
Syntactic Theory
Tree-Adjoining Grammar (TAG)

Yi Zhang

Department of Computational Linguistics
Saarland University

November 5th, 2009



What you should have known so far . . .

I Phrase structure grammars
I Context-free grammar (CFG)

I Dependency grammar



What you should have known so far . . .

I Phrase structure grammars
I Context-free grammar (CFG)

I Dependency grammar



Outline

Overview

Tree-Subsitutional Grammar (TSG)



Outline

Overview

Tree-Subsitutional Grammar (TSG)



Tree-Adjoining Grammar

I Describing natural language syntax in CFG is not aways
effective/possible

I Comparing to CFG, TAG is an extended formalism
I Basic elements in TAG are trees, instead of atomic symbols
I TAG is a tree-rewriting (instead of strings rewriting) system
I TAG is mildly context-sensitive

I A lexically-oriented formalism (especially the lexicalized
tree adjoining grammar (LTAG))



A Brief Review of the History and Variants of TAG

I Originally developed by
Aravind Joshi (1975)

I Lexicalized Tree-Adjoining
Grammar (LTAG)

I Synchronous TAG (STAG)
I Multi-component TAG

(MCTAG)



Outline

Overview

Tree-Subsitutional Grammar (TSG)



Phrase Structure Tree & CFG

1. S → NP VP
2. VP → really VP
3. VP → V NP
4. V → likes
5. NP → John
6. NP → Lyn

S

NP

John

VP

really VP

V

likes

NP

Lyn

I The locality of each rule is limited to one level of branching
in the tree

I PS tree directly reflects the derivation steps of the CFG



Limitations of CFG as Linguistic Formalism

I Limited locality makes it difficult to describe (even slightly)
non-local linguistic phenomena

I Although it is possible to extend the CFG with complex
categories (e.g. via lexicalization), the grammar soon gets
“ugly”



Tree-Substitution Grammar

I Elementary structures are phrase structure trees
I A downward arrow (↓) indicates where a substitution takes

place

α1 α2 α3

S

NP↓ VP

V

likes

NP↓

NP

John

NP

Lyn



Substitution Operation

I The substitution operation allows one to insert elementary
trees into other elementary trees

I Where there is a node marked for substitution (↓) on the
frontier, an elementary tree rooted in the same category
can be substituted there

S

A

A S

A



Substitutions & Derived Tree

S

NP↓ VP

V

likes

NP↓

I A (completely) derived tree has no more substitution
nodes on the frontier

I The order of substitutions is irrelevant



Substitutions & Derived Tree

S

NP

John

VP

V

likes

NP↓

I A (completely) derived tree has no more substitution
nodes on the frontier

I The order of substitutions is irrelevant



Substitutions & Derived Tree

S

NP

John

VP

V

likes

NP

Lyn

I A (completely) derived tree has no more substitution
nodes on the frontier

I The order of substitutions is irrelevant



Substitutions & Derived Tree

S

NP

John

VP

V

likes

NP

Lyn
I A (completely) derived tree has no more substitution

nodes on the frontier
I The order of substitutions is irrelevant



Elementary Trees

Elementary trees are the building blocks of TSG and TAG
For TSG, all the elementary trees are so-called initial trees,
which are characterized as followings:

I interior nodes labeled by non-terminal symbols
I frontier nodes labeled by terminal and non-terminal

symbols
I non-terminal nodes on the frontier of the initial tree are

marked for substitution (and conventionally noted with ↓)



Tree-Substitution Grammar: Formal Definition

I A Tree-Substitution Grammar (TSG) is a quadruple
(Σ,NT , I,S), where

1. Σ is a finite set of terminal symbols
2. NT is a finite set of non-terminal symbols: Σ ∩ NT = Φ
3. S is a distinguished non-terminal symbol: S ∈ NT
4. I is a finite set of initial trees



Lexicalization

I A grammar is “lexicalized” if it consists of:
I a finite set of structures each associated with a lexical item;

each lexical item will be called the anchor of the
corresponding structure

I an operation or operations for composing the structures

Theorem
Lexicalized grammars are finitely ambiguous

I We say a formalism F can be lexicalized by another
formalism F ′, if for any finitely ambiguous grammar G in
F there is a grammar G ′ in F ′ such that G ′ is a lexicalized
grammar and such that G and G ′ generate the same tree
set (and hence the same language).



Lexicalization

I A grammar is “lexicalized” if it consists of:
I a finite set of structures each associated with a lexical item;

each lexical item will be called the anchor of the
corresponding structure

I an operation or operations for composing the structures

Theorem
Lexicalized grammars are finitely ambiguous

I We say a formalism F can be lexicalized by another
formalism F ′, if for any finitely ambiguous grammar G in
F there is a grammar G ′ in F ′ such that G ′ is a lexicalized
grammar and such that G and G ′ generate the same tree
set (and hence the same language).



Lexicalization

I A grammar is “lexicalized” if it consists of:
I a finite set of structures each associated with a lexical item;

each lexical item will be called the anchor of the
corresponding structure

I an operation or operations for composing the structures

Theorem
Lexicalized grammars are finitely ambiguous

I We say a formalism F can be lexicalized by another
formalism F ′, if for any finitely ambiguous grammar G in
F there is a grammar G ′ in F ′ such that G ′ is a lexicalized
grammar and such that G and G ′ generate the same tree
set (and hence the same language).



Problem with Lexicalization in TSG

Consider this CFG
1. S → NP VP
2. VP → adv VP
3. VP → v
4. NP → n

It can be lexicalized in a TSG
(α1) S

NP↓ VP

v
(α2) S

NP↓ VP

adv VP↓
(α3) VP

adv VP↓
(α4) VP

v

(α5) NP

n

Linguistically motivated???



Problem with Lexicalization in TSG

Consider this CFG
1. S → NP VP
2. VP → adv VP
3. VP → v
4. NP → n

It can be lexicalized in a TSG
(α1) S

NP↓ VP

v
(α2) S

NP↓ VP

adv VP↓
(α3) VP

adv VP↓
(α4) VP

v

(α5) NP

n
Linguistically motivated???



Is TSG Good Enough?

Theorem
Finitely ambiguous context-free grammars cannot be
lexicalized with a tree-substitution grammar

Proof.

1. S → S S
2. S → a

(Try to prove there is no lexicalzed TSG that generates the
same tree language)



Is TSG Good Enough?

Theorem
Finitely ambiguous context-free grammars cannot be
lexicalized with a tree-substitution grammar

Proof.

1. S → S S
2. S → a

(Try to prove there is no lexicalzed TSG that generates the
same tree language)



References I

Joshi, A. and Schabes, Y. (1997).
Tree-adjoining grammars.


	Overview
	Tree-Subsitutional Grammar (TSG)
	Appendix
	Appendix
	



