Syntactic Theory Head-driven Phrase Structure Grammar (HPSG)

Yi Zhang

Department of Computational Linguistics Saarland University

December 15th, 2009

《曰》《圖》《曰》《曰》 ([]]]

History of HPSG and its influences

- HPSG1: Pollard and Sag (1987)
 Formalism (typed feature structures), subcategorization, LP rules, hierarchical lexicon
- HPSG2: Pollard and Sag (1994) Chapter 1-8 The structure of signs, control theory, binding theory
- HPSG3: Pollard and Sag (1994) Chapter 9 "Reflections and Revisions"

Valence features SUBJ, COMPS, SPR

• HPSG**4**, HPSG**5**, ...

Unbounded dependency constructions, linking theory, semantic representation, argument realization, ...

イロト 不得 トイヨト イヨト 正言 ろくの

History of HPSG and its influences (cont.)

The development of HPSG is influenced by contemporary theories:

- Syntax
 - Generalized Phrase Structure Grammar (Gazdar, Klein, Pullum & Sag, 1985)
 - Categorial Grammar (McGee Wood, 1993)
 - Lexical-Functional Grammar (Kaplan & Bresnan, 1982)
 - Construction Grammar (Goldberg, 1995)
 - Government-Binding Theory (Haegeman, 1994)
- Semantics
 - Situation Semantics (Barwise & Perry, 1983)
 - Discourse Representation Theory (Kamp & Reyle, 1993)x

《曰》《曰》《曰》《曰》《曰》 되는

HPSG vs. "Classical" Phrase Structure Grammar

Similarities

- Both are monostratal: every analysis is represented by a single structure
- Grammar rules have local scope: mother phrase and its immediate daughters

HPSG vs. "Classical" Phrase Structure Grammar

Differences

- HPSG uses complex categories while classical PSG uses simple/atomic ones
- HPSG specifies Immediate Dominance (ID) and Linear Precedence (LP) separately
 - ID specifies the mother and daughters in a local tree without specifying the order of the daughters
 - LP determines the relative order of the daughters in a local tree without making reference to the mother
 - Further universal **principles** are specified in HPSG to constrain the set of local trees admitted by the ID schemata
- HPSG analyses include semantic representations in addition to syntactic representations

소리 에 소문에 이 것 같아. 소문 이 모님의

HPSG vs. Transformational Grammar

Similarities

- Both try to account for a similar range of data (e.g. in the development of the Binding Theory)
- Both are theories of generative grammar

HPSG vs. Transformational Grammar

Differences

- HPSG is non-derivational, TG is derivational
 - TG analyses start with a base generated tree, which is then subject to a variety of transformation (e.g., movement, deletion, reanalysis) that produce the desired surface structure
 - HPSG analyses generate only the surface structure, rule ordering is irrelevant
- HPSG constraints are local, TG allows non-local statements
- HPSG uses more complex categories than TG
- HPSG is more committed to precise formalization than TG
- HPSG is better suited to computational implementation than TG

제 글 에 제 글 에 크 글 글

Key Properties of HPSG and their consequences

- HPSG is monostratal, declarative, non-derivational No transformations, no rule ordering. Analyses are surface oriented, with a desire to avoid abstract structure such as traces and functional categories
- HPSG is constraint-based
 A structure is well-formed if and only if it satisfies all relevant constraints. Constraints are not violable (as in Optimality Theory, for example)
- HPSG is a lexicalist theory Strong lexicalism; Word-internal structures and phrase structure are handled separately
- HPSG is a unification-based linguistic framework where all linguistic objects are represented as "typed feature structures"

イロト 不得 トイヨト イヨト 正言 ろくの

Psycholinguistic Evidence

 Human language processing is incremental: Partial interpretations can be generated for partial utterances HPSG constraints can apply to partial structures as well as complete trees

HLP is integrative:

Linguistic interpretations depend on a large amount of non-linguistic information (e.g. world knowledge) The signs in HPSG can incorporate both linguistic and non-linguistic information using the same formal representation

《曰》《圖》《曰》《曰》 되는

Psycholinguistic Evidence

HLP is order-independent:

There is no fixed sequence in which pieces of information are consulted and incorporated into a linguistic interpretation HPSG is a declarative and non-derivational model

HLP is reversible:

Utterances can be understood and generated HPSG is process-neutral, and can be applied for either production or comprehension

시 프 시 시 프 시 프 네 프

Sign is the basic sort/type in HPSG used to describe lexical items (of type *word*) and phrases (of type *phrase*). All signs carry the following two features:

- PHON encodes the phonological representation of the sign
- SYNSEM syntax and semantics

Structure of the Signs in HPSG

- synsem introduces the features LOCAL and NON-LOCAL
- *local* introduces CATEGORY (CAT) CONTENT (CONT) and CONTEXT (CONX)
- non-local will be discussed in connection with unbounded dependencies
- category includes the syntactic category and the grammatical argument of the word/phrase

An Ontology of Linguistic Objects

Structure of the Signs in HPSG (cont.)

Example

Zhang (Saarland University)

Syntactic Category & Valence

The value of CATEGORY encode information about

- The sign's syntactic category ("part-of-speech")
 - Given via the feature [HEAD head], where *head* is the supertype for *noun, verb, adjective, preposition, determiner, marker*; each of these types selects a particular set of **head features**
- The sign's subcategorzation frame/valence, i.e. its potential to combine with other signs to form larger phrases
 - Three list-valued features

-	SUBJECT	list(synsem)
SYNSEM LOC CAT VALENCE	SPECIFIER	list(synsem)
valence	COMPLEMENTS	list(synsem)

 If any of these lists are non-empty ("unsaturated"), the sign has the potential to combine with another sign

▲□▶ ▲掃▶ ▲ヨ▶ ▲ヨ▶ ヨヨ めのゆ

Head Information

Zhang (Saarland University)

15.12.2009 16/25

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Features of *head* Types

Zhang (Saarland University)

Syntactic Theory

15.12.2009 17/25

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The VALENCE lists take as values the list of synsems instead of signs
- This means that word does not have access to the DTRS list of items on its valence lists
- More discussion on different valence lists will follow when we introduce the valence principle and ID schemata

Semantic Representation

Semantic interpretation of the sign is given as the value to CONTENT

- nominal-object: an individual/entity (or a set of them), associated with a referring index, bearing agreement features
- parameterized-state-of-affairs: a partial situate; an event relation along with role names for identifying the participants of the event
- quantifier: some, all, every, a, the, ...
- Note: many of these have been reformulated by "Minimal Recursion Semantics" which allows underspecification of quantifier scopes, though a in-depth discussion of MRS is beyond the scope of this class

Semantic Representation

Semantic interpretation of the sign is given as the value to CONTENT

- nominal-object: an individual/entity (or a set of them), associated with a referring index, bearing agreement features
- parameterized-state-of-affairs: a partial situate; an event relation along with role names for identifying the participants of the event
- quantifier: some, all, every, a, the, ...
- Note: many of these have been reformulated by "Minimal Recursion Semantics" which allows underspecification of quantifier scopes, though a in-depth discussion of MRS is beyond the scope of this class

Semantic Representation

Indices

15.12.2009 21 / 25

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Auxiliary Data Structures

Zhang (Saarland University)

Syntactic Theory

15.12.2009 22/25

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Some List Abbreviations

• Empty list (*elist*) is abbreviated as
$$\left\langle \right\rangle$$

• $\begin{bmatrix} FIRST & 1\\ REST & 2 \end{bmatrix}$ is abbreviated as $\left\langle 1 \mid 2 \right\rangle$
• $\left\langle \dots 1 \mid \langle \rangle \right\rangle$ is equivalent to $\left\langle \dots 1 \right\rangle$
• $\begin{bmatrix} FIRST & 1\\ REST & \begin{bmatrix} FIRST & 2\\ REST & 3 \end{bmatrix}$ is equivalent to $\left\langle 1, 2 \mid 3 \right\rangle$
• $\left\langle \top \right\rangle$ and $\left\langle 1 \right\rangle$ describe all lists of length one

Abbreviations of Common AVMs

The following abbreviations are used to describe synsem objects:

References I

Pollard, C. J. and Sag, I. A. (1994).

Head-Driven Phrase Structure Grammar.

University of Chicago Press, Chicago, USA.

・ 同 ト ・ 日 ト ・ 日 ト