
Syntactic Theory
Typed Feature Structures (TFS)

Yi Zhang, Antske Fokkens

Department of Computational Linguistics
Saarland University

December 8th, 2009

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 1 / 23

Type Hierarchy

Definition
A type hierarchy is a finite bounded complete partial order 〈Type,v〉

A type hierarchy describes a classification of feature structures
(and the corresponding linguistic objects modeled by the feature
structures)
Multiple inheritance allows classification on multiple dimensions
Types are occasionally referred to as sorts

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 2 / 23

Type Hierarchy: Example

animal

aquatic-animal terrestrial-animal mammal fish

dolphin elephant salmon

⊥

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 3 / 23

Type Hierarchy: Example

animal

aquatic-animal terrestrial-animal mammal fish

dolphin elephant salmon

⊥

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 3 / 23

Type Hierarchy: Example (CPO⇒ BCPO)

>

a b

c d

⊥

glb(a,b)

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 4 / 23

Type Hierarchy: Example (CPO⇒ BCPO)

>

a b

c d

⊥

glb(a,b)

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 4 / 23

Type Subsumption

For two types σ, τ ∈ Type, if σ v τ , then

σ subsumes τ
σ is more general than τ ; τ is more specific than σ
σ is a supertype of τ ; τ is a subtype of σ
One unique type that subsumes all other types: ∗top∗ > []

Types without subtype (other than itself and ⊥) are called
maximal types or leaf types

Subsumption relation is a partial order:
Reflexive: σ v σ
Antisymmetric: if σ v τ and τ v σ then σ = τ
Transitive: if σ v ω and ω v τ then σ v τ

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 5 / 23

Typed Feature Structures

Definition
A typed feature structure is defined on a finite set of features Feat and
a type hierarchy 〈Type,v〉 as a tuple 〈Q, r , δ, θ〉, where:

Q is a finite set of nodes
r ∈ Q is the root node
θ : Q → Type is a total typing function
δ : Q × Feat→ Q is a partial feature value function

subject to the following conditions:
r is not a δ−descendant
all members of Q except r are δ−descendants of r

(*) there is no node n or path π such that δ(n, π) = n

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 6 / 23

Typed Feature Structures: An Example

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 7 / 23

Reentrancy

A path is understood as a sequence of features: π ∈ Feat+

δ(n, π) is the value node starting from n following path π
If δ(r , π) = δ(r , π′) and π 6= π′, i.e. two paths start from the root of
the feature structure and point to the same node, then it is said
there is a reentrancy between path π and π′

Reentrancy is also called token identity or path equivalence

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 8 / 23

Token-Identity v.s. Type-Identity

There is another kind of identity: type identity

Definition
Two nodes n and n′ are type-identical when

θ(n) = θ(n′)
For any path π, the value of δ(n, π) is defined if and only if the
value of δ(n′, π) is defined, such that θ(δ(n, π)) = θ(δ(n′, π))

The identical values in type identity are specified independently;
they are two values that happened to look the same
Token-identical values are achieved by structure sharing, i.e.
different paths are pointing to the same node in the TFS

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 9 / 23

Subsumption of Typed Feature Structures

Definition
F subsumes F ′, written F v F ′, if and only if

π ≡F π
′ implies π ≡F ′ π′

PF (π) = t implies PF ′(π) = t ′ and t v t ′

π ≡F π
′ means that feature structure F contains path equivalence

or reentrancy between the path π and π′, i.e. δ(r , π) = δ(r , π′)
where r is the root node of F
PF (π) = σ means that the type on the path π in F is σ, in other
words θ(δ(r , π)) = σ

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 10 / 23

Constraint Function

Types are associated with constraints expressed as typed feature
structures

Definition
Constraint function C : 〈Type,v〉 → F obeys the following conditions

Type For a given type t , if C(t) is the feature structure 〈Q,q0, δ, θ〉
then θ(q0) = t
Monotonicity Given type t1 and t2, if t1 v t2 then C(t1) v C(t2)
Compatibility of constraints For all q ∈ Q the feature structure
C(θ(q)) v F ′ = 〈Q′,q, δ, θ〉 and Feat(q) = Appfeat(θ(q))

Maximal introduction of features For every feature f ∈ Feat
there is a unique type t such that f ∈ Appfeat(t) and there is no
type s such that s @ t and f ∈ Appfeat(s)

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 11 / 23

Appropriateness of Features

Definition
If C(t) = 〈Q,q0, δ, α〉, then the appropriate features of t are defined as
Appfeat(t) = Feat(〈F ,q0〉) where Feat(〈F ,q〉) is defined to be the set
of features labeling transitions from the node q in some feature
structure F i.e. f ∈ Feat(〈F ,q〉) such that δ(f ,q) is defined

Example

shirt

[
NECK length-measure

]
trousers

[
WAIST length-measure

]

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 12 / 23

Well-formed Feature Structures

Definition
F = 〈Q,q0, δ, θ〉 is a well-formed feature structure if and only if for all
q ∈ Q, we have that C(θ(q)) v F ′ = 〈Q′,q, δ, θ〉 and
Feat(〈F ,q〉) = Appfeat(θ(q))

Example
Typed feature structures described by the following AVMs are ill-formed

shirt

[
NECK 65kg

]
trousers

[
NECK 50cm

]

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 13 / 23

Signature

Definition
A signature consists of

A type inheritance hierarchy 〈Type,v〉
A corresponding constraint function C : 〈Type,v〉 → F

Linguistic theories are developed by describing the inheritance
type hierarchy together with proper constraints
A constraint-based grammar framework

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 14 / 23

Attribute-Value Matrix (AVM)

Attribute-value matrix (AVM) notation is a description language to
describe sets of feature structures, with the following three building
blocks

Type descriptions selects all objects of a particular type
Attribute-value pairs describe objects that have a particular
property. The attribute must be appropriate for the particular type,
and the value can be any kind of description
Tags to specify token identity

t1


F1 t2

F2 1
t3

[
F4 t2

]
F3 1


Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 15 / 23

Attribute-Value Matrix (AVM) cont.

Attribute-Value Matrix (AVM) is used to describe feature structures
The order of the rows is not important
Each attribute can only take one value, hence the following AVM is
improper and does NOT describe any feature structure

person

NAME Sandy
AGE 29
AGE 30


It is common practice to refer to AVMs as “feature structures”,
although strictly speaking they are feature structure
descriptions

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 16 / 23

Feature Structure v.s. Feature Structure Description

Attribute-Value Matrix

Feature Structure

Linguistic Object

describing

modeling

Linguistic objects are modeled by feature structures, they are total
with respect to the ontology declared in the signature. Technically,
one say that these feature structures are

Totally well-formed: every node has all the attributes appropriate
for its type and each attribute has an appropriate value
Type-resolved: every node is of a maximally specific type

Each AVM can partially describe a set of feature structures by
underspecifying information

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 17 / 23

Unification of Typed Feature Structures

Definition
The unification F

⊔
F ′ of two feature structures F and F ′ is the

greatest lower bound of F and F ′ in the collection of feature structures
ordered by subsumption

Definition
The well-formed unification F

⊔
wf F ′ of two feature structures F and F ′

is the greatest lower bound of F and F ′ in the collection of well-formed
feature structures ordered by subsumption

Unification is the only operation used to process TFSes
Grammars developed in such frameworks are called
unification-based grammars

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 18 / 23

Unification of Typed Feature Structures (cont.)

A special symbol ⊥ (bottom) is introduced to denote the failed
unification of two incompatible feature structures
Conceptually, ∀σ ∈ Type σ v ⊥
The type hierarchy (including ⊥) is assumed to be a bounded
complement partial order (BCOP), so that unification operation
is deterministic (glb exists for any pair of types)
σ v τ ⇔ σ

⊔
τ = τ

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 19 / 23

Unification of AVMs

As FSD, the unification of two AVMs A1 A2 results in a new AVM
A3 that describes the intersecting set of typed feature structures
described by both AVMs A1 A2

Example

1

t4

[
F1 t1

]⊔
t4

[
F1 t2
F2 t3

]
=

t4

[
F1 t3
F2 t3

]

2

t4

[
F1 t1
F2 t2

]⊔
>

[
F1 1

F2 1

]
=

t4

[
F1 1 t3
F2 1

]

3

>

[
F1 1 t1
F2 1

]⊔
>

[
F2 2

F3 2 t4

]
= ⊥

>

t1 t2

t3 t4

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 20 / 23

Lists in Typed Feature Structures

Ordered list can be described using the following type hierarchy
and constraints

list(σ)

elist

nelist(σ)

nelist

"
FIRST σ

REST list(σ)

#

For convenience, we use notation
〈

A, B, C
〉

to denote

nelist

2666664
FIRST a

REST

nelist

2664
FIRST b

REST

nelist

"
FIRST c
REST elist

#3775
3777775

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 21 / 23

Sets in Typed Feature Structures

Type set(σ) is used to describe sets of feature structures of type σ
Notation {a,b, c} is used to describe set membership
Formally introducing sets in typed feature structures involves a
fair amount of technical complications ([Carpenter, 1992])
For our purpose, an intuitive understanding is sufficient
In some implementations, lists are used to simulate sets

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 22 / 23

Appendix References

References I

Carpenter, B. (1992).
The Logic of Typed Feature Structures.
Cambridge University Press, Cambridge, UK.

Copestake, A. (2000).
Definitions of typed feature structures.
Natural Language Engineering (appendix to special issue on efficient processing
with HPSG), 6(1).

Zhang, Fokkens (Saarland University) Syntactic Theory 08.12.2009 23 / 23

	Appendix
	Appendix
	

