
Human string-generating algorithms
Seminar week 3: Understanding the Theory of Syntax, Summer 2014

Asad Sayeed

Uni-Saarland

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 1

Where did we leave off last week?

We talked about:

the notion of linguistic intuition.

a language-user’s internal knowledge.

the use of grammaticality judgements.

going beyond description to explanation.

examples of anaphora and binding in English — making our own
homegrown linguistic generalization.

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 2

So what’s next?

The big questions:

What are the elements of a linguistic generalization?

What are the mechanisms by which words connect to one another
(the “meat” of syntax)?

How are these connections resolved into the sequences that human
beings produce?

The hairyest question of them all: how is this even learnable?

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 3

So what’s next?

The big questions:

What are the elements of a linguistic generalization?

What are the mechanisms by which words connect to one another
(the “meat” of syntax)?

How are these connections resolved into the sequences that human
beings produce?

The hairyest question of them all: how is this even learnable?

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 3

Yeah, Asad, how is this even
learnable?

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 4

Let’s go back to our binding theory
generalisation.

X ← VERB → Y-reflexive if Y = X.
X ← VERB → Y-nonreflexive if Y 6= X.

It works at arbitrarily large distances . . .

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 5

Let’s go back to our binding theory
generalisation.

X ← VERB → Y-reflexive if Y = X.
X ← VERB → Y-nonreflexive if Y 6= X.

It works at arbitrarily large distances . . .

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 5

. . . as long as we stay within the
same finite predicate!

Bob hates himself.
Bob wants to hate himself.
Bob needs to want to hate himself.
Bob has to need to want to hate himself.
Bob has to need to want those pills to hate himself.

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 6

(A side note.)

(Let’s get something out of the way right now. How it is that you can
say something is a different question from why it is that you would say
something.)

(OK, fine. At least, you can’t assume that they’re the same question off
the bat. Later in the semester we might get a contrasting view. . .)

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 7

(A side note.)

(Let’s get something out of the way right now. How it is that you can
say something is a different question from why it is that you would say
something.)
(OK, fine. At least, you can’t assume that they’re the same question off
the bat. Later in the semester we might get a contrasting view. . .)

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 7

Anyway, back to our reflexives.

Bob hates himself.
Bob wants to hate himself.
Bob needs to want to hate himself.
Bob has to need to want to hate himself.
Bob has to need to want those pills to hate himself.

But generally not

*Bob has to need to want those pills to hate him. (where Bob = him)

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 8

I just picked these because we
know reflexives now.

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 9

But there’s a heck of a lot of
“action-at-a-distance”.

Who did Bob wish Jill hated?
Who did Bob wish Mary regretted Jill hated?

But this is worse:

?Who did Bob wish Mary regretted hated Jill?

(You can coerce an interpretation of the latter – syntax 6= semantics! – but
it’s degraded to me, at least.)

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 10

So we need a superstructure.

An architecture outside the string itself.

Of course, being comp. ling. people, we have the architecture, right?

(P)CFGs, TAGs, etc.

These can (and have) been used to account for many phenomena.

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 11

But existing formalisms won’t cut
it.

What formal approaches don’t currently do:

They don’t solve the learning (child acquisition) problem.

To be tractable, they have to make assumptions.

These assumptions are often application-driven, or they accommodate
adult processing facts, or . . .

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 12

But nobody solves these problems!
Certainly nothing I’m going to teach today is a real solution!

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 13

So let’s start over.

Cut away the assumptions intended to do something or describe
something for a specific purpose.

Try to find the minimum assumptions that make language language,
before answering learnability questions.

“Virtual conceptual necessity.”

Now we’re getting into the Uriagereka reading.

Why is 2+2, 4?

Well, not quite. Instead: “What are the things without which we
couldn’t describe the universe?”

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 14

Q: So, what capacities MUST
human language generation have?

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 15

A: At least one thing: the ability to
combine strings.

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 16

And here we finally get Merge.

Finally climbing out of the pit of methodological discussion.

We need to be able to put at least two things together.

So we need a “merge” operation.

But then we need the two things we put together to be put together
with other things.

Otherwise we’d only get two-word sentences . . .

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 17

What object does Merge make?

Some options for merge(A, B):

A

BA

B

BA

A∪B

BA

A∩B

BA

Uriagereka favours the first two as possible outcomes of merge – “projec-
tion”. (Our first trees of the semester!) Why?

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 18

What are the options for Merge?

Let’s take “Bob hates”. Bob – N, hates – V.

Union - merge(Bob, hates) has both noun and verb characteristics.

Can merge again with another verb? “(Bob hates) grows.”

Intersection - merge(Bob, hates) has neither verb nor noun
characteristics.

Can’t say: “(Bob hates) Jack.”
(Cuts off features too early.)

merge(Bob, hates) emits characteristics of “Bob” – just like union (in
this instance only)

Right answer: merge(Bob, hates) emits characteristcs of “hates”.
“(Bob hates) Jack.”

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 19

What are the options for Merge?

Let’s take “Bob hates”. Bob – N, hates – V.

Union - merge(Bob, hates) has both noun and verb characteristics.

Can merge again with another verb? “(Bob hates) grows.”

Intersection - merge(Bob, hates) has neither verb nor noun
characteristics.

Can’t say: “(Bob hates) Jack.”
(Cuts off features too early.)

merge(Bob, hates) emits characteristics of “Bob” – just like union (in
this instance only)

Right answer: merge(Bob, hates) emits characteristcs of “hates”.
“(Bob hates) Jack.”

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 19

What are the options for Merge?

Let’s take “Bob hates”. Bob – N, hates – V.

Union - merge(Bob, hates) has both noun and verb characteristics.

Can merge again with another verb? “(Bob hates) grows.”

Intersection - merge(Bob, hates) has neither verb nor noun
characteristics.

Can’t say: “(Bob hates) Jack.”
(Cuts off features too early.)

merge(Bob, hates) emits characteristics of “Bob” – just like union (in
this instance only)

Right answer: merge(Bob, hates) emits characteristcs of “hates”.
“(Bob hates) Jack.”

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 19

What are the options for Merge?

Let’s take “Bob hates”. Bob – N, hates – V.

Union - merge(Bob, hates) has both noun and verb characteristics.

Can merge again with another verb? “(Bob hates) grows.”

Intersection - merge(Bob, hates) has neither verb nor noun
characteristics.

Can’t say: “(Bob hates) Jack.”
(Cuts off features too early.)

merge(Bob, hates) emits characteristics of “Bob” – just like union (in
this instance only)

Right answer: merge(Bob, hates) emits characteristcs of “hates”.
“(Bob hates) Jack.”

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 19

What are the options for Merge?

Let’s take “Bob hates”. Bob – N, hates – V.

Union - merge(Bob, hates) has both noun and verb characteristics.

Can merge again with another verb? “(Bob hates) grows.”

Intersection - merge(Bob, hates) has neither verb nor noun
characteristics.

Can’t say: “(Bob hates) Jack.”
(Cuts off features too early.)

merge(Bob, hates) emits characteristics of “Bob” – just like union (in
this instance only)

Right answer: merge(Bob, hates) emits characteristcs of “hates”.
“(Bob hates) Jack.”

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 19

What are the options for Merge?

Let’s take “Bob hates”. Bob – N, hates – V.

Union - merge(Bob, hates) has both noun and verb characteristics.

Can merge again with another verb? “(Bob hates) grows.”

Intersection - merge(Bob, hates) has neither verb nor noun
characteristics.

Can’t say: “(Bob hates) Jack.”
(Cuts off features too early.)

merge(Bob, hates) emits characteristics of “Bob” – just like union (in
this instance only)

Right answer: merge(Bob, hates) emits characteristcs of “hates”.
“(Bob hates) Jack.”

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 19

We have a structure!

|hates|

#hates#|#Bob#|

Uriagereka uses |x | to mark off the maximal projection – the last
result of Merge.

#x# for the head – the position that originally came with lexical
content.

Uriagereka’s own notation.

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 20

A more “standard” way of putting
it.

VP

V

hates

NP

Bob

In more traditional accounts, there’d be more nodes. Merge eliminates this.

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 21

What if we want to include an
object?

By the process we’ve invented so far, it might look like:

VP

NP

Jack

V’

V

hates

NP

Bob

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 22

What if we want to include an
object?

But most accounts prefer:

VP

V’

NP

Jack

V

hates

NP

Bob

Meaning that the object has to “arrive” in the derivation first!

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 23

Which, of course, is odd.

Clearly we parse (or generate) the subject first in English!

But: we’re not (yet) talking about parsing or generation, just what
structures we need.

The “dynamic” construction with Merge is really intended to allow us
to decide what structure we don’t need.

(Think of it as the iPhone of syntactic theories, heh.)

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 24

But we still need to yield a string.

We need to impose some kind of ordering between elements of the structure.

Many relations are asymmetrical.

Like reflexives. “Bob hates himself” vs. “*Himself hates Bob”.
In fact symmetry is massively disfavoured in linguistic structures!

Ubiquitous in syntax: c-command (U. calls it just “command”).

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 25

A c-commands B iff. . .

Uriagereka defines (c-)command formally, but what you need to know is
this:

Z

XA

C

F

HG

ED

B

B c-commands: C D E F G H

B does not c-command: A X Z

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 26

c-command(X, Y) just means: X is
sister or (great-*)aunt of Y

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 27

Structural asymmetry is powerful.

c-command is implicit in many other frameworks.

But the “sister” part still alows for the possibility of symmetry, so we
often use “proper” c-command (the great-aunt part only).

VP

V’

NP

himself

V

hates

NP

Bob

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 28

Or, to get ambitious. . .

VP

V’

IP

VP

NP

himself

V

hate

I

to

V

loves

NP

Bob

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 29

Or, to get even more ambitious. . .

VP

V’

CP

IP

I’

VP

NP

*himself

V

hate

I

to

NP

Jessica

C

for

V

loves

NP

Bob

Complementizer phrases (CP) appear to have special powers.

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 30

What else can we do with
c-command?

Define linear precedence relations!

Uriagereka spends a lot of time on the Linear Correspondence Axiom
(LCA).

(This was an idea proposed in 1994 by Richard Kayne.)

Basic idea: c-command helps us define linear order: we now know
how structures yield strings.

All kinds of interesting predictions follow, except that there are a number
of exceptions.

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 31

Conjunctions are hugely
problematic.

John bought and Mary read the book. (Wilders, 1999)

This is called “right-node raising” and happens here and there.

How do we “draw” conjunctions asymetrically?

Are we now FORCED to admit ternary branching? (Since Merge
conveniently is always binary.)

Should we just admit that nodes are inherently ordered?

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 32

And is that enough to dismiss it?

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 33

That is yet another methodological
question!

What is the role of counterexamples?

If something covers most cases, does it require special technology?

Is it just a matter of performance?

If so, why is right-node raising so systematic?

How much elegance should we sacrifice?

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 34

Gertrude Stein said: “There is no
there there.” (You knew I’d work in

a quote somewhere.)

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 35

The problem is: which “there” isn’t
there?

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 36

Next week: recent literature “shock
therapy.”

Asad Sayeed (Uni-Saarland) Human string-generating algorithms 37

