
Syntactic Theory
Tree-Adjoining Grammar (TAG)

Yi Zhang

Department of Computational Linguistics
Saarland University

November 10th, 2009



Outline

Tree-Adjoining Grammar (TAG)

Adding Constraints to TAG

Formal Properties of TAG

Linguistic Relevance of TAG

Variants of TAG



Introducing Auxiliary Trees

Auxiliary trees are the other type of elementary structures in
TAG

I interior nodes labeled by non-terminal symbols
I frontier nodes labeled by terminal and non-terminal

symbols
I non-terminal nodes on the frontier of the auxiliary tree are

marked for substitution except for one node, called the foot
node (and conventionally noted with (∗))



Adjoining Operation
Adjoining (or adjunction) builds a new tree from an auxiliary
tree β and a tree α (initial, auxiliary or derived tree) by cutting α
into two parts and inserting β in between

I The node of the root of the auxiliary tree is identified with
the node Z

I The node of the foot of the auxiliary tree is identified with
the root of the excised tree

S

Z

Z

Z∗

S

Z

Z



Finer Details of the Operations

I Z must not be a substitution node (non-terminal node on
the tree frontier)

I the sub-tree dominated by Z is excised, leaving a copy of
Z behind

I When a node is marked for substitution, only trees derived
from initial trees can be substituted for it



Tree-Adjoining Grammar: Formal Definition

I A Tree-Adjoining Grammar (TAG) is a quintuple
(Σ,NT , I,A,S), where

1. Σ is a finite set of terminal symbols
2. NT is a finite set of non-terminal symbols: Σ ∩ NT = Φ
3. S is a distinguished non-terminal symbol: S ∈ NT
4. I is a finite set of initial trees
5. A is a finite set of auxiliary trees



Derived Tree & Derivation Tree in TAG

I Derived Tree is the result of the derivations and
represents the phrase structure

I Derivation Tree specifies how a derived tree was
constructed

I The root is labeled by an S-type initial tree
I All other nodes are labeled by initial trees in the cases of

substitutions, and auxiliary trees in the cases of adjoining
I A tree address is associated with each node (except for the

root) to denote the node in the parent tree to which the
derivation operation has been performed



Derived Tree & Derivation Tree: Example

For TAG G :

G = ({john, lyn, really , likes}, {S,NP,VP,V}, {α1, α2, α3}, {β1}, {S})

with the following elementary trees:

α1 α2 α3 β1
S

NP↓ VP

V

likes

NP↓

NP

John

NP

Lyn

VP

really VP∗



Derived Tree & Derivation Tree: Example (Cont.)

Derived Tree:
S

NP

John

VP

really VP

V

likes

NP

Lyn

Derivation Tree:
α1

α2(1) α3(2 · 2) β1(2)



Addresses in Derivation Trees

I root node has address 0
I k is the address of the k th child of the root node
I p · q is the address of the qth child of the node at address p



Outline

Tree-Adjoining Grammar (TAG)

Adding Constraints to TAG

Formal Properties of TAG

Linguistic Relevance of TAG

Variants of TAG



Constraining Adjoining Operation

I In the TAG shown so far, an auxiliary tree β can be
adjoined on any node n, if:

I n has the identical label of the root in β
I n is not annotated for substitution

I It is convenient for linguistic description to have more
precision for specifying which auxiliary trees can be
adjoined at a given node



Adjoining Constraints

I Selective Adjunction (SA(T )): only members of a set
T ⊆ A can be adjoined on the given node, but the
adjunction is not mandatory

I Null Adjunction (NA): any adjunction is disallowed for the
given node (NA = SA(Φ))

I Obligatory Adjunction (OA(T )): an auxiliary tree member
of the set T ⊆ A must be adjoined on the given node

I for short OA .
= OA(A)



Selective Adjunction: An Example

One possible analysis of “send” could involve selective
adjunction:

α1 β1 β2

S

NP↓ VPSA(β1,β2,...)

send NP↓

VP

VP∗ away

VP

VP∗ PP

P

to

NP↓



Obligatory Adjunction: An Example

For when you absolutely must have adjunction at a node:

α β1 β2

S

NP↓ VPOA(β1,β2)

V

seen

VP

Aux

has

VP∗

VP

Aux

is

VP∗



Outline

Tree-Adjoining Grammar (TAG)

Adding Constraints to TAG

Formal Properties of TAG

Linguistic Relevance of TAG

Variants of TAG



Mildly Context Sensitiveness

I Any CFG can be easily converted into an equivalent TAG
that generates the same set of trees

I Languages like {anbnecndn,n ≥ 1} can not be generated
by any CFG, but can be properly covered by TAG

α1 β1
S

e

SNA

a S

b S∗NA c

d



Lexicalization of CFG with TAG

Theorem
If G = (Σ,NT ,P,S) is a finitely ambiguous CFG which does
not generate the empty string, then there is a lexicalized TAG
Glex = (Σ,NT , I,A,S) generating the same string and tree
language as G .

I Adjunction is sufficient to lexicalize context-free grammars
I The use of substitution enables one to lexicalize a

grammar with more compact TAG



Lexicalization of CFG with TAG

Theorem
If G = (Σ,NT ,P,S) is a finitely ambiguous CFG which does
not generate the empty string, then there is a lexicalized TAG
Glex = (Σ,NT , I,A,S) generating the same string and tree
language as G .

I Adjunction is sufficient to lexicalize context-free grammars
I The use of substitution enables one to lexicalize a

grammar with more compact TAG



Closure of TAG under Lexicalization

Theorem
If G is a finitely ambiguous TAG that uses substitution and
adjunction as combining operation, s.t. λ /∈ L(G ), then there
exists a lexicalized TAG Glex which generates the same string
and tree language as G



Other Formal Properties of TAG and TAL

I CFL ⊂ TAL ⊂ Indexed Languages ⊂ CSL
I TAL is characterized by embedded push-down automaton

(EPDA)
I TAL can be parsed in polynomial time (O(n6) in worst case)
I TAG, HG, LIG and CCG are weakly equivalent



References I

Joshi, A. and Schabes, Y. (1997).
Tree-adjoining grammars.


	Tree-Adjoining Grammar (TAG)
	Adding Constraints to TAG
	Formal Properties of TAG
	Linguistic Relevance of TAG
	Variants of TAG
	Appendix
	Appendix
	



