LFG

Syntactic Theory Winter Semester 2009/2010

Antske Fokkens

Department of Computational Linguistics Saarland University

17 November 2009

(日) (四) (日) (日) (日)

2 F-structures

- Motivation
- Formal properties of f-structures
- grammatical functions in LFG
- well-formedness conditions

< 🗇 🕨

2 F-structures

- Motivation
- Formal properties of f-structures
- grammatical functions in LFG
- well-formedness conditions

A (10) A (10) A (10)

Lexical Functional Grammar, Introduction

- Developed in the late 70s by Joan Bresnan and Ron Kaplan
- LFG brings scholars from different fields together:
 - Theoretical linguists
 - Descriptive, typological linguists
 - Computational linguistics
- Main ideas:
 - A formal system to model human speech (fits in the tradition of generative grammar)
 - Psychological plausibility: the formalism should be able to represent a native speaker's syntactic knowledge appropriately
 - Strong typological basis: analyses should capture cross-linguistic similarities

A B A B A
 A
 B
 A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Main levels of representation

A Lexical Functional Grammar represents expressions in (minimally) two levels of representation:

- **constituent structure** (c-structure):
 - a tree which represents phrase structure configurations
 - it indicates the superficial arrangements of the words in the sentence, i.e. it serves as an input for the phonological interpretation of the string
 - languages differ radically on a c-structure level
- **functional structure** (f-structure):
 - an attribute-value matrix represents surface grammatical functions, i.e. traditional syntactic relations such as subject, object, complement and adjunct
 - It serves as the sole input to the semantic component
 - languages are similar on a f-structure level

Lexical Functional Grammar

- LFG is lexical because of the assumption that words and lexical items are as important in providing grammatical information as syntactic elements
- LFG is functional because grammatical information is represented by lexical functions (f-structure), rather than by phrase structure configurations

i.e. LFG is nonconfigurational

Orginizations of the coming lectures

An overview of the architecture of LFG

- F-structures: formal definition and basic properties
- C-structures: basic properties
- Mapping between c- and f-structures
- Example analysis
- Phenomena and constraints in LFG
 - How to integrate and use constraints in LFG analyses
 - Some basic phenomena and their analyses in LFG

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Outline

2 F-structures

- Motivation
- Formal properties of f-structures
- grammatical functions in LFG
- well-formedness conditions

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

F-structure: motivation

- Assumption: for any language functional syntactic concepts such as subject and object are relevant
- The f-structure can represent what languages have in common in wide-spread phenomena, no matter how radically different languages may be on the surface

e.g. passives

The f-structure can capture some universal properties of language

e.g. the Keenan-Comrie Hierarchy for relative clauses: SUBJ > DOBJ > IOBJ > OBL > GEN > OCOMP

- A language may sets its border for acceptable and unacceptable relative clauses anywhere on the hierarchy: those elements above the boundary can be relativized.
- Processing becomes more difficult when going down the hierarchy

• • • • • • • • • • • •

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Examples of relative clauses

- Subject: That's the man [who ran away]. The girl [who came late] is my sister.
- Direct object: That's the man [I saw yesterday]. The girl [Kate saw] is my sister.
- Indirect object: That's the man [to whom I gave the letter]. The girl [who I wrote a letter to] is my sister.
- Oblique: That's the man [I was talking about]. The girl [who I sat next to] is my sister.
- Genitive: That's the man [whose sister I know]. The girl [whose father died] told me she was sad.
- Obj of Comp: That's the man [I am taller than]. The girl [who Kate is smarter than] is my sister.

イロト イ理ト イヨト イヨト

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

An example of an F-structure

Example: the f-structure of *I* saw the girl:

SUBJ	PRED	'pro'	
	PERS	1	
	NUM	SG	
TENSE	PAST		
PRED	'see⟨(↑s	UBJ),	(†овј) ⁄'
OBJ	PRED	'girl'	
	DEF	+	
	PERS	3	
	NUM	SG	

< 47 ▶

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Formal properties of F-structures

- An F-structure is a finite set of pairs of attributes and values
- An F-structures attributes may be
 - A: atomic symbols, e.g. SUBJ, OBJ, PRED
- An F-structures values may be:
 - A: atomic symbols, e.g. SG, 1, +, PAST
 - S: semantic forms, e.g. 'girl', 'see<(↑SUBJ)(↑ OBJ)>'
 - F: f-structures
- F-structures are defined by the following recursive domain equation:
 - $\mathsf{F} = (\mathsf{A} \rightarrow {}_f \mathsf{F} \cup \mathsf{A} \cup \mathsf{S})$

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Examples of simple F-structures

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

A Functional structure

- Mathematically, the f-structure can be is seen as a function from attributes to values, hence its name
- A function assigns a unique value to its argument
- In other words:

if
$$(f q) = t$$
 and $(f q) = v$, then $t = v$

The value of an attribute can be a set:

(We'll see more examples later)

$$\begin{bmatrix} \text{attr1} & \text{v1} \\ \text{attr2} & \left\{ \text{v2,v3} \right\} \end{bmatrix} \text{ e.g. we: } \begin{bmatrix} \text{PRED} & \text{'pro'} \\ \text{PERS} & \left\{ \text{H,S} \right\} \\ \text{NUM} & \text{PLOD} \end{bmatrix}$$

Antske Fokkens

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

symbols and semantic forms

- Symbols are unbroken strings of alphanumeric characters → the choice of symbols belongs to a particular theory of linguistics
- Semantic forms are special: the single quotes around semantic form values indicate that this form is unique. E.g. each instance of the word *girl* is a uniquely instantiated occurrence of the semantic form 'girl'

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Some Linguistic terminology (Bresnan 1982)

- an attribute-value pair where the value is a symbol is called a feature
- an attribute-value pair where the value is an f-structure is called a grammatical function
- an attribute whose value is a semantic form is called a semantic feature

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Attributes with the same values

- Two attributes within the same f-structure can have the same value
- This can be represented in several ways:

$$\begin{bmatrix} ATTR1 & \begin{bmatrix} A1 & V1 \end{bmatrix} \\ ATTR2 & \begin{bmatrix} A1 & V1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} ATTR1 & \begin{bmatrix} A1 & V1 \end{bmatrix} \\ ATTR2 & \begin{bmatrix} A1 & V1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} ATTR2 & \end{bmatrix} \begin{bmatrix} ATTR2 & 1 \end{bmatrix}$$

Note:

Semantic forms are unique: two instances of 'lion' in a sentence does not necessarily mean two attributes have the same value: co-indexation is required

A B A B A
 A
 B
 A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Attributes with the same values

- Two attributes within the same f-structure can have the same value
- This can be represented in several ways:

$$\begin{bmatrix} ATTR1 & \begin{bmatrix} A1 & V1 \end{bmatrix} \\ ATTR2 & \begin{bmatrix} A1 & V1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} ATTR1 & \begin{bmatrix} A1 & V1 \end{bmatrix} \\ ATTR2 & \begin{bmatrix} A1 & V1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} ATTR2 & \end{bmatrix} \begin{bmatrix} ATTR2 & 1 \end{bmatrix}$$

Note:

- Semantic forms are unique: two instances of 'lion' in a sentence does not necessarily mean two attributes have the same value: co-indexation is required
- Identity in LFG differs from identity in HPSG: no type/token distinction!

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Grammatical functions in LFG

LFG proposes the following inventory of grammatical functions, which is universally available:

- SUBJect
- OBJect
- OBJ $_{\theta}$
- COMP
- XCOMP
- OBLique_θ
- ADJunct
- XADJunct

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Cross-classification of grammatical functions

Several cross-classifications are possible among grammatical functions:

- Governable functions: SUBJ, OBJ, XCOMP, COMP, OBJ_θ,
 OBL_θ
 Modifiers: ADJ, XADJ
 - Core arguments/terms: SUBJ, OBJ, OBJ_θ Non-term/oblique functions: OBL_θ
 - Semantically unrestricted functions: SUBJ, OBJ Semantically restricted functions: OBJ_θ, OBL_θ
- Open functions: XCOMP, XADJ
 Closed functions: SUBJ, OBJ, COMP, OBJ_θ, OBL_θ, ADJ

 \rightarrow we will only consider the distinction between governable functions and modifiers for now

A B A B A
 A
 B
 A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Governable grammatical functions

- SUBJ, OBJ, XCOMP, COMP, OBJ_θ and OBL_θ are governed or subcategorized for by the predicate, hence the name governable grammatical functions
- ADJ and XADJ modify the phrase they appear in, but they are not subcategorized for by the predicate. The term modifiers applies to these functions

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

The value of ADJ and XADJ

In principle, there is no limit to the number of modifiers that can appear within a phrase: the value of the ADJ or XADJ feature is the set of all modifiers that are present, e.g. David yawned quietly (yesterday):

 SUBJ
 [PRED 'David']

 PRED 'yawn<(↑ SUBJ)>'

 ADJ
 {[PRED 'quietly']}

 Image: Present and present and

Typically, the values of governable functions are not sets

(日)

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Identifying governable grammatical functions I

- Dowty (1982) proposes the following tests to distinguish between governable functions and modifiers
 - Entailment test: does the predicate entail existence of the argument? but:
 - many predicates entail time and place
 - predicates such as seek don't entail existence of their arguments, the same holds for semantically empty arguments such as it in it rains
 - Subcategorization test: modifiers can be omitted, arguments cannot but:
 - Some verbs have optional arguments (or ambiguous subcategorization frames), such as *eat*
 - In pro-drop languages arguments can generally be dropped

(日)

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Identifying governable grammatical functions II

These tests provide good indications for the governable function/modifier distinction, but cannot always correctly differentiate between arguments and modifiers

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Some additional tests (1/2)

Multiple occurrence: (Kaplan and Bresnan 1982): modifiers may be multiple specified, arguments cannot:

The girl saw the baby on Tuesday in the morning

- * David saw Tony George Sally
- Order dependence: (Pollard and Sag 1987) relative order of modifiers may change truth-conditions, this is not the case for arguments
 - Kim jogged for twenty minutes twice a day
 - Kim jogged twice a day for twenty years

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Some additional tests (2/2)

- Anaphoric binding: (Hellan 1988, Dalrymple 1993, for Norwegian)
 - Jon fortalte meg om seg selv.
 Jon told me about self
 "Jon told me about himself"
 - (2) * Hun kastet meg fra seg selv she threw me from self "she threw me away from herself"
- $\rightarrow\,$ Languages may provide different kind of evidence for such distinctions

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Subcategorization

A semantic form may contain an argument list, next to its semantic predicate name, e.g.

- Yawn<(↑ SUBJ)>'
- 'see<(↑ SUBJ), (↑ OBJ)>'
- 'give<(↑ SUBJ), (↑ OBJ), (↑ OBJ2)>'
- Note that lexical items select for grammatical functions (not for NPs, CP, etc)

How to make sure that subcategorization requirements are fulfilled?

 \rightarrow well-formedness constraints on the f-structure: completeness and coherence

A B A B A
 A
 B
 A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Principle of completeness

- The principle of completeness requires that all governable functions present in the argument list of a semantic form must be present in the f-structure
- This excludes ungrammatical expressions such as

 \rightarrow the object is missing: incomplete f-structure!

A B A B A
 A
 B
 A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Principle of Completeness: definition

Local Completeness

An f-structure is **locally complete** iff it contains all the governable functions that its predicate governs

Completeness

An f-structure is **complete** iff it is locally complete and all its subsidiary f-structures are locally complete

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Principle of Coherence

- The principle of coherence requires that all governable functions present in the f-structure are also present in the argument list of the predicate
- This excludes ungrammatical examples such as
 - David yawned the flower

→ the OBJ *the flower* is not governed by the predicate: incoherent f-structure!

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Principle of Coherence: definition

Local Coherence

An f-structure is **locally coherent** iff all the governable functions it contains are governed by its predicate

Coherence

An f-structure is **coherent** iff it is locally coherent and all its subsidiary f-structures are locally coherent

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Principle of Consistency (uniqueness)

- The principle of consistency states what we have already seen in the f-structures formal properties: an attribute has a unique value
- It excludes ungrammatical examples such as
 - * David sleep

→ 'David' is singular, but the verb form states that the subject's number is plural: inconsistent f-structure!

definition: An f-structure is consistent iff all attributes have at most one value

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

F-structures, recap I

- F-structures represent the grammatical relations of expressions
- Languages are similar on this level: allows to explain cross-linguistic properties of phenomena
- Formally, an f-structure is a set of attribute-value pairs
- LFG posits a universal inventory of grammatical functions (where we distinguish governable functions and modifiers (among other properties))
- F-structures must be
 - complete
 - coherent
 - consistent

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Bibliography I

- Bresnan, Joan (2000). Lexical Functional Syntax. Blackwell Publishers: Malden, USA/Oxford UK.
- Dalrymple, Mary, Ron M. Kaplan, John T. Maxwell III and Annie Zaenen (eds.). (1995) Formal Issues in Lexical-Functional Grammar. CSLI Publications: Palo Alto, USA.
- Dalrymple, Mary (2001). Lexical Functional Grammar. Academic Press: San Diego, USA/London, UK.
- Kaplan, Ron (1995). The formal architecture of Lexical-Functional Grammar. In: Dalrymple et al. (1995).
- Kordoni, Valia (2008a). Syntactic Theory Lectures 5. Course slides.
- Schneider, Gerold (1998). A Linguistic Comparison of Constituency, Dependency and Link Grammar. Lizentiatsarbeit, Institut für Informatik der Universität Zürich.

http://www.ifi.unizh.ch/cl/study/lizarbeiten/lizgerold.pdf.