminar Inference and Entailment, SS 2007 © Manfred Pinkal