
Syntactic Theory
Lecture 4 (15.11.2010)

PD Dr.Valia Kordoni
Email: kordoni@coli.uni-sb.de

http://www.coli.uni-saarland.de/courses/syntactic-theory/2010/

Syntactic Theory – Lecture 4
(15.11.10)

 2

Tree-Adjoining Grammar (TAG)

Syntactic Theory – Lecture 4
(15.11.10)

 3

TAG

•  Pseudo-extension of CFGs

–  Abandon the context-free grammar formalism

–  Keep the idea of deriving complete trees in a sequence of rewriting steps
—but in TAG we rewrite trees, not strings

•  Highly lexicalized (LTAG):

–  Every tree is associated with exactly one lexical item

–  Every lexical item is associate with a set of trees

Syntactic Theory – Lecture 4
(15.11.10)

 4

Phrase Structure Trees

(1) a. S → NP VP
b. VP → really VP
c. VP → V NP
d. V → likes
e. NP → John
f. NP → Lyn

S

NP VP

John really VP

V NP

likes Lyn

Syntactic Theory – Lecture 4
(15.11.10)

 5

String rewriting derivation

1. S → NP VP (1a)

2. → John VP (1e)

3. → John really VP (1b)

4. → John really V NP (1c)

5. → John really likes NP (1d)

6. → John really likes Lyn (1f)

Syntactic Theory – Lecture 4
(15.11.10)

 6

Tree Substitution Grammars

•  Elementary structures are trees

•  A down arrow (↓) indicates where a substitution takes place

α1 α2 α3

NP NP

John Lyn

S

NP↓

NP↓

VP

V

likes

Syntactic Theory – Lecture 4
(15.11.10)

 7

Substitution operation

 The substitution operation allows us to insert elementary trees into
other elementary trees

•  Where there is a (non-terminal) node marked for substitution (↓) on
the frontier, an elementary tree rooted in the same category can be
substituted there

S

A

S

A

A

Syntactic Theory – Lecture 4
(15.11.10)

 8

Final Tree

So, we end up with the following derived tree

Notes:

•  order of substitutions is irrelevant

•  This tree is completed = there are no substitution nodes left on the frontier

S

NP VP

V NP
John

likes Lyn

Syntactic Theory – Lecture 4
(15.11.10)

 9

Elementary trees

 Let’s step back a little and look at the building blocks of TAG. Our
basic elements are elementary trees, which come in two guises:

•  initial trees, which have:

–  root node

–  interior nodes labeled by non-terminal symbols

–  frontier nodes of terminal and non-terminal symbols; substitution nodes
are marked by the down arrow (↓)

  TSGs only use initial trees

Syntactic Theory – Lecture 4
(15.11.10)

 10

Elementary trees (cont.)

•  auxiliary trees, which have

–  root node

–  interior nodes labeled by non-terminal symbols

–  frontier nodes similar to as in initial trees, but with a designated (*) foot
node = identical label to the root node

  TAGs need auxiliary trees for adjunction

 In LTAG, at least one frontier node must be a terminal symbol
(lexical item)

Syntactic Theory – Lecture 4
(15.11.10)

 11

Lexicalization

 Lexicalization is the process of associating at least one terminal
element with every elementary tree.

 Adjunction is necessary if we want to lexicalize the grammars in a
linguistically meaningful way, i.e., substitution isn’t enough.

α1 α2 α3

NP NP

John Lyn

S

NP↓

NP↓

VP

V

likes

β1

VP

really VP*

Syntactic Theory – Lecture 4
(15.11.10)

 12

The need for adjunction

 With the elementary trees above and using only substitution, there is
no way to generate John really likes Lyn.

 We would need an elementary tree along the following, unappealing
lines:

S

NP↓

NP↓

VP

really

Syntactic Theory – Lecture 4
(15.11.10)

 13

Adjunction

 So, we introduce the adjunction operation, which is where auxiliary
trees come in.

•  We can now insert one tree into another, provided that the nodes
match up

•  That is, an auxiliary tree can modify an XP iff its root and foot nodes
are both labeled XP

 Using adjunction and substitution gives us true Tree Adjoining
Grammars (TAGs)

Syntactic Theory – Lecture 4
(15.11.10)

 14

Adjunction example

α4
β1

VP

really VP*

S

NP VP

V NP
John

likes Lyn

α5

S

NP VP

John really VP

V NP

likes Lyn



Syntactic Theory – Lecture 4
(15.11.10)

 15

Adjunction operation

•  An auxiliary tree is inserted into an initial tree (or derived tree) by cutting
the initial/derived tree into two parts, above and below a node (A)

–  The node of the root of the auxiliary tree is identified with the node A

–  The node of the foot of the auxiliary tree is identified with the root of the
excised tree

S

A

S

A

A

A*

Syntactic Theory – Lecture 4
(15.11.10)

 16

Adjunction (Adjoining) Constraints

 Adjunction sometimes needs to be constrained even more than by
ensuring category identity

•  Selective Adjunction (SA(T)): only members of T, a set of auxiliary
trees, may adjoin at this node

•  Null Adjunction (NA): no adjunction is allowed at this node

•  Obligatory Adjunction (OA(T)): a member of T must adjoin at this
node

Syntactic Theory – Lecture 4
(15.11.10)

 17

Selective Adjunction

One possible analysis of put could involve selective adjunction:

 We might want a way to say that locative VP modifiers can adjoin here →
we’ll come back later to using features to redefine adjunction constraints

S

NP↓

NP↓

VPSA(β3,β1,…)

put

β3

VP

VP* away

VP

VP*

NP↓

PP

P

on

β4 α6

Syntactic Theory – Lecture 4
(15.11.10)

 18

Null Adjunction

For when you absolutely cannot have an adjunct modifying a phrase

SNA

who

V

VP

NP

VP

VP* yesterday

S

S* yesterday

John saw

Syntactic Theory – Lecture 4
(15.11.10)

 19

Obligatory Adjunction

For when you absolutely must have adjunction at a node:

This is often used to handle complement structures where the complement and the
mother are the same category

S

NP↓

V

VPOA(β1,β2)

seen

β1

VP

Aux VP*

α

has

β2

VP

Aux VP*

is

Syntactic Theory – Lecture 4
(15.11.10)

 20

Derived Trees and Derivation Trees

 TAG distinguishes between derived trees and derivation trees. As a
shorthand, think of them like so:

•  Derived trees look like context-free/phrase structure trees

•  Derivation trees look like dependency trees

 That is, TAG provides us a way of having both kinds of
representations

Syntactic Theory – Lecture 4
(15.11.10)

 21

Example Lexicon

Recall the following lexical entries:

α1 α2 α3

NP NP

John Lyn

S

NP↓

NP↓

VP

V

likes

β1

VP

really VP*

Syntactic Theory – Lecture 4
(15.11.10)

 22

Derived Tree

The derived tree is obtained by gluing all the tree pieces together until
there’s a normal-looking PS tree:

But this tells us nothing about how the tree was derived.

S

NP VP

V NP
John

likes Lyn

Syntactic Theory – Lecture 4
(15.11.10)

 23

Derivation Trees

The derivation tree records a history of the derviation and in the process
captures the dependency relations among words in the sentence

αlike

αJohn(1) αLyn(2.2) βreally(2)

Syntactic Theory – Lecture 4
(15.11.10)

 24

How to come up with a derivation tree

 Each node in the derivation tree records the address of the node in the
parent tree to which the adjunction/substitution was performed

•  0 is the root node address

•  k is the address of the kth child of the root node

•  p.q is the address of the qth child of the node at address p (sort of like
the qth child of the pth child)

Syntactic Theory – Lecture 4
(15.11.10)

 25

Derivation tree address

 Lyn gets the annotation 2.2 because VP is the second daughter of S,
and NP is the second daughter of VP

α1 α3

NP

Lyn

S

NP↓

NP↓

VP

V

likes

Syntactic Theory – Lecture 4
(15.11.10)

 26

Locality

 TAG has a different notion of locality than in other formalisms

•  On the one hand, an initial tree (e.g., lexical entry) can be of arbitrary
size, so the domain of locality is increased.

  Extended domain of locality (EDL)

•  On the other hand, small initial trees can have multiple adjunctions
inserted within them, so what are normally considered non-local
phenomena are treated locally

  Factoring recursion from the domain of dependencies (FRD)

Syntactic Theory – Lecture 4
(15.11.10)

 27

Domain of locality: agreement

 The lexical entry for a verb like loves will contain a tree like the
following:

 With this extended domain of locality, we can easily state agreement
between the subject and the verb in a lexical entry

S

NP3.sg↓

NP↓

VP

V

loves

Syntactic Theory – Lecture 4
(15.11.10)

 28

CFG notion of agreement

 Compare the corresponding CFG rules; agreement has to be
transfered between at least three different rules:

•  S → NP3.sg VP3.sg

•  VP3.sg → V3.sg NP

•  V3.sg → loves

Syntactic Theory – Lecture 4
(15.11.10)

 29

Factoring recursion from domain: Extraction

Another advantage of TAG’s domain of locality is how extraction
phenomena can be captured in a lexical entry

This will license a clause like Which book Max read

S

NP↓ VP

V NPi

read e

S

NPi↓

Syntactic Theory – Lecture 4
(15.11.10)

 30

Example trees for extraction

The derived and derivation trees for Which book Max read:

S

NP VP

V NPi

read e

S

NPi

which book

Max

αread

αbook(1) αMax(2.1)

αwhich(0)

Syntactic Theory – Lecture 4
(15.11.10)

 31

Extraction: strengths

One of the strengths of this method is that we can adjoin a phrase like do
you think, and we still maintain the appropriate dependency relations:

S

V S

NP VP

V S*

think

S

NPi S

V S

NP VP

V S

NP VP

V NPi

read e

Max

think

you

do

which book

you

do

Syntactic Theory – Lecture 4
(15.11.10)

 32

The derivation tree

Note how the derivation/dependency tree maintains the same relations,
simply adding another branch.

 That is, even though the derived tree is much higher, the dependency
relations are the same.

αread

αbook(1)
αMax(2.1) βthink(2)

αwhich(0) αdo(0) αyou(2.1)

Syntactic Theory – Lecture 4
(15.11.10)

 33

Extraction: weaknesses

 Some extraction phenomena are not as easy to handle in TAG, such
as the following:

(2) This building, John bought a picture of.

 What’s wrong with this?

•  The normal TAG view of extraction depends on adjunction, which is
defined as involving a tree with identical root and foot nodes

•  But picture is an NP, and we need to add a sentence in-between

Syntactic Theory – Lecture 4
(15.11.10)

 34

Extraction example: picture

Lexical entry for picture (note again how more than one word can be in
an initial tree) and potential entry for bought:

VP

V NP*

bought

S

NP↓ NP

S

NPi↓

NP PP

Det↓ N P NPi

picture of e

Syntactic Theory – Lecture 4
(15.11.10)

 35

Problems with picture phrases

•  Adjunction of this entry for bought into the picture tree is needed to
get This building, John bought a picture of, but it is impossible

•  TAG has to be extended to multi-component TAG (MCTAG), which
we won’t cover.

Syntactic Theory – Lecture 4
(15.11.10)

 36

Using features in TAG

 We have alluded to using features before, but we have not properly
introduced them

•  Features can be added to nodes in a tree

•  In order for a tree to be substituted or adjoined, it must match the
features of the node it is attaching to.

•  In this way, we can reconstruct the ideas of obligatory, null, and
selective adjunction

Syntactic Theory – Lecture 4
(15.11.10)

 37

Feature example

 A simple way of using features is simply as we’ve seen before, to
enforce agreement and the like:

S

NP↓ VP

V NP↓

loves

PER 3

NCM sg

PER 3

NCM sg

Syntactic Theory – Lecture 4
(15.11.10)

 38

Top and bottom feature structures

 To reconstruct the three kinds of adjunction, we need to define top
and bottom feature structures

•  top = tree above this node has these features, i.e., behaves like this

•  bottom = tree below this node has these features

Syntactic Theory – Lecture 4
(15.11.10)

 39

Feature structure example

•  Above seen’s VP node, the tree is tensed; below, it is not.

•  These features do not unify, so the tree is not legal without adjunction

OA system Feature system

S S

NP↓

TENSE +

TENSE +

NP↓
VPOA(β1,β2)

V

seen

VP TENSE +

TENSE -

V

seen

Syntactic Theory – Lecture 4
(15.11.10)

 40

Feature structure example (cont.)

is looks for a non-tensed verb in order to make a tensed clause

VP TENSE

TENSE +

Aux VP* TENSE -

TENSE

S TENSE +
TENSE +

NP↓ VP

is Aux VP

is VP

TENSE +
TENSE +

TENSE -
TENSE -

TENSE -
TENSE -

V

seen

Syntactic Theory – Lecture 4
(15.11.10)

 41

Linguistic analysis

 Mostly, we have just been looking at the formal description of TAGs;
we need to further restrict these trees to make them match language
phenomena. Some possible constraints:

•  An elementary tree is the maximal syntactic projection of a lexical
item

•  Auxiliary trees are only used for modifiers, functional categories,
predicates with verbal complements, and raising predicates

•  An elementary tree is associated with a semantic meaning

 We can also group elementary trees into tree families in order to be
able to capture linguistic generalizations (right now, each lexical tree
has to be individually stipulated)

Syntactic Theory – Lecture 4
(15.11.10)

 42

Supertags

 You can view a lexical entry’s initial tree as a supertag, i.e., a part-of-
speech tag with more syntactic information than usual

We can now capture distinctions between adjectives without having to
specify new categories

Usually Supertags

Adj

asleep

Adj

other

Adj

asleep

N

Adj

other

N*

Syntactic Theory – Lecture 4
(15.11.10)

 43

Parsing with TAGs

 The TAG formalism presents some problems for parsing (more details
in the Joshi and Schabes (1997) paper if you’re interested):

•  Adjunction is a complicated operation because it can wrap strings
around other strings

 John loves Mary can become John probably loves Mary completely

•  Thus, more memory is required to parse a string and more operations
are needed for chart parsing

Syntactic Theory – Lecture 4
(15.11.10)

 44

Parsing with TAGs: EPDAs

 Instead of regular pushdown automata (PDAs), we need embedded
pushdown automata (EPDAs) to store the parse information

•  Pushdown automaton: puts items on a stack

 S → NP VP finds an NP and has VP S on a stack, meaning that once
a VP is found, then an S has been completed

•  Embedded pushdown automaton: puts stacks of items on a stack

 Can have a stack of NPs on the stack which will then match Dutch
verbs appropriately

Syntactic Theory – Lecture 4
(15.11.10)

 45

Parsing with TAGs: Tree traversal

 How one traverses a tree in parsing a TAG grammar is important

•  Cannot simply use bottom-up tree traversal → have to go in a left-to-
right manner

•  This left-to-right manner allows one to find adjoining nodes

Syntactic Theory – Lecture 4
(15.11.10)

 46

References

Abeillé, Anne and Owen Rambow (2000). Tree Adjoining Grammar: An
Overview. In Anne Abeillé and Owen Rambow (eds.), Tree Adjoining
Grammars: Formalisms, Linguistic Analyses and Processing,
Stanford, CA: CSLI Publications, pp. 1–68.

Joshi, Aravind K. and Yves Schabes (1997). Tree Adjoining Grammars.
In A. Saloma and G. Rosenberg (eds.), Handbook of Formal
Languages and Automata, Heidelberg: Springer-Verlag.

