
Syntactic Theory
Lecture 1 (28.10.2010)

PD Dr.Valia Kordoni
Email: kordoni@coli.uni-sb.de

 http://www.coli.uni-saarland.de/~kordoni/

Syntactic Theory – Lecture 1
(28.10.10)

 2

Syntax: What does it mean?
We can view syntax/syntactic theories in a number of

ways, two of which are the following:
•  Psychological way/model: syntactic structures

correspond to what is in heads of speakers and
hearers

•  Computational way/model: syntactic structures are
formal objects which can be mathematically
treated/manipulated

Syntactic Theory – Lecture 1
(28.10.10)

 3

Syntactic Analysis
•  Focus on collection of words and rules with

which we generate strings of those words, i.e.,
sentences (generative grammar)

•  Syntax attempts to capture the nature of those
rules

1.  Colourless green ideas sleep furiously.
2.  *Furiously sleep ideas green colourless.

•  What generalisations are needed to capture the
difference between grammatical and
ungrammatical sentences?

Syntactic Theory – Lecture 1
(28.10.10)

 4

Phrase Structure Grammars (PSGs)

•  Grouping, or constituency, is used

(1) Sue gave Paul an old penny.

Syntactic Theory – Lecture 1
(28.10.10)

 5

N

NP

A

N Det V

VP

NP

S

Sue gave Paul an old penny.

NP

Phrase-
structure
Grammar

S → NP VP

Phrase Structure Grammars (PSGs)

Syntactic Theory – Lecture 1
(28.10.10)

 6

N

NP

A

N Det V

VP

NP

S

Sue gave Paul an old penny.

NP

Phrase-
structure
Grammar

S → NP VP

Phrase Structure Grammars (PSGs)

Syntactic Theory – Lecture 1
(28.10.10)

 7

N

NP

A

N Det V

VP

NP

S

Sue gave Paul an old penny.

NP

Phrase-
structure
Grammar

S → NP VP
VP → V NP NP

Phrase Structure Grammars (PSGs)

Syntactic Theory – Lecture 1
(28.10.10)

 8

N

NP

A

N Det V

VP

NP

S

Sue gave Paul an old penny.

NP

Phrase-
structure
Grammar

S → NP VP
VP → V NP NP

V → gave

Phrase Structure Grammars (PSGs)

Syntactic Theory – Lecture 1
(28.10.10)

 9

The Transformational Tradition
Roughly speaking, transformational syntax (GB =

Government and Binding, P&P = Principles and
Parameters,...) has focused on the following:

•  Explanatory adequacy: the data must fit with a
deeper model, that of universal grammar

•  Psychological: does the grammar make sense in
light of what we know of how the mind works?

•  Theory-driven: data should ideally fit with a
theory already in place (often based on English)

Syntactic Theory – Lecture 1
(28.10.10)

 10

The Transformational Tradition (cont.)
•  Universality: generalisations must be applicable to

all languages
•  Transformations: (surface) sentences are derived

from underlying other sentences, e.g., passives are
derived from active sentences

Syntactic Theory – Lecture 1
(28.10.10)

 11

The Transformational Tradition (cont.)
Sue gave Paul an old penny

NP

V

VP

NP

S

NP

Aux NP-Q

IP
S

 What did Sue give Paul ___

Syntactic Theory – Lecture 1
(28.10.10)

 12

The Transformational Tradition (cont.)

But this kind of theory does not lend itself
well to computational applications

Syntactic Theory – Lecture 1
(28.10.10)

 13

Making it computational
How is a syntactic theory useful for computational

linguistics?
•  Parsing: take an input sentence and return the

syntactic analysis and/or state whether it is a valid
sentence

•  Generation: take a meaning representation and
generate a valid sentence

=> Both tasks are often subparts of practical
applications, such as Machine Translation (MT)
and Dialogue systems, for instance

Syntactic Theory – Lecture 1
(28.10.10)

 14

Computational Needs
To use a grammar for parsing or generation, we need

to have a grammar that meets several criteria:
•  Accurate: gives a correct analysis
•  Precise: tells a computer exactly what it is that one

wants it to do
•  Efficient: able to parse a sentence and return one

or only a small number of parses
•  Useful: is relatively easy to map a syntactic

structure to its meaning
=> These needs are not necessarily why the

computational formalisms were developed, but
they are some of the reasons why people use them.

Syntactic Theory – Lecture 1
(28.10.10)

 15

Computational Grammar Formalisms

Computational Grammar formalisms share several
properties:

•  Descriptive adequacy
•  Precise encodings (implementable)
•  Constrained mathematical formalism
•  Monostratalism
•  (Usually) high lexicalism

Syntactic Theory – Lecture 1
(28.10.10)

 16

Descriptive Adequacy

Some researchers try to explain the underlying
mechanisms, but we are most concerned with
being able to describe linguistic phenomena

•  Provide a structural description for every well-
formed sentence

•  Gives us an accurate encoding of a language
•  Gives us broad-coverage, i.e., can (try to) describe

all of a language
 No notion of core and periphery phenomena

Syntactic Theory – Lecture 1
(28.10.10)

 17

Precise Encodings
Mathematical Formalism: formal way to generate

sets of strings
Precisely define:
•  elementary structures
•  ways of combining those structures
=> Such an emphasis on mathematical precision

makes these grammar formalisms more easily
implementable

Syntactic Theory – Lecture 1
(28.10.10)

 18

Constrained Mathematical Formalism

A formalism must be constrained, i.e., it cannot be
allowed to specify all strings

•  Linguistic motivation: limits the scope of the
theory of grammar

•  Computational motivation: allows us to define
efficient processing models

Syntactic Theory – Lecture 1
(28.10.10)

 19

Monostratal Frameworks

Only have one (surface) syntactic level
•  Make no recourse to movement
•  Augment your basic (phrase structure) tree with

information that can describe „movement“
phenomena

=> Without having to refer to movement, easier to
process sentences on a computer

Syntactic Theory – Lecture 1
(28.10.10)

 20

This should be avoided!
Sue gave Paul an old penny

NP

V

VP

NP

S

NP

Aux NP-Q

IP
S

 What did Sue give Paul ___

Syntactic Theory – Lecture 1
(28.10.10)

 21

Lexical
In the past, rules applied to broad classes and only

some information was put in the lexicon, e.g.,
subcategorisation information

•  Linguistic motivation: lexicon is the best way to
specify some generalisations: He told/*divulged
me the truth

•  Computational motivation: can derive lexical
information from corpora (large computer-
readable texts)

=> Shift more of the information to the lexicon; each
lexical item may be a complex object

Syntactic Theory – Lecture 1
(28.10.10)

 22

Context-Free Grammars (CFGs)

Context-Free Grammars (CFGs) are one kind of
constrained mathematical formalism, a precise
way of encoding syntactic rules:

•  elementary structures: rules composed of non-
terminal and terminal elements

•  combine rules by rewriting them

Syntactic Theory – Lecture 1
(28.10.10)

 23

Context-Free Rules

Example of a set of rules:
•  S  NP VP
•  NP  Det N
•  VP  V NP
•  ...
But these rules are rather impoverished.

Syntactic Theory – Lecture 1
(28.10.10)

 24

Are CFGs good enough?
•  Data from various languages show that CFGs are

not powerful enough to handle all natural
language constructions

•  CFGs are not easily lexicalised
•  CFGs become complicated once we start taking

into account agreement features, verb
subcategorisations, unbounded dependency
constructions, raising constructions, etc.

We need more refined formalisms...

Syntactic Theory – Lecture 1
(28.10.10)

 25

Beyond CFGs

Move beyond CFGs, but stay „mathematical“:
•  Extend the basic model of CFGs with, for

instance, complex categories, functional structure,
feature structures, ...

•  Eliminate CFG model (or derive it some other
way)

Syntactic Theory – Lecture 1
(28.10.10)

 26

Computational Grammar Frameworks

•  Dependency Grammar (DG)
•  Tree-Adjoining Grammar (TAG)
•  Combinatory Categorial Grammar (CCG)
•  Lexical Functional Grammar (LFG)
•  Head-Driven Phrase Structure Grammar (HPSG)

Syntactic Theory – Lecture 1
(28.10.10)

 27

Dependency Grammar (DG)

•  The way to analyse a sentence is by looking at the
relations between words

•  A verb and its valents/arguments drive an analysis,
which is closely related to the semantics of a
sentence

•  No grouping, or constituency, is used

Syntactic Theory – Lecture 1
(28.10.10)

 28

Tree-Adjoining Grammar (TAG)

•  Elementary structures are trees of arbitrary height
•  Trees are rooted in lexical items, i.e., lexicalised
•  Put trees together by substituting and adjoining

them, resulting in a final tree which looks like a
CFG-derived tree

Syntactic Theory – Lecture 1
(28.10.10)

 29

Combinatory Categorial Grammar
(CCG)

•  Categorial Grammar derives sentences in a proof-
solving manner, maintaining a close link with a
semantic representation

•  Lexical categories specify how to combine words
into sentences

•  CCG has sophisticated mechanisms that deal
nicely with coordination, extraction, and other
constructions

Syntactic Theory – Lecture 1
(28.10.10)

 30

Lexical Functional Grammar (LFG)

•  Functional structure (subject, object, etc.) divided
from constituent structure (tree structure)
–  kind of like combining dependency structure with

phrase structure

•  Can express some generalisations in f-structure;
some in c-structure; i.e., not restricted to saying
everything in terms of trees

Syntactic Theory – Lecture 1
(28.10.10)

 31

Head-driven Phrase Structure
Grammar (HPSG)

•  Sentences, phrases, and words all uniformly
treated as linguistic signs, i.e., complex objects of
features

•  Similar to LFG in its use of feature architecture
•  Uses an inheritance hierarchy to relate different –

types of objects (e.g., nouns and determiners are
both types of nominal)

