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Introducing Auxiliary Trees

Auxiliary trees are the other type of elementary structures in
TAG

I interior nodes labeled by non-terminal symbols
I frontier nodes labeled by terminal and non-terminal

symbols
I non-terminal nodes on the frontier of the auxiliary tree are

marked for substitution except for one node, called the foot
node (and conventionally noted with (∗))



Adjoining Operation
Adjoining (or adjunction) builds a new tree from an auxiliary
tree β and a tree α (initial, auxiliary or derived tree) by cutting α
into two parts and inserting β in between

I The node of the root of the auxiliary tree is identified with
the node Z

I The node of the foot of the auxiliary tree is identified with
the root of the excised tree
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Finer Details of the Operations

I Z must not be a substitution node (non-terminal node on
the tree frontier)

I the sub-tree dominated by Z is excised, leaving a copy of
Z behind

I When a node is marked for substitution, only trees derived
from initial trees can be substituted for it



Tree-Adjoining Grammar: Formal Definition

I A Tree-Adjoining Grammar (TAG) is a quintuple
(Σ,NT , I,A,S), where

1. Σ is a finite set of terminal symbols
2. NT is a finite set of non-terminal symbols: Σ ∩ NT = Φ
3. S is a distinguished non-terminal symbol: S ∈ NT
4. I is a finite set of initial trees
5. A is a finite set of auxiliary trees



Derived Tree & Derivation Tree in TAG

I Derived Tree is the result of the derivations and
represents the phrase structure

I Derivation Tree specifies how a derived tree was
constructed

I The root is labeled by an S-type initial tree
I All other nodes are labeled by initial trees in the cases of

substitutions, and auxiliary trees in the cases of adjoining
I A tree address is associated with each node (except for the

root) to denote the node in the parent tree to which the
derivation operation has been performed



Derived Tree & Derivation Tree: Example

For TAG G :

G = ({john, lyn, really , likes}, {S,NP,VP,V}, {α1, α2, α3}, {β1}, {S})

with the following elementary trees:

α1 α2 α3 β1
S

NP↓ VP
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Derived Tree & Derivation Tree: Example (Cont.)

Derived Tree:
S

NP

John

VP

really VP

V

likes

NP

Lyn

Derivation Tree:
α1

α2(1) α3(2 · 2) β1(2)



Addresses in Derivation Trees

I root node has address 0
I k is the address of the k th child of the root node
I p · q is the address of the qth child of the node at address p
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Constraining Adjoining Operation

I In the TAG shown so far, an auxiliary tree β can be
adjoined on any node n, if:

I n has the identical label of the root in β
I n is not annotated for substitution

I It is convenient for linguistic description to have more
precision for specifying which auxiliary trees can be
adjoined at a given node



Adjoining Constraints

I Selective Adjunction (SA(T )): only members of a set
T ⊆ A can be adjoined on the given node, but the
adjunction is not mandatory

I Null Adjunction (NA): any adjunction is disallowed for the
given node (NA = SA(Φ))

I Obligatory Adjunction (OA(T )): an auxiliary tree member
of the set T ⊆ A must be adjoined on the given node

I for short OA .
= OA(A)



Selective Adjunction: An Example

One possible analysis of “send” could involve selective
adjunction:

α1 β1 β2

S

NP↓ VPSA(β1,β2,...)

send NP↓

VP

VP∗ away

VP

VP∗ PP

P

to

NP↓



Obligatory Adjunction: An Example

For when you absolutely must have adjunction at a node:

α β1 β2

S

NP↓ VPOA(β1,β2)
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Mildly Context Sensitiveness

I Any CFG can be easily converted into an equivalent TAG
that generates the same set of trees

I Languages like {anbnecndn,n ≥ 1} can not be generated
by any CFG, but can be properly covered by TAG

α1 β1
S

e

SNA

a S

b S∗NA c

d



Lexicalization of CFG with TAG

Theorem
If G = (Σ,NT ,P,S) is a finitely ambiguous CFG which does
not generate the empty string, then there is a lexicalized TAG
Glex = (Σ,NT , I,A,S) generating the same string and tree
language as G .

I Adjunction is sufficient to lexicalize context-free grammars
I The use of substitution enables one to lexicalize a

grammar with more compact TAG
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Closure of TAG under Lexicalization

Theorem
If G is a finitely ambiguous TAG that uses substitution and
adjunction as combining operation, s.t. λ /∈ L(G ), then there
exists a lexicalized TAG Glex which generates the same string
and tree language as G



Other Formal Properties of TAG and TAL

I CFL ⊂ TAL ⊂ Indexed Languages ⊂ CSL
I TAL is characterized by embedded push-down automaton

(EPDA)
I TAL can be parsed in polynomial time (O(n6) in worst case)
I TAG, HG, LIG and CCG are weakly equivalent
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