
Tree-Adjoining GrammarsAravind K. Joshi1 and Yves Schabes21 Department of Computer and Information Science, andThe Institute for Research in Cognitive Science,University of Pennsylvania, Philadelphia, PA 19104, USAemail: joshi@linc.cis.upenn.edu2 Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USAemail: schabes@merl.com1. IntroductionIn this paper, we will describe a tree generating system called tree-adjoininggrammar (TAG) and state some of the recent results about TAGs. The workon TAGs is motivated by linguistic considerations. However, a number offormal results have been established for TAGs, which we believe, would beof interest to researchers in formal languages and automata, including thoseinterested in tree grammars and tree automata.After giving a short introduction to TAG, we brie
y state these resultsconcerning both the properties of the string sets and tree sets (Section 2.).We will also describe the notion of lexicalization of grammars (Section 3.) andinvestigate the relationship of lexicalization to context-free grammars (CFGs)and TAGs and then summarize the issues on lexicalization (Sections 4., 5.and 6.). We then describe an automaton model that exactly corresponds toTAGs (Section 7.). As we have said earlier TAGs were motivated by someimportant linguistic considerations. The formal aspects of these considera-tions are mathematically important also. Hence we have presented a briefdiscussion of these issues together with some simple examples (Section 8.).We also present in Section 9. some variants of TAGs that are currently un-der investigation. We then present a bottom up predictive parser for TAGs,which is both theoretically and practically important (Section 10.) and theno�er some concluding remarks (Section 11.).The motivations for the study of tree-adjoining grammars (TAG) are oflinguistic and formal nature. The elementary objects manipulated by a TAGare trees, i.e., structured objects and not strings. Using structured objects asthe elementary objects of a formalism, it is possible to construct formalismswhose properties relate directly to the strong generative capacity (structuraldescription) which is more relevant to linguistic descriptions than the weakgenerative capacity (set of strings).TAG is a tree-generating system rather than a string generating system.The set of trees derived in a TAG constitute the object language. Hence, inorder to describe the derivation of a tree in the object language, it is necessaryto talk about derivation `trees' for the object language trees. These derivation

2 Joshi and Schabestrees are important both syntactically and semantically. It has also turnedout that some other formalisms which are weakly equivalent to TAGs aresimilar to each other in terms of the properties of the derivation `trees' ofthese formalisms [Weir1988, Joshi et al.1991].Another important linguistic motivation for TAGs is that TAGs allowfactoring recursion from the statement of linguistic constraints (dependen-cies), thus making these constraints strictly local, and thereby simplifyinglinguistic description [Kroch and Joshi1985].Lexicalization of grammar formalism is also one of the key motivations,both linguistic and formal. Most current linguistic theories give lexical ac-counts of several phenomena that used to be considered purely syntactic.The information put in the lexicon is thereby increased in both amount andcomplexity1.On the formal side, lexicalization allows us to associate each elementarystructure in a grammar with a lexical item (terminal symbol in the context offormal grammars). The well-known Greibach Normal Form (CNF) for CFGis a kind of lexicalization, however it is a weak lexicalization in a certain senseas it does not preserve structures of the original grammar. Our tree basedapproach to lexicalization allows us to achieve lexicalization while preservingstructures, which is linguistically very signi�cant.2. Tree-Adjoining GrammarsTAGs were introduced by Joshi, Levy and Takahashi (1975) and Joshi (1985).For more details on the original de�nition of TAGs, we refer the reader to[Joshi1987, Kroch and Joshi1985]. It is known that tree-adjoining languages(TALs) generate some strictly context-sensitive languages and fall in the classof the so-called `mildly context-sensitive languages' [Joshi et al.1991]. TALsproperly contain context-free languages and are properly contained by in-dexed languages.Although the original de�nition of TAGs did not include substitution as acombining operation, it can be easily shown that the addition of substitutiondoes not a�ect the formal properties of TAGs.We �rst give an overview of TAG and then we study the lexicalizationprocess.De�nition 2.1 (tree-adjoining grammar).A tree-adjoining grammar (TAG) consists of a quintuple (�;NT; I; A; S),where1 Some of the linguistic formalisms illustrating the increased use of lexi-cal information are, lexical rules in LFG [Kaplan and Bresnan1983], GPSG[Gazdar et al.1985], HPSG [Pollard and Sag1987], Combinatory CategorialGrammars [Steedman1987], Karttunen's version of Categorial Grammar[Karttunen1986], some versions of GB theory [Chomsky1981], and Lexicon-Grammars [Gross1984].

Tree-Adjoining Grammars 3(i) � is a �nite set of terminal symbols;(ii) NT is a �nite set of non-terminal symbols2: � \NT = ;;(iii) S is a distinguished non-terminal symbol: S 2 NT ;(iv) I is a �nite set of �nite trees, called initial trees, characterizedas follows (see tree on the left in Fig. 2.1):� interior nodes are labeled by non-terminal symbols;� the nodes on the frontier of initial trees are labeled by termi-nals or non-terminals; non-terminal symbols on the frontier ofthe trees in I are marked for substitution; by convention, weannotate nodes to be substituted with a down arrow (#);(v) A is a �nite set of �nite trees, called auxiliary trees, characterizedas follows (see tree on the right in Fig. 2.1):� interior nodes are labeled by non-terminal symbols;� the nodes on the frontier of auxiliary trees are labeled by termi-nal symbols or non-terminal symbols. Non-terminal symbol onthe frontier of the trees in A are marked for substitution exceptfor one node, called the foot node; by convention, we annotatethe foot node with an asterisk (�); the label of the foot nodemust be identical to the label of the root node.In lexicalized TAG, at least one terminal symbol (the anchor) must appearat the frontier of all initial or auxiliary trees.The trees in I [A are called elementary trees. We call an elementary treean X-type elementary tree if its root is labeled by the non-terminal X .
X Z

terminal nodes or

Initial tree: Auxiliary tree:

Z*

substitution nodesFig. 2.1. Schematic initial and auxiliary trees.A tree built by composition of two other trees is called a derived tree.We now de�ne the two composition operations that TAG uses: adjoiningand substitution.2 We use lower-case letters for terminal symbols and upper-case letters for non-terminal symbols.

4 Joshi and SchabesAdjoining builds a new tree from an auxiliary tree � and a tree � (�is any tree, initial, auxiliary or derived). Let � be a tree containing a non-substitution node n labeled by X and let � be an auxiliary tree whose rootnode is also labeled by X . The resulting tree,
, obtained by adjoining � to� at node n (see top two illustrations in Fig. 2.2) is built as follows:� the sub-tree of � dominated by n, call it t, is excised, leaving a copy ofn behind.� the auxiliary tree � is attached at the copy of n and its root node isidenti�ed with the copy of n.� the sub-tree t is attached to the foot node of � and the root node of t(i.e. n) is identi�ed with the foot node of �.The top two illustrations in Fig. 2.2 illustrate how adjoining works. Theauxiliary tree �1 is adjoined on the V P node in the tree �2. �1 is the resultingtree.Substitution takes only place on non-terminal nodes of the frontier of atree (see bottom two illustrations in Fig. 2.2). An example of substitutionis given in the fourth illustration (from the top) in Fig. 2.2. By convention,the nodes on which substitution is allowed are marked by a down arrow (#).When substitution occurs on a node n, the node is replaced by the tree tobe substituted. When a node is marked for substitution, only trees derivedfrom initial trees can be substituted for it.By de�nition, any adjunction on a node marked for substitution is dis-allowed. For example, no adjunction can be performed on any NP node inthe tree �2. Of course, adjunction is possible on the root node of the treesubstituted for the substitution node.2.1 Adjoining ConstraintsIn the system that we have described so far, an auxiliary tree � can beadjoined on a node n if the label of n is identical to the label of the rootnode of the auxiliary tree � and if n is labeled by a non-terminal symbolnot annotated for substitution. It is convenient for linguistic description tohave more precision for specifying which auxiliary trees can be adjoined ata given node. This is exactly what is achieved by constraints on adjunction[Joshi1987]. In a TAG G = (�;NT; I; A; S), one can, for each node of anelementary tree (on which adjoining is allowed), specify one of the followingthree constraints on adjunction:� Selective Adjunction (SA(T), for short): only members of a set T � A ofauxiliary trees can be adjoined on the given node. The adjunction of anauxiliary is not mandatory on the given node.� Null Adjunction (NA for short): it disallows any adjunction on the givennode.33 Null adjunction constraint corresponds to a selective adjunction constraint forwhich the set of auxiliary trees T is empty: NA = SA(;)

Tree-Adjoining Grammars 5
Y

X

X

X

X

Y

X*

(α) (β) (γ)

(�2) NP0↓

loved

V NP1↓

VP

S + (�1)
has

V VP*

VP �! (�1)
NP0↓

has

V

loved

V NP1↓

VP

VP

S

Adjoining
Α

Α

Α

(�2) NP0↓

loved

V NP1↓

VP

S + (�3) D↓

woman

N

NP �! (�4)
NP0↓

loved

V

D↓

woman

N

NP

VP

S

SubstitutionFig. 2.2. Combining operations: adjoining and substitution

6 Joshi and Schabes� Obligatory Adjunction (OA(T), for short): an auxiliary tree member ofthe set T � A must be adjoined on the given node. In this case, theadjunction of an auxiliary tree is mandatory. OA is used as a notationalshorthand for OA(A).If there are no substitution nodes in the elementary trees and if there areno constraints on adjoining, then we have the `pure' (old) Tree AdjoiningGrammar (TAG) as described in [Joshi et al.1975].The operation of substitution and the constraints on adjoining are bothneeded for linguistic reasons. Constraints on adjoining are also needed forformal reasons in order to obtain some closure properties.2.2 Derivation in TAGWe now de�ne by an example the notion of derivation in a TAG. Unlike CFGs,the tree obtained by derivation (the derived tree) does not give enough infor-mation to determine how it was constructed. The derivation tree is an objectthat speci�es uniquely how a derived tree was constructed. Both operations,adjunction and substitution, are considered in a TAG derivation. Take forexample the derived tree �5 in Fig. 2.3; �5 yields the sentence yesterday aman saw Mary. It has been built with the elementary trees shown in Fig. 2.4.

(�5)
S

Ad

yesterday

S

NP

D

a

N

man

VP

V

saw

NP

N

MaryFig. 2.3. Derived tree for: yesterday a man saw Mary.The root of a derivation tree for TAGs is labeled by an S-type initialtree. All other nodes in the derivation tree are labeled by auxiliary treesin the case of adjunction or initial trees in the case of substitution. A treeaddress is associated with each node (except the root node) in the derivationtree. This tree address is the address of the node in the parent tree to whichthe adjunction or substitution has been performed. We use the following

Tree-Adjoining Grammars 7
(�yest)

yesterday

Adv S*

S (�a) D

a

(�man) NP

D↓ N

man

(�saw)
S

NP0↓ VP

V

saw

NP1↓ (�Mary) NP

N

MaryFig. 2.4. Some elementary trees.convention: trees that are adjoined to their parent tree are linked by anunbroken line to their parent, and trees that are substituted are linked by adashed line.4 Since by de�nition, adjunction can only occur at a particularnode one time, all the children of a node in the derivation tree will havedistinct addresses associated with them.The derivation tree in Fig. 2.5 speci�es how the derived tree �5 picturedin Fig. 2.3 was obtained.
αa (1)

αma n (1) αMa r y (2.2) βy est (0)

αsa w

Fig. 2.5. Derivation tree for Yesterday a man saw Mary.This derivation tree (Fig. 2.5) should be interpreted as follows: �a is substi-tuted in the tree �man at the node of address 1 (D), �man is substituted inthe tree �saw at address 1 (NP0) in �man, �Mary is substituted in the tree4 We will use Gorn addresses as tree addresses: 0 is the address of the root node,k is the address of the kth child of the root node, and p � q is the address of theqth child of the node at address p.

8 Joshi and Schabes�saw at node 2 � 2 (NP1) and the tree �yest is adjoined in the tree �saw atnode 0 (S).The order in which the derivation tree is interpreted has no impact onthe resulting derived tree.2.3 Some properties of the string languages and tree setsWe summarize some of the well known properties of tree-adjoining grammar'sstring languages and of the tree sets.The tree set of a TAG is de�ned as the set of completed5 initial treesderived from some S-rooted initial tree:TG = ft j t is `derived' from some S-rooted initial treegThe string language of a TAG, L(G), is then de�ned as the set of yieldsof all the trees in the tree set:LG = fw j w is the yield of some t in TGgAdjunction is more powerful than substitution and it generates somecontext-sensitive languages (see Joshi [1985] for more details). 6Some well known properties of the string languages follow:� context-free languages are strictly included in tree-adjoining languages,which themselves are strictly included in indexed languages;CFL � TAL � Indexed Languages � CSL� TALs are semilinear;� All closure properties of context-free languages also hold for tree-adjoininglanguages. In fact, TALs are a full abstract family of languages (fullAFLs).� a variant of the push-down automaton called embedded push-down au-tomaton (EPDA) [Vijay-Shanker1987] characterizes exactly the set oftree-adjoining languages, just as push-down automaton characterizesCFLs.� there is a pumping lemma for tree-adjoining languages.� tree-adjoining languages can be parsed in polynomial time, in the worstcase in O(n6) time.Some well know properties of the tree sets of tree-adjoining grammarsfollow:� the tree sets of recognizable sets (regular tree sets)[Thatcher1971] arestrictly included in the tree sets of tree-adjoining grammars, T (TAG);recognizable sets � T (TAG)5 We say that an initial tree is completed if there is no substitution nodes on thefrontier of it.6 Adjunction can simulate substitution with respect to the weak generative ca-pacity. It is also possible to encode a context-free grammar with auxiliary treesusing adjunction only. However, although the languages correspond, the possibleencoding does not directly re
ect the tree set of original context-free grammarsince this encoding uses adjunction.

Tree-Adjoining Grammars 9� the set of paths of all the trees in the tree set of a given TAG, P(T (G)),is a context-free language; P(T (G)) is a CFL� the tree sets of TAG are equivalent to the tree sets of linear indexedlanguages. Hence, linear versions of Schimpf-Gallier tree automaton[Schimpf and Gallier1985] are equivalent to T (TAG);� for every TAG, G, the tree set of G, T (G), is recognizable in polynomialtime, in the worst case in O(n3)-time, where n is the number of nodes ina tree t 2 T (G).We now give two examples to illustrate some properties of tree-adjoininggrammars.Example 2.1. Consider the following TAG G1 = (fa; e; bg; fSg; f�6g; f�2g; S)
(�6)

e

S (�2) a

S* N A b

S

SN A

G1 generates the language L1 = fanebnjn � 1g. For example, in Fig. 2.6,�7 has been obtained by adjoining �2 on the root node of �6 and �8 has beenobtained by adjoining �2 on the node at address 2 in in the tree �7.

(�7) a

e

SN A b

S

SN A

(�8)
a

a

e

SN A b

SN A b

S

SN A

SN A

Fig. 2.6. Some derived trees of G1

10 Joshi and SchabesAlthough L1 is a context-free language, G1 generates cross serial depen-dencies. For example, �7 generates, a1eb1, and �8 generates, a1a2eb2b1. Itcan be shown that T (G1) is not recognizable.Example 2.2. Consider the TAG G2 = (fa; b; c; d; eg; fSg; f�6g; f�3g; S) be-low
(�6)

e

S (�3) a

b S* N A c

S d

SN A

G2 generates the context-sensitive language L2 = fanbnecndnjn � 1g. Forexample, in Fig. 2.7, �9 has been obtained by adjoining �3 on the root nodeof �6 and �10 has been obtained by adjoining �3 on the node at address 2 inin the tree �9.

(�9) a

b

e

SN A c

S d

SN A

(�10)
a

a

b

b

e

SN A c

SN A c

S d

SN A d

SN A

Fig. 2.7. Some derived trees of G2One can show that fanbncndnenjn � 1g is not a tree-adjoining language.We have seen in Section 2.2 that the derivation in TAG is also a tree. Fora given TAG, G, it can be shown that the set of derivations trees of G, D(G),is recognizable (in fact a local set). Many di�erent grammar formalisms havebeen shown to be equivalent to TAG, their derivation trees are also local sets.

Tree-Adjoining Grammars 113. Lexicalized GrammarsWe de�ne a notion of \lexicalized grammars" that is of both linguistic andformal signi�cance. We then show how TAG arises in the processes of lexi-calizing context-free grammars.In this \lexicalized grammar" approach [Schabes et al.1988, Schabes1990],each elementary structure is systematically associated with a lexical itemcalled the anchor. By `lexicalized' we mean that in each structure there is alexical item that is realized. The `grammar' consists of a lexicon where eachlexical item is associated with a �nite number of structures for which thatitem is the anchor. There are operations which tell us how these structuresare composed. A grammar of this form will be said to be `lexicalized'.De�nition 3.1 (Lexicalized Grammar). A grammar is `lexicalized' if itconsists of:� a �nite set of structures each associated with a lexical item; each lexicalitem will be called the anchor of the corresponding structure;� an operation or operations for composing the structures.We require that the anchor must be an overt (i.e. not the empty string) lexicalitem.The lexicon consists of a �nite set of structures each associated with ananchor. The structures de�ned by the lexicon are called elementary structures.Structures built by combination of others are called derived structures.As part of our de�nition of lexicalized grammars, we require that thestructures be of �nite size. We also require that the combining operationscombine a �nite set of structures into a �nite number of structures. We willconsider operations that combine two structures to form one derived struc-ture.Other constraints can be put on the operations. For examples, the oper-ations could be restricted not to copy, erase or restructure unbounded com-ponents of their arguments. We could also impose that the operations yieldlanguages of constant growth (Joshi [1985]). The operations that we will usehave these properties.Categorial Grammars [Lambek1958, Steedman1987] are lexicalized ac-cording to our de�nition since each basic category has a lexical item associ-ated with it.As in Categorial Grammars, we say that the category of a word is theentire structure it selects. If a structure is associated with an anchor, we saythat the entire structure is the category structure of the anchor.We also use the term `lexicalized' when speaking about structures. Wesay that a structure is lexicalized if there is at least one overt lexical itemthat appears in it. If more than one lexical item appears, either one lexicalitem is designated as the anchor or a subset of the lexical items local to thestructure are designated as multi-component anchor. A grammar consistingof only lexicalized structures is of course lexicalized.

12 Joshi and SchabesFor example, the following structures are lexicalized according to ourde�nition:7
(�11) D↓

men

N

NP (�12) NP↓

eat

V NP ↓

VP

S

(�13) NP↓

think

V S*

VP

S

(�14)
NP↓

kick

V

the

D

bucket

N

NP

VP

S

(�15)
NP↓

take

V NP↓

into

P

account

N

NP

PP

VP

S

Some simple properties follow immediately from the de�nition of lexical-ized grammars.Proposition 3.1. Lexicalized grammars are �nitely ambiguous.A grammar is said to be �nitely ambiguous if there is no sentence of �nitelength that can be analyzed in an in�nite number of ways.The fact that lexicalized grammars are �nitely ambiguous can be seenby considering an arbitrary sentence of �nite length. The set of structuresanchored by the words in the input sentence consists of a set of structuresnecessary to analyze the sentence; while any other structure introduces lexicalitems not present in the input string. Since the set of selected structures is�nite, these structures can be combined in �nitely many ways (since each treeis associated with at least one lexical item and since structures can combine toproduce �nitely many structures). Therefore lexicalized grammars are �nitelyambiguous.7 The interpretation of the annotations on these structures is not relevant nowand it will be given later.

Tree-Adjoining Grammars 13Since a sentence of �nite length can only be �nitely ambiguous,the searchspace used for analysis is �nite. Therefore, the recognition problem for lexi-calized grammars is decidableProposition 3.2. It is decidable whether or not a string is accepted by alexicalized grammar.8Having stated the basic de�nition of lexicalized grammars and also somesimple properties, we now turn our attention to one of the major issues: cancontext-free grammars be lexicalized?Not every grammar is in a lexicalized form. Given a grammar G stated ina formalism, we will try �nd another grammar Glex (not necessarily statedin the same formalism) that generates the same language and also the sametree set as G and for which the lexicalized property holds. We refer to thisprocess as lexicalization of a grammar.De�nition 3.2 (Lexicalization). We say that a formalism F can be lexi-calized by another formalism F 0, if for any �nitely ambiguous grammar G inF there is a grammar G0 in F 0 such that G0 is a lexicalized grammar and suchthat G and G0 generate the same tree set (and a fortiori the same language).The next section discusses what it means to lexicalize a grammar. We willinvestigate the conditions under which such a `lexicalization' is possible forCFGs and tree-adjoining grammars (TAGs). We present a method to lexical-ize grammars such as CFGs, while keeping the rules in their full generality.We then show how a lexicalized grammar naturally follows from the extendeddomain of locality of TAGs.4. `Lexicalization' of CFGsOur de�nition of lexicalized grammars implies their being �nitely ambiguous.Therefore a necessary condition of lexicalization of a CFG is that it is �nitelyambiguous. As a consequence, recursive chain rules obtained by derivation(such as X �)X) or elementary (such as X ! X) are disallowed since theygenerate in�nitely ambiguous branches without introducing lexical items.In general, a CFG will not be in lexicalized form. For example a rule ofthe form, S ! NP V P or S ! S S, is not lexicalized since no lexical itemappears on the right hand side of the rule.A lexicalized CFG would be one for which each production rule has aterminal symbol on its right hand side. These constitute the structures as-sociated with the lexical anchors. The combining operation is the standardsubstitution operation.98 Assuming that one can compute the result of the combination operations.9 Variables are independently substituted by substitution. This standard (or �rstorder) substitution contrasts with more powerful versions of substitution whichallow to substitute multiple occurrences of the same variable by the same term.

14 Joshi and SchabesLexicalization of CFG that is achieved by transforming it into an equiv-alent Greibach Normal Form CFG, can be regarded as a weak lexicalization,because it does not give us the same set of trees as the original CFG. Ournotion of lexicalization can be regarded as strong lexicalization.10In the next sections, we propose to extend the domain of locality ofcontext-free grammar in order to make lexical item appear local to the pro-duction rules. The domain of locality of a CFG is extended by using a treerewriting system that uses only substitution. We will see that in general,CFGs cannot be lexicalized using substitution alone, even if the domain oflocality is extended to trees. Furthermore, in the cases where a CFG couldbe lexicalized by extending the domain of locality and using substitutionalone, we will show that, in general, there is not enough freedom to choosethe anchor of each structure. This is important because we want the choiceof the anchor for a given structure to be determined on purely linguisticgrounds. We will then show how the operation of adjunction enables us tofreely `lexicalize' CFGs.4.1 Substitution and Lexicalization of CFGsWe already know that we need to assume that the given CFG is �nitely am-biguous in order to be able to lexicalized it. We propose to extend the domainof locality of CFGs to make lexical items appear as part of the elementarystructures by using a grammar on trees that uses substitution as combin-ing operation. This tree-substitution grammar consists of a set of trees thatare not restricted to be of depth one (rules of context-free grammars can bethought as trees of depth one) combined with substitution.11A �nite set of elementary trees that can be combined with substitutionde�ne a tree-based system that we will call a tree substitution grammar.De�nition 4.1 (Tree-Substitution Grammar).A Tree-Substitution Grammar (TSG) consists of a quadruple (�;NT; I; S),where(i) � is a �nite set of terminal symbols;(ii) NT is a �nite set of non-terminal symbols12: � \NT = ;;(iii) S is a distinguished non-terminal symbol: S 2 NT ;(iv) I is a �nite set of �nite trees whose interior nodes are labeledby non-terminal symbols and whose frontier nodes are labeled byterminal or non- terminal symbols. All non-terminal symbols on10 For some recent results in strong lexicalization and CFGs, see[Schabes and Waters1995] and the discussion in Section 10.11 We assume here �rst order substitution meaning that all substitutions areindependent.12 We use lower-case letters for terminal symbols and upper-case letters for non-terminal symbols.

Tree-Adjoining Grammars 15the frontier of the trees in I are marked for substitution. The treesin I are called initial trees.We say that a tree is derived if it has been built from some initial tree inwhich initial or derived trees were substituted. A tree will be said of type Xif its root is labeled by X . A tree is considered completed if its frontier is tobe made only of nodes labeled by terminal symbols.Whenever the string of labels of the nodes on the frontier of an X-typeinitial tree tX is � 2 (� [NT)?, we will write: Fr(tX) = �.As for TAG, the derivation in TSG is stated in the form of a tree calledthe derivation tree (see Section 2.2).It is easy to see that the set of languages generated by this tree rewritingsystem is exactly the same set as context-free languages.We now come back to the problem of lexicalizing context-free grammars.One can try to lexicalize �nitely ambiguous CFGs by using tree-substitutiongrammars. However we will exhibit a counter example that shows that, inthe general case, �nitely ambiguous CFGs cannot be lexicalized with a treesystem that uses substitution as the only combining operation.Proposition 4.1. Finitely ambiguous context-free grammars cannot be lex-icalized with a tree-substitution grammar.Proof13 of Proposition 4.1We show this proposition by a contradiction. Suppose that �nitely ambigu-ous CFGs can be lexicalized with TSG. Then the following CFG can belexicalized:14Example 4.1 (counter example). S ! S SS ! aSuppose there were a lexicalized TSG G generating the same tree set asthe one generated by the above grammar. Any derivation in G must startfrom some initial tree. Take an arbitrary initial tree t in G. Since G is alexicalized version of the above context-free grammar, there is a node n onthe frontier of t labeled by a. Since substitution can only take place on thefrontier of a tree, the distance between n and the root node of t is constantin any derived tree from t. And this is the case for any initial tree t (of whichthere are only �nitely many). This implies that in any derived tree from Gthere is at least one branch of bounded length from the root node to a nodelabeled by a (that branch cannot further expand). However in the derivationtrees de�ned by the context-free grammar given above, a can occur arbitrarily13 The underlying idea behind this proof was suggested to us by Stuart Shieber.14 This example was pointed out to us by Fernando Pereira.

16 Joshi and Schabesfar away from the root node of the derivation. Contradiction.� The CFG given in Example 4.1 cannot be lexicalized with a TSG. Thedi�culty is due to the fact that TSGs do not permit the distance betweentwo nodes in the same initial tree to increase.For example, one might think that the following TSG is a lexicalized ver-sion of the above grammar:
(�16)

a

S (�17) S

S↓ S

a
(�18) S

S

a

S↓However, this lexicalized TSG does not generate all the trees generatedby the context-free grammar; for example the following tree (�19) cannot begenerated by the above TSG:
(�19)

a

S

a

S

S

a

S

a

S

S

S

We now turn to a less formal observation. Even if some CFGs can belexicalized by using TSG, the choice of the lexical items that emerge as theanchor may be too restrictive, for example, the choice may not be linguisti-cally motivated.Consider the following example:Example 4.2. S ! NP V PV P ! adv V PV P ! vNP ! nThe grammar can be lexicalized as follows:

Tree-Adjoining Grammars 17
(�20) S

NP↓ VP

v
(�21) S

NP↓ VP

adv VP↓(�22) VP

adv VP↓
(�23) VP

v
(�24) NP

nThis tree-substitution grammar generates exactly the same set of trees asin Example 4.2, however, in this lexicalization one is forced to choose adv (orn) as the anchor of a structure rooted by S (�21), and it cannot be avoided.This choice is not linguistically motivated. If one tried not to have an S-typeinitial tree anchored by n or by adv, recursion on the V P node would beinhibited.For example, the grammar written below:
(�20) S

NP↓ VP

v
(�22) VP

adv VP↓
(�23) VP

v
(�24) NP

ndoes not generate the tree �25:
(�25)

S

NP↓ VP

adv VP

vThis example shows that even when it is possible to lexicalize a CFG,substitution (TSG) alone does not allow us to freely choose the lexical an-chors. Substitution alone forces us to make choices of anchors that mightnot be linguistically (syntactically or semantically) justi�ed. From the proofof proposition 4.1 we conclude that a tree based system that can lexicalize

18 Joshi and Schabescontext-free grammars must permit the distance between two nodes in thesame tree to be increased during a derivation. In the next section, we suggestthe use of an additional operation when de�ning a tree-based system in whichone tries to lexicalize CFGs.4.2 Lexicalization of CFGs with TAGsAnother combining operation is needed to lexicalize �nitely ambiguous CFGs.As the previous examples suggest us, we need an operation that is capableof inserting a tree inside another one. We suggest using adjunction as anadditional combining operation. A tree-based system that uses substitutionand adjunction coincides with a tree-adjoining grammar (TAG).We �rst show that the CFGs in examples 4.1 and 4.2 for which TSG failedcan be lexicalized within TAGs.Example 4.3. Example 4.1 could not be lexicalized with TSG. It can be lex-icalized by using adjunction as follows: 15
(�16)

a

S (�4) S*

a

S

S

The auxiliary tree �4 can now be inserted by adjunction inside the derivedtrees.For example, the following derived trees can be derived by successiveadjunction of �4:
(�16)

a

S (�26)
a

S

a

S

S (�27) a

S

a

S

a

S

S

S

(�28)
a

S

a

S

S

a

S

a

S

S

S

15 a is taken as the lexical anchor of both the initial tree �16 and the auxiliarytree �4.

Tree-Adjoining Grammars 19Example 4.4. The CFG given in Example 4.2 can be lexicalized by usingadjunction and one can choose the anchor freely:16
(�20) NP↓

v

VP

S (�24)
n

NP (�5)
adv VP*

VP

The auxiliary tree �5 can be inserted in �20 at the V P node by adjunction.Using adjunction one is thus able to choose the appropriate lexical item asanchor. The following trees (�29 and �30) can be derived by substitution of�24 into �20 for the NP node and by adjunction of �5 on the V P node in�20:
(�29)

n

NP

v

VP

S (�30) n

NP

adv

v

VP

VP

S

We are now ready to prove the main result: any �nitely ambiguouscontext-free grammar can be lexicalized within tree-adjoining grammars; fur-thermore adjunction is the only operation needed. Substitution as an addi-tional operation enables one to lexicalize CFGs in a more compact way.Proposition 4.2. If G = (�;NT; P; S) is a �nitely ambiguous CFG whichdoes not generate the empty string, then there is a lexicalized tree-adjoininggrammar Glex = (�;NT; I; A; S) generating the same language and tree setas G. Furthermore Glex can be chosen to have no substitution nodes in anyelementary trees.We give a constructive proof of this proposition. Given an arbitrary CFG,G, we construct a lexicalized TAG, Glex, that generates the same languageand tree set as G. The construction is not optimal with respect to time orthe number of trees but it does satisfy the requirements.16 We chose v as the lexical anchor of �20 but, formally, we could have chosen ninstead.

20 Joshi and SchabesThe idea is to separate the recursive part of the grammar G from thenon-recursive part. The non-recursive part generates a �nite number of trees,and we will take those trees as initial TAG trees. Whenever there is in Ga recursion of the form B �)�B�, we will create an B-type auxiliary tree inwhich � and � are expanded in all possible ways by the non-recursive part ofthe grammar. Since the grammar is �nitely ambiguous and since � 62 L(G),we are guaranteed that �� derives some lexical item within the non-recursivepart of the grammar. The proof follows.Proof. Proposition 4.2Let G = (�;NT; P; S) be a �nitely ambiguous context-free grammars.t. � 62 L(G). We say that B 2 NT is a recursive symbol if and only if9�; � 2 (� [NT)? s.t. B �)�B�. We say that a production rule B ! � isrecursive whenever B is recursive.The set of production rules of G can be partitioned into two sets: theset of recursive production rules, say R � P , and the set of non-recursiveproduction rules, say NR � P ; R [NR = P and R \ NR = ;. In order todetermine whether a production is recursive, given G, we construct a directedgraph G whose nodes are labeled by non-terminal symbols and whose arcsare labeled by production rules. There is an arc labeled by p 2 P from a nodelabeled by B to a node labeled by C whenever p is of the form B ! �C�,where �; � 2 (�[NT)?. Then, a symbol B is recursive if the node labeled byB in G belongs to a cycle. A production is recursive if there is an arc labeledby the production which belongs to a cycle.Let L(NR) = fwjS �)w using only production rules in NRg. L(NR) is a�nite set. Since � 62 L(G), � 62 L(NR). Let I be the set of all derivationtrees de�ned by L(NR). I is a �nite set of trees; the trees in I have at leastone terminal symbol on the frontier since the empty string is not part of thelanguage. I will be the set of initial trees of the lexicalized TAG Glex.We then form a base of minimal cycles of G. Classical algorithms on graphsgives us methods to �nd a �nite set of so-called `base-cycles' such that anycycle is a combination of those cycles and such that they do not have anysub-cycle. Let fc1 � � � ckg be a base of cycles of G (each ci is a cycle of G).We initialize the set of auxiliary trees of Glex to the empty set, i.e. A := ;.We repeat the following procedure for all cycles ci in the base until no moretrees can be added to A.For all nodes ni in ci, let Bi be the label of ni,According to ci, Bi �)�iBi�i,If Bi is the label of a node in a tree in I [A thenfor all derivations �i �)wi 2 �?, �i �)zi 2 �?that use only non-recursive production rulesadd to A the auxiliary tree corresponding to all derivations:Bi �)�iBi�i �)wiBizi where the node labeled Bi on the frontier isthe foot node.

Tree-Adjoining Grammars 21In this procedure, we are guaranteed that the auxiliary trees have atleast one lexical item on the frontier, because �i�i must always derive someterminal symbol otherwise, the derivation Bi �)�iBi�i would derive a rule ofthe form Bi �)Bi and the grammar would be in�nitely ambiguous.It is clear that Glex generates exactly the same tree set as G. FurthermoreGlex is lexicalized.We just showed that adjunction is su�cient to lexicalize context-freegrammars. However, the use of substitution as an additional operation toadjunction enables one to lexicalize a grammar with a more compact TAG.5. Closure of TAGs under LexicalizationIn the previous section, we showed that context-free grammars can be lexi-calized within tree-adjoining grammars. We now ask ourselves if TAGs areclosed under lexicalization: given a �nitely ambiguous TAG, G, (� 62 L(G)),is there a lexicalized TAG, Glex, which generates the same language and thesame tree set as G? The answer is yes. We therefore establish that TAGs areclosed under lexicalization. The following proposition holds:Proposition 5.1 (TAGs are closed under lexicalization).If G is a �nitely ambiguous TAG that uses substitution and adjunction ascombining operation, s.t. � 62 L(G), then there exists a lexicalized TAG Glexwhich generates the same language and the same tree set as G.The proof of this proposition is similar to the proof of proposition 4.2and we only give a sketch of it. It consists of separating the recursive partof the grammar from the non-recursive part. The recursive part of the lan-guage is represented in Glex by auxiliary trees. Since G is �nitely ambiguous,those auxiliary trees will have at least one terminal symbol on the frontier.The non-recursive part of the grammar is encoded as initial trees. Since theempty string is not generated, those initial trees have at least one terminalsymbol on the frontier. In order to determine whether an elementary tree isrecursive, given G, we construct a directed graph G whose nodes are labeledby elementary trees and whose arcs are labeled by tree addresses. There is anarc labeled by ad from a node labeled by � to a node labeled by � whenever� can operate (by adjunction or substitution) at address ad in �. Then, anelementary tree � is recursive if the node labeled by � in G belongs to a cycle.The construction of the lexicalized TAG is then similar to the one proposedfor proposition 4.2.

22 Joshi and Schabes6. Summary of Lexicalization17The elementary objects manipulated by a tree-adjoining grammar are trees,i.e., structured objects and not strings. The properties of TAGs relate directlyto the strong generative capacity (structural description) which is more rel-evant to linguistic descriptions than the weak generative capacity (set ofstrings). The tree sets of TAGs are not recognizable sets but are equivalentto the tree sets of linear indexed languages. Hence, tree-adjoining grammarsgenerate some context-sensitive languages. However, tree-adjoining languagesare strictly contained in the class of indexed languages.The lexicalization of grammar formalisms is of linguistic and formal in-terest. We have taken the point of view that rules should not be separatedtotally from their lexical realization. In this \lexicalized" approach, each el-ementary structure is systematically associated with a lexical anchor. Thesestructures specify extended domains of locality (as compared to Context FreeGrammars) over which constraints can be stated.The process of lexicalization of context-free rules forces us to use oper-ations for combining structures that make the formalism fall in the classof mildly context sensitive languages. Substitution and adjunction give usthe freedom to lexicalize CFGs. Elementary structures of extended domainof locality, when they are combined with substitution and adjunction, yieldLexicalized TAGs. TAGs were so far introduced as an independent formalsystem. We have shown that they derive from the lexicalization process ofcontext-free grammars. We also have shown that TAGs are closed under lex-icalization.Until recently it was an open problem whether or not there is a subclassof TAGs such that lexicalization can be achieved and yet this class was notmore powerful than CFGs. This question has now been answered in the a�r-mative in [Schabes and Waters1995]. The tree insertion grammar they de�ne17 There are several important papers about TAGs describing their linguistic,computational and formal properties. Some of these are: Joshi[Joshi1987], Joshi, Vijay-Shanker and Weir [Joshi et al.1991], Vijay-Shanker[Vijay-Shanker1987], Weir [Weir1988], Schabes [Schabes1990, Schabes1991],Schabes and Joshi [Schabes and Joshi1988, Schabes and Joshi1989], Kroch[Kroch1987], Kroch and Joshi [Kroch and Joshi1985], Abeill�e, Bishop, Coteand Schabes [Abeill�e et al.1990], Abeill�e [Abeill�e1988], Schabes and Waters[Schabes and Waters1995], Rambow, Vijay-Shankerand Weir [Rambow et al.1995], Joshi and Srinivas [Joshi and Srinivas1994],Rambow [Rambow1994], Vijay-Shanker [Vijay-Shanker1992], Shieber andSchabes [Shieber and Schabes1990]. A reader interested in TAGs will �nd thesepapers very useful. Additional useful references will be found in the SpecialIssue of Computational Intelligence (November 1994) [CI1994] devoted to Tree-Adjoining Grammars. A wide coverage lexicalized TAG grammar for English(about 300,000 in
ected items and about 570 trees in 38 families) and a parser(XTAG System) has been described in [XTAG-Group1995], which includesevaluation of XTAG on corpora such as the Wall Street Journal, IBM ComputerManuals and ATIS Corpus.

Tree-Adjoining Grammars 23is such a class. This class however cannot capture context-sensitive phenom-ena needed for the description of natural languages (for example, crosseddependencies), although it appears to be adequate for English for practicalpurposes.7. Embedded Push-Down Automaton (EPDA)We will now describe an automaton related to TAGs and brie
y describe aprocessing application to crossed dependencies.An EPDA,M 0, is very similar to a PDA, except that the push-down storeis not necessarily just one stack but a sequence of stacks. The overall stackdiscipline is similar to a PDA, i.e., the stack head will be always at the topsymbol of the top stack, and if the stack head ever reaches the bottom of astack, then the stack head automatically moves to the top of the stack below(or to the left of) the current stack, if there is one (Vijay-Shanker, 1987;Joshi, 1987; Joshi, Vijay-Shanker, and Weir, 1988).Initially, M 0 starts with only one stack, but unlike a PDA, an EPDA maycreate new stacks above and below (right and left of) the current stack. Thebehavior ofM is speci�ed by a transition function, �0, which for a given inputsymbol, the state of the �nite control, and the stack symbol, speci�es the newstate, and whether the current stack is pushed or popped; it also speci�es newstacks to be created above and below the current stack. The number of stacksto be created above and below the current stack are speci�ed by the move.Also, in each one of the newly created stacks, some speci�ed �nite strings ofsymbols can be written (pushed). Thus:�0 (input symbol, current state, stack symbol) =(new state; sb1; sb2; : : : ; sbm; push/pop on current stack; st1; st2; : : : ; stn)where sb1; sb2; : : : ; sbm are the stacks introduced below the current stack,and st1; st2; : : : ; stn are the stacks introduced above the current stack18. Ineach one of the newly created stacks, speci�ed information may be pushed.For simplicity, we have not shown this information explicitly in the abovede�nition. As in the case of a PDA, an EPDA can be nondeterministic also.A string of symbols on the input tape is recognized (parsed, accepted) byM 0, if starting in the initial state, and with the input head on the leftmostsymbol of the string on the input tape, there is a sequence of moves asspeci�ed by �0 such that the input head moves past the rightmost symbol onthe input tape and the current stack is empty, and there are no more stacksbelow the current stack. Figures 7.1 and 7.2 illustrate moves of an EPDA,M 0.18 The transition function must also specify whether the input head moves onesymbol to the right or stays where it is.

24 Joshi and SchabesGiven the initial con�guration as shown in (1), let us assume that forthe given input symbol, the current state of the �nite control, and the stacksymbol, �0 speci�es the move shown in (2):

Z 0 Z 0 Z 0 Z 0 Z 0 Z 0

Z 0

Current

(2)

(1) Input tape

Current stack

Y Y Y W X X
2 1 0 0 1Fig. 7.1. Moves of an EPDAIn this move, two stacks have been created above (to the right of) thecurrent stack (which is shown by dotted lines), and three stacks have beencreated below (to the left of) the current stack (i.e., the current stack in(1), the old current stack). W has been pushed on the current stack, X0and X1, respectively, have been pushed on the two stacks introduced abovethe current stack, and Y0; Y1, and Y2, respectively, have been pushed on thestacks created below the (old) current stack. The stack head has moved tothe top of top stack, so now the topmost stack is the new current stack andthe stack head is on the topmost symbol in the new current stack. We willuse Z0 to denote the bottom of each stack.Let us assume that in the next move the con�guration is as shown in (3) inFig. 7.2. In this move, 1 stack has been created below the current stack (whichis shown by dotted lines) with V0 pushed on it, 2 stacks have been createdabove the (old) current stack with T0 and T1 pushed on them, respectively.V is pushed on the (old) current stack. The stack head has again moved tothe topmost symbol of top stack, which is now the new current stack.Thus in an EPDA in a given con�guration there is a sequence of stacks;however, the stack head is always at the top of the top stack at the end of a

Tree-Adjoining Grammars 25
Z0 Z0 Z0 Z0 Z0 Z0

Z0 Z0 Z0 Z0 Z0 Z0 Z0 Z0 Z0

(2)

(3)

Current

Y Y Y W X X

Y Y Y W X V V T T

2 1 0 0 1

2 1 1 0 0 0 1Fig. 7.2. Moves of an EPDAmove. Thus although, unlike a PDA, there is a sequence of stacks in a givencon�guration, the overall stack discipline is the same as in a PDA. PDAsare special cases of EPDAs, where in each move no new stacks are created,only a push/pop is carried out on the current stack. Note that in an EPDA,during each move, push/pop is carried out on the current stack and pusheson the newly created stacks. Since, in a given move, the information poppedfrom the current stack may be identical to the information pushed on a newlycreated stack, we will have the e�ect of moving information from one stackto another. In this case the information, although popped from the currentstack, is still in the EPDA. We will use the term POP (capitalized) to denotethe case when information is popped from the current stack and it is not`moved' to a newly created stack, i.e., the information is discharged from theEPDA and it is lost from the EPDA.7.1 Crossed DependenciesWe will now illustrate how EPDAs can process crossed dependencies as theyarise in certain languages, for example, Dutch. The analysis presented belownot only recognizes the strings with crossed dependencies but also shows howthe interpretation is done incrementally. The reader will also note that themachine shown in Fig. 7.3 can also recognize strings of the form fanbncn jn � 1g and fanbncndn j n � 1g, which correspond to a mixture of crossedand nested dependencies.Rather than de�ning the EPDA, Md, formally, (i.e. specifying the transi-tion function completely), we will describe simply the movesMd goes throughduring the processing of the input string (see Fig. 7.3. The symbols in the in-put string are indexed so as to bring out the dependencies explicitly and thusthe indexing is only for convenience. Also NPs are treated as single symbols.In the initial con�guration, the input head is on NP1 and the stack head is

26 Joshi and Schabes

Z 0

Z 0

Z 0

Z 0

Z 0

Z 0

Z 0

Z 0

Z 0

Z 0

Z 0

Z 0

Z 0

Z 0

Z 0
Z 0

NP
1

NP
1

NP
1

NP
1

NP
1

NP
1

NP
2

NP
2

NP
2

NP
2

NP
2

NP
2

NP
3

NP
3

NP
3

NP
3

NP
3

NP
3

(1)

(2)

(3)

(5)

(6)

(7)

(8)

(9)

(4)

POP

POP

POP

V (NP , S)

V (NP , S)

V (NP)

1 1

2 2

3 3

Jan

NP

Piet

NP

Marie

NP

zag

V
laten

V

zwemmen

V
1 2 3 1 2 3

(Input)

Fig. 7.3. Crossed Dependencies (Dutch)

Tree-Adjoining Grammars 27on top of the current stack. The �rst three moves of Md, i.e., moves 1, 2,and 3, push NP1; NP2; NP3 on the stack. At the end of the third move, thecurrent stack has NP1; NP2, and NP3 on it and the input head is on V1. Nonew stacks have been created in these moves. In move 4, NP3 is popped fromthe current stack and a new stack has been created below the current stackand NP3 is pushed on this stack, thus NP3 is still within the EPDA and notPOPPED out of the EPDA. At the end of move 4, the stack head is on topof the topmost stack, i.e., on NP2 and the input head stays at V1. Moves 5and 6 are similar to move 4. In move 5, NP2 is popped from the current stackand a new stack with NP2 on it is created below the current stack. Thus thestack containing NP2 appears between the stack containing NP3 and the cur-rent stack. The input head stays at V1. Similarly, in move 6, NP1 is poppedfrom the current stack and a new stack is created below the current stack,and NP1 is pushed on it. The input head stays at V1. The current stack isnow empty and since there are stacks below the current stack, the stack headmoves to the top of topmost stack below the empty current stack, i.e., it ison NP1. In move 7, NP1 is POPPED. In e�ect, we have matched V1 fromthe input to NP1 and the structure V1(NP1; S) is now POPPED and NP1 isno longer held by Md19. V1(NP1; S) denotes a structure encoding V1 and itsargument structure. Note that this structure has its predicate and one argu-ment �lled in, and it has a slot for an S type argument, which will be �lledin by the next package that is POPPED by Md. Thus we are following theprinciple of partial interpretation (PPI), as described in Section 1. Similarlyin move 8, V2 and NP2 are matched and NP2 is POPPED, i.e., the structureV2(NP2; S) is POPPED. This structure now �lls in the S argument of thestructure POPPED earlier, and it itself is ready to receive a structure to �llits S argument. In move 9, V3 and NP3 are matched and NP3 is POPPED,i.e., the structure V3(NP3) is POPPED, which �lls in the S argument of thestructure previously POPPED. During the moves 7, 8, and 9, the input headmoves one symbol to the right. Hence, at the end of move 9, the input head ispast the rightmost symbol on the input tape; also, the current stack is emptyand there are no stacks below the current stack. Hence, the input string hasbeen successfully recognized (parsed).8. Linguistic RelevanceIn this section we will discuss very brie
y the linguistic relevance of TAGs.The two formal properties discussed below are linguistically very crucialand they are mathematically also very interesting. Tree-adjoining grammars19 Although we are encoding a structure, only a bounded amount of informationis stored in the EPDA stacks. The symbols NP; S, etc. are all atomic symbols.In an EPDA behaving as a parser, these symbols can be regarded as pointersto relevant structures, already constructed, and outside the EPDA.

28 Joshi and Schabes(TAG) constitute a tree-generating formalism with some attractive propertiesfor characterizing the strong generative capacity of grammars, that is, theircapacity to characterize the structural descriptions associated with sentences.Among these properties the two most basic ones are as follows.1. Extended domain of locality (EDL): TAGs have a larger domain of lo-cality than context-free grammars (CFG) and CFG based grammars such ashead-driven phrase structure grammars (HPSG) and lexical-functional gram-mars (LFG). In the CFG in Fig. 8.1 the dependency between the verb likesand its two arguments, subject (NP) and object (NP), is speci�ed by meansof the �rst two rules of the grammar. It is not possible to specify this depen-dency in a single rule without giving up the VP (verb phrase) node in thestructure. That is, if we introduce the rule, S ! NP V NP, then we expressthis dependency in one rule, but then we cannot have VP in the grammar.Hence, if we regard each rule of a CFG as specifying the domain of locality,then the domain of locality for a CFG cannot locally (i.e., in one rule) encodethe dependency between a verb and its arguments, and still keep the VP nodein the grammar. TAGs will permit the localization of these dependencies, in-cluding the so-called long-distance dependencies.Syntactic Rules Lexical Rules1. S ! NP VP 4. NP ! Harry2. VP ! VP ADV 5. NP ! peanuts3. VP ! V NP 6. V ! likes7. ADV ! passionatelyFig. 8.1. A Context-Free Grammar (CFG)2. Factoring recursion from the domain of dependencies (FRD): The ele-mentary structures of TAGs are the domains over which dependencies suchas agreement, subcategorization, and �ller-gap, for example, are stated. Thelong-distance behavior of some of these dependencies follows from the op-eration of `adjoining', thus factoring recursion from the domain over whichdependencies are initially stated.All other properties of TAGs, mathematical, computational, and linguis-tic follow from EDL and FRD. TAGs belong to the so-called `mildly context-sensitive grammars' (MCSG). Roughly speaking, MCSG are only slightlymore powerful than CFGs and preserve all the properties of CFGs. Thisextra power is a corollary of EDL and FRD and appears to be adequatefor characterizing various phenomena which require more formal power thanCFGs. Parsing algorithms for CFGs have been extended to TAGs. Threeother formal systems, linear indexed grammars, head grammars and combi-

Tree-Adjoining Grammars 29natory categorial grammars, have been shown to be weakly equivalent, thatis in terms of the sets of strings these systems generate.The only operation in TAGs for composing trees is adjoining. Althoughadjoining can simulate substitution, by adding the operation of substitutionexplicitly, we obtain lexicalized TAGs, called LTAGs. LTAGs are formallyequivalent to TAGs. Hence, we will describe LTAGs only. Moreover, LTAGshave direct linguistic relevance. All recent work, linguistic and computational,has been done in the framework of LTAGs.As we have already discussed in Section 3., in a `lexicalized' grammar,each elementary structure is associated with a lexical item called its `anchor'.By `lexicalized' we mean that in each structure there is a lexical item that isrealized. In a lexicalized grammar the grammar consists of a lexicon whereeach lexical item is associated with a �nite set of elementary structures forwhich that item is the anchor (multiple anchors are possible). In addition tothese anchored structures we have a �nite set of operations which tell us howthese structures are composed. There are no rules as such in the grammar.The composition operations are universal in the sense that they are the samefor all grammars in the class of lexicalized grammars.In a CFG, if we take each rule in the grammar as an elementary structurethen it is easily seen that, in general, a CFG is not a lexicalized grammar.A CFG, G, which is not in a lexicalized form cannot be lexicalized by a lexi-calized grammar, G0, using substitution as the only operation for composingstructures, such that both G and G0 generate the same strings and the samestructural descriptions. If in addition to the operation of substitution we addthe operation of adjoining, then any CFG can be lexicalized and, more in-terestingly, the resulting system of grammar is exactly the lexicalized TAG(LTAG) system, which is described below. Thus LTAGs arise naturally in theprocess of lexicalizing CFGs.In the LTAG, G1, in Fig. 8.2, each word is associated with a structure(tree) (the word serves as an anchor for the tree) which encodes the depen-dencies between this word and its arguments (and therefore indirectly itsdependency on other words which are anchors for structures that will �ll upthe slots of the arguments).Thus, for likes, the associated tree encodes the arguments of likes (thatis, the two NP nodes in the tree for likes) and also provides slots in thestructure where they �t. The trees for Harry and peanuts can be substitutedrespectively in the subject and object slots of the tree for likes. The tree forpassionately can be inserted (adjoined) into the tree for likes at the VP node.Adjoinable trees, which have a root node and a foot node (marked with *)with the same label, are called auxiliary trees. The other elementary trees arecalled initial trees. Derivation in a TAG is quite di�erent from a derivationin a CFG. The tree in Fig. 8.3 is a derived tree in G1. It is not the derivationtree. The derivation tree (not shown here) will be a record of the history of

30 Joshi and Schabes
S

NP↓ VP

V

likes

NP↓

NP

Harry

NP

peanuts

VP

VP ADV

passionatelyOperations: (1) Substitution (for nodes marked with #). (2) Adjoining.Fig. 8.2. Elementary Trees for a TAG, G1.

Tree-Adjoining Grammars 31the various adjoinings and substitutions carried out to produce the tree inFig. 8.3.
S

NP

Harry

VP

VP

V

likes

NP

peanuts

ADV

passionately

Harry likes peanuts passionatelyFig. 8.3. A Derived Tree for the TGA, G1.Now consider the TAG, G2, in Fig. 8.4. For simplicity the trees in G2are shown with the NP substitutions already carried out. By adjoining thetree for tell at the interior S' node of the tree for likes in G2, we obtain thederived tree in Fig. 8.5 corresponding to whoi did John tell Sam that Bill likesei Note that in the tree for likes, the dependent elements whoi and the gap eiboth appear in the same elementary tree. In the derived tree in Fig. 8.5 thetwo dependent elements have moved apart and thus the dependencies havebecome long-distance.20 This example illustrates the property FRD.Using FRD, it can be shown that the principle of subjacency, a constrainton long-distance dependencies, which rules out sentences such as Whoi didyou wonder why she wrote to ei, is a corollary of the fact that there cannot bean elementary tree (for English) which has two preposed WH-phrases. Thus,the long-distance constraint is replaced by a local constraint on an elementarytree, a constraint that is needed in any case to de�ne the elementary treesthat are allowed and those that are not. Further linguistic results using EDL20 The speci�c linguistic details in Figures 8.4 and 8.5 may be ignored by a readernot familiar with the Government and Binding Theory. The factoring of recur-sion from the domain of dependencies illustrated in these �gures is independentof any particular grammatical theory.

32 Joshi and Schabes
NP [+wh]i

S’

S’

who COMP S

 that NP VP

Bill V NP

likes eS’

COMP S

INFL NP VP

did John V NP S’*

 tell Sam

φ

i

Fig. 8.4. Elementary Trees for a TAG, G2.

Tree-Adjoining Grammars 33
S’

who COMP S

INFL NP VPφ

S’

did John V NP

 tell Sam S’

 that NP VP

Bill V NP

likes e

COMP S

i

NP [+wh]i

Fig. 8.5. A Derived Tree for the TAG, G2.

34 Joshi and Schabesand FRD have been obtained in the treatment of linguistic phenomena suchas extraposition, asymmetries in long-distance extractions, the clause-�nalverb clusters in Dutch and German and idioms{their noncompositional andcompositional aspects, among others.9. Some variants of TAGs9.1 Feature Structure Based TAGsA feature structure consists of a set of attribute-value pairs, where a valuemay be atomic or another feature structure. The main operation for combin-ing feature structures is uni�cation. A variety of grammars such as GPSG,HPSG, and LFG are feature structure based grammars with CFG as theirskeletons. A feature structure based TAG is a TAG in which feature struc-tures are associated with the nodes of the elementary trees. The operations ofsubstitution and adjoining are then de�ned in terms of uni�cations of appro-priate feature structures, thus allowing the constraints on substitution andadjoining to be modeled by the success or failure of uni�cations. In contrastto feature structure based grammars with CFG skeletons, those with TAGskeletons need only �nite-valued features due to EDL and FRD, thus reducingthe role of uni�cation as compared to CFG based systems [Joshi et al.1991].9.2 Synchronous TAGsSynchronous TAGs are a variant of TAGs, which characterize correspon-dences between languages [Shieber and Schabes1990]. Using EDL and FRD,synchronous TAGs allow the application of TAGs beyond syntax to the taskof semantic interpretation, language generation and automatic translation.The task of interpretation consists of associating a syntactic analysis of asentence with some other structure{a logical form representation or an anal-ysis of a target language sentence. In a synchronous TAG both the originallanguage and its associated structure are de�ned by grammars stated in theTAG formalism. The two TAGs are synchronized with respect to the op-erations of substitution and adjoining, which are applied simultaneously torelated nodes in pairs of trees, one tree for each language. The left memberof a pair is an elementary tree from the TAG for one language, say English,and the right member of the pair is an elementary tree from the TAG foranother language, say the logical form language.9.3 Probabilistic LTAGsProbabilistic CFGs can be de�ned by associating a probability with each ruleof the grammar. Then the probability of a derivation can be easily computed

Tree-Adjoining Grammars 35because each rewriting in a CFG derivation is independent of context andhence, the probabilities associated with the di�erent rewriting rules can bemultiplied. However, the rule expansions are, in general, not context-free. Aprobabilistic CFG can distinguish two words or phrases w and w' only ifthe probabilities P (w=N) and P (w0=N) as given by the grammar di�er forsome nonterminal. That is, all the distinctions made by a probabilistic CFGmust be mediated by the nonterminals of the grammar. Representing distri-butional distinctions in nonterminals leads to an explosion in the number ofparameters required to model the language. These problems can be avoidedby adopting probabilistic TAGs, which provide a framework for integratingthe lexical sensitivity of stochastic approaches and the hierarchical structureof grammatical systems [Resnick1994, Schabes1992]. Since every tree is asso-ciated with a lexical anchor, words and their associated structures are tightlylinked. Thus the probabilities associated with the operations of substitutionand adjoining are sensitive to lexical context. This attention to lexical contextis not acquired at the expense of the independence assumption of probabili-ties because substitutions and adjoinings at di�erent nodes are independentof each other. Further EDL and FRD allow one to capture locally the co-occurrences between, the verb likes and the head nouns of the subject andthe object of likes even though they may be arbitrarily apart in a sentence.9.4 Using Description Trees in TAGA new perspective on TAGs is provided in [Vijay-Shanker1992] by providinga formalism for describing the trees in TAG. Roughly speaking an internalnode of a tree in TAG is viewed as a pair of nodes (say top and bottom)onedominating the other. The root and the foot node of an auxiliary tree in aTAG can be identi�ed with the top and bottom nodes respectively duringthe process of adjunction. Formal correspondence of this approach has beenstudied in [Vijay-Shanker1992] and the key ideas in this approach are alsoincorporated in D-Tree Grammars [Rambow et al.1995].9.5 Muti-component TAGs (MCTAG)In MCTAGs a variant of the adjoining operation is introduced under which,instead of a single auxiliary tree, a set of such trees is adjoined to agiven elementary tree. Under this de�nition, MCTAGs are equivalent toTAGs both in terms of the strings and structural descriptions they generate[Joshi1987, Joshi et al.1991]. Such MCTAGs have been used in the analysisof extraposition as well as certain kinds of word order variations, for examplescrambling [Rambow1994].

36 Joshi and Schabes10. Parsing Lexicalized Tree-Adjoining Grammars(LTAG)Although formal properties of tree-adjoining grammars have been investi-gated (Vijay-Shanker, 1987, Vijay-Shanker and Joshi, 1985)|for example,there is an O(n6)-time CKY-like algorithm for TAGs|little attention hasbeen put on the design of practical parser for TAG whose average complex-ity is superior to its worse case. In this Section we will present a predictivebottom-up parser for TAGs which is in the spirit of Earley's parser and wediscuss modi�cations to the parsing algorithms that make it possible to han-dle extensions of TAGs such as constraints on adjunction, substitution, andfeature structure representation for TAGs. We present this algorithm as it isboth theoretically and practically important.In 1985, Vijay-Shanker and Joshi introduced a CKY-like algorithm forTAGs which uses dynamic programming techniques. They established for the�rst time O(n6) time as an upper bound for parsing TAGs. The algorithmwas implemented, but in our opinion the result was more theoretical thanpractical for several reasons. The algorithm assumes that elementary treesare binary branching. Most importantly, although it runs in O(n6) worsttime, it also runs in O(n6) best time. As a consequence, the CKY algorithmis in practice very slow. The lack of any predictive information (i.e. top-down information) in this purely bottom-up parser disallows for a betterbehavior. We investigate the use of predictive information in the design ofparsers for TAGs whose practical performance is superior to the worst casecomplexity. In order to use predictive information, any algorithm should haveenough information to know which tokens are to be expected after a givenleft context. That type of information is in nature top-down and is thereforenot available for pure bottom-up parsers as the CKY-type parser for TAGs.Our main objective is to de�ne practical parsers for TAGs that are easy tomodify to handle extensions of TAGs such as uni�cation-based TAG.Since the average time complexity of Earley's parser for CFGs depends onthe grammar and in practice runs much better than its worst time complexity,we decided to try to adapt Earley's parser for CFGs to TAGs.Finding an Earley-type parser for TAGs that use predictive informationmay seem a di�cult task because it is not clear how to parse TAGs bottomup using top-down information while scanning the input string from left toright: since adjunction wraps a pair of strings around a string, parsing fromleft to right requires to remember more information is expected.10.1 Left to Right Parsing of TAGsOur main goal is to de�ne a practical parser for tree-adjoining grammars. Weare going to improve the performance of the parser by designing a bottom-up parser which uses top-down prediction. The predictive information will be

Tree-Adjoining Grammars 37used as the parser reads the input from left to right and will enable the parserto restrict the number of hypothesis it needs to assume. The most �lteringthat one might expect with some left to right predictive information is torule out all hypotheses that are not consistent with the pre�x of the inputstring that has been read so far. This notion is captured in the de�nition ofthe valid pre�x property (see Section 10.8). However, the parser will not useall predictive information in order to lower its worst case complexity.The algorithm relies on a tree traversal that enables one to scan the inputstring from left to right while recognizing adjunction.This traversal is exempli�ed by the notion of dotted tree which consists ofa node in a tree associated with a position relative to the node. The positionis characterized as a dot at one of the following four possible positions: aboveor below and either to the left or to the right of the node. The four positionsof the dot are annotated by la; lb; ra; rb (resp. left above, left below, rightabove, right below).The tree traversal consists of moving the dot in the tree in a mannerconsistent with the left to right scanning of the yield while still being able torecognize adjunctions on interior nodes of the tree. The tree traversal startswhen the dot is above and to the left of the root node and ends when the dotis above and to the right of the root node. At any time, there is only one dotin the dotted tree.
Start End

C

A

B D

E F G H IFig. 10.1. Example of a tree traversal.The tree traversal is illustrated in (see Fig. 10.1) and is precisely de�nedas follows:� if the dot is at position la of an internal node (i.e. not a leaf), we movethe dot down to position lb,� if the dot is at position lb of an internal node, we move to position la ofits leftmost child,� if the dot is at position la of a leaf, we move the dot to the right toposition ra of the leaf,� if the dot is at position rb of a node, we move the dot up to position raof the same node,� if the dot is at position ra of a node, there are two cases:

38 Joshi and Schabes� if the node has a right sibling, then we move the dot to the rightsibling at position la.� if the node does not have a right sibling, then we move the dot to itsparent at position rb.This traversal will enable us to scan the frontier of an elementary treefrom left to right while trying to recognize possible adjunctions between theabove and below positions of the dot.In e�ect, a dotted tree separates a tree into two parts (see Fig. 10.2): aleft context consisting of nodes that have been already traversed and a rightcontext that still needs to be traversed.
Right context
to be traversed.

Left context,
already traversed

AFig. 10.2. Left and right contexts of a dotted tree.It is important to note that the nodes on the path from the root nodeto the dotted node have been traversed only to their left sides. This fact issigni�cant since adjoining may add material on both sides of a node and istherefore more complex to recognize than concatenation. For those nodes,only the left parts of the auxiliary trees that were adjoining to them havebeen seen.Suppose that we are trying to recognize the input w1w2w3w4w5 (whereeach wi are strings of tokens) which was obtained by adjoining an auxiliarytree � into the tree � (see Fig. 10.3).
A

A

A

A

A

=

(α) (β) (γ)

w
1

w
3

w
5

w
2

w
4

w
1

w
2

w
4

w
5

w
3Fig. 10.3. An adjunction to be recognized.

Tree-Adjoining Grammars 39
A

A

A

A

A

(1)
(1') (1")

(2)

(2")(2')

(3)

(3")(3')

(4)
(4') (4")

(α) (β) (γ)

w
1

w
3

w
5

w
2

w
4

w
1

w
3

w
5

w
2

w
4Fig. 10.4. Moving the dot while recognizing an adjunction.Since the input is recognized from left to right, the algorithm must act asif it visits the resulting derived tree (rightmost tree in Fig. 10.3 and Fig. 10.4)from left to right. In particular, it should visit the nodes labeled by A in thefollowing order (see Fig. 10.4)100 � � � 200 � � � 300 � � � 400 � � �This derived tree however is a composite tree, result of adjoining thesecond tree in Fig. 10.3 and Fig. 10.4 into the �rst tree in in Fig. 10.3 andFig. 10.4. Since the algorithm never builds derived tree, it visits the A nodesin the following order (see Fig. 10.4)1 10 � � � 20 2 � � � 3 30 � � � 40 4 � � �In order to achieve this traversal across and within trees several conceptsand data structures must be de�ned.In the tree traversal de�ned above we consider equivalent (and thereforeindistinguishable) two successive dot positions (according to the tree traver-sal) that do not cross a node in the tree (see Fig. 10.5). For example thefollowing equivalences hold for the tree � pictured in Fig. 10.1:< �; 0; lb >�< �; 1; la >< �; 1; ra >�< �; 2; la >< �; 2; lb >�< �; 2 � 1; la >where < �; dot; pos > is the dotted tree in which the dot is at address dotand at position pos in the tree �.We assume that the input string is a1 � � �an and that the tree-adjoininggrammar is G = (�;NT; I; A; S): � is the �nite set of terminal symbols, NTis the set of non-terminal symbols (� \NT = ;), I is the set of initial trees,A is the set of auxiliary trees and S is the start non-terminal symbol.The algorithm collects items into a chart.21 An item s is de�ned as an8-tuple, s = [�; dot; pos; i; j; k; l; sat?] where:21 We could have grouped the items into item sets as in [Earley1968] but we chosenot to, allowing us to de�ne an agenda driven parser.

40 Joshi and Schabes
Start End

C

A

B D

E F G H I

C

A

B D

E F G H IFig. 10.5. Left, left to right tree traversal; right, equivalent dot positions.� � is an elementary tree, initial or auxiliary tree: � 2 I [A.� dot is an address in �. It is the address of the dot in the tree �.� pos 2 fla,lb, rb,rag. It is the position of the dot: to the left and above,or to the left and below, or to the right and below, or to the right andabove.� i; j; k; l are indices of positions in the input string ranging over f0; � � � ; ng[f�g, n being the length of the input string and � indicating that the in-dex is not bound. i and l are always bound, j and k can be simultaneouslyunbound. We will come back to these indices later.� sat? is a boolean; sat? 2 ftrue; nilg. The boolean sat? indicates whetheran adjunction has been recognized on the node at address dot in the tree�. The algorithm may set sat? to t only when pos = rb.The components �; dot; pos of an item de�ne a dotted tree. The additionalindices i; j; k; l record portions of the input string. In the following, we will re-fer only to one of the two equivalent dot positions for a dotted tree. For exam-ple, if the dot at address dot and at position pos in the tree � is equivalent tothe dot at address dot0 at position pos0 in �, then s = [�; dot; pos; i; j; k; l; sat?]and s0 = [�; dot0; pos0; i; j; k; l; sat?] refer to the same item. We will use to ourconvenience s or s0 to refer to this unique item.It is useful to think of TAG elementary trees as a set of productions onpairs of trees and addresses (i.e. nodes). For example, the tree in Fig. 10.1,let's call it �, can be written as:(�; 0)! (�; 1) (�; 2) (�; 3)(�; 2)! (�; 2 � 1) (�; 2 � 2) (�; 2 � 3)(�; 3)! (�; 3 � 1) (�; 3 � 2)Of course, the label of the node at address i in � is associated with eachpair (�; i).22 For example, consider the dotted tree < �; 2; ra > in whichthe dot is at address 2 and at position \right above" in the tree � (the treein Fig. 10.1). Note that the dotted trees < �; 2; ra > and < �; 3; la > areequivalent. The dotted tree < �; 2; ra > is can be written in the followingnotation:22 TAGs could be de�ned in terms of such productions. However adjunction mustbe de�ned within this production system. This is not our goal, since we wantto draw an analogy and not to de�ne a formal system.

Tree-Adjoining Grammars 41(�; 0)! (�; 1) (�; 2) � (�; 3)One can therefore put into correspondence an item de�ned on a dottedtree with an item de�ned on a dotted rule. An item s = [�; dot; pos; i; j; k; l; sat?]can also be written as the corresponding dotted rule associated with the in-dices i; j; k; l and the
ag sat?:�0 ! �1 � � � �y � �y+1 � � � �z [i; j; k; l; sat?]where �0 = (�; u) and �p = (�; u � p); p 2 [1; z]Here u is the address of the parent node (�0) of the dotted node whenpos 2 fla; rag, and where u = dot when pos 2 flb; rbg.The algorithm collects items into a set C called a chart. The algorithmmaintains a property that is satis�ed for all items in the chart C. This propertyis pictured in Fig. 10.6 in terms of dotted trees. We informally describe itequivalently in terms of dotted rules. If an item of the form:�0 ! �1 � � � �y � �y+1 � � � �z [i; j; k; l; sat?] with �0 = (�; u) and �p = (�; u � p)is in the chart then the elementary tree � derives a tree such that:(i) �1 � � � �y �) ai � � � al(ii) (�; f) �) aj+1 � � �akwhere f is the address of the foot node of �. (ii) only applies when thefoot node of � (if there is one) is subsumed by one of the nodes �1 � � � �y.When no foot node is found below �1 � � � �y, the indices j and k are notbound.When pos = rb, the dot is at the end the dotted rule and if sat? = tthe boundaries ai � � � al include the string introduced by an adjunction on thedotted tree.The
ag sat? is needed since standard TAG derivations [Vijay-Shanker1987]disallow more than one adjunction on the same node. sat? = t indicates thatan adjunction was recognized on the dotted node (node at address dot in �).No more adjunction must be attempted on this node. sat? = nil indicatesthat an auxiliary tree can still be adjoined on the dotted node.Initially, the chart C consists of all items of the form [�; 0; la; 0;�;�; 0; nil],with � an initial tree whose root node is labeled with S. These initial itemscorrespond to dotted initial trees with the dot above and to the left of theroot node (at address 0).Depending on the existing items in the chart C, new items are added tothe chart by four operations until no more items can be added to the chart.The operations are: Predict, Complete, Adjoin and Scan. If, in the �nalchart, there is an item corresponding to an initial tree completely recognized,i.e. with the dot to the right and above the root node which spans the inputfrom position 0 to n (i.e. an item of the form [�; 0; ra; 0;�;�; n; nil]), theinput is recognized.

42 Joshi and Schabes
a

i
a

j
a

l

aj+1
a

k

a
k+1

X z

0X

...X 1
...

... ...

X

Xy

...

...

...
X

(α)

Fig. 10.6. Invariant.The Scan (see Fig. 10.7) operation is a bottom-up operation that scansthe input string. It applies when the dot is to the left and above a terminalsymbol.This operation consists of two cases. In the �rst case, the dotted node isto the left and above a node labeled by a non empty terminal which matchesthe next token to be expected. In this case, the dot is moved to the rightand the span from i to l is increased by one (from i to l + 1). The indicesregarding the foot node (j and k) remain unchanged. In the second case, thedot is to the left and above an empty symbol. In this case, the dot is movedto the right and no token is consumed.The Predict (see Fig. 10.7) operation is a top-down operation. It predictsnew items accordingly to the left context that has already been seen.It consists of three steps which may not always be applicable simultane-ously. Step 1 applies when the dot is to the left and above a non-terminalsymbol. All auxiliary trees adjoinable at the dotted node are predicted. Step2 also applies when the dot is to the left and above a non-terminal symbol. Ifthere is no obligatory adjoining constraint on the dotted node, the algorithmtries to recognize the tree without any adjunction by moving the dot belowthe dotted node. Step 3 applies when the dot is to the left and below the footnode of an auxiliary tree. The algorithm then considers all nodes on whichthe auxiliary tree could have been adjoined and tries to recognize the subtreebelow each one. It is in Step 3 of the Predict operation that the valid pre�xproperty is violated since not all predicted nodes are compatible with theleft context seen so far. The ones that are not compatible will be pruned ina later point in the algorithm (by the Complete operation). Ruling themout during this step requires more complex data-structures and increases thecomplexity of the algorithm [Schabes and Joshi1988].The Complete (see Fig. 10.7) operation is a bottom-up operation thatcombines two items to form another item that spans a bigger portion of theinput.

Tree-Adjoining Grammars 43

e

a a

a = a l+1

e

[i,j,k,l,nil] [i,j,k,l+1,nil]

[i,j,k,l,nil] [i,j,k,l,nil]

[i,j,k,l,nil] [l,-,-,l,nil]

A

A
A

[i,j,k,l,nil]

A A

[l,-,-,l,nil]

A

A

[l,-,-,l,nil] [l,-,-,l,nil]

A

(1)

(2)

(3)Scan Predict
A

A

[i,-,-,i,nil]

A

[i,j,k,l,nil]

A

A

[i,i,l,l,nil]

+

A

[i,-,-,l,sat?]

A

[h,j,k,l,nil]

A

[h,j,k,i,nil]

+

A

[i,j,k,l,sat?]

+

B

B

A

[h,-,-,i,nil]

B

B

A

[h,j,k,l,nil]

B

B

(2.1)

(2.2)

(1)

Complete
A

A

[i,j,k,l,nil]

A

[j,p,q,k,nil] [i,p,q,l,true]

A
+ AdjoinFig. 10.7. The four operations of the parser.

44 Joshi and SchabesIt consists of two possibly non-exclusive steps that apply when the dot isat position rb (right below). Step 1 considers that the next token comes fromthe part to the right of the foot node of an auxiliary tree adjoined on thedotted node. Step 2 tries to further recognize the same tree and concatenateboundaries of two items within the same tree. Step 2 must be di�erentiatedinto two cases, one when the dotted node subsumes the foot node (in whichcase j and k are set when the dot is at position right below), the other whenit does not subsume the foot node (in which case j and k are not set whenthe dot is at position right below).The Adjoin operation (see Fig. 10.7) is a bottom-up operation that com-bines two items by adjunction to form an item that spans a bigger portion ofthe input. It consists of a single step. The item produced has its
ag (sat?)set to true since an adjunction was recognized on the dotted node. The set-ting of this
ag prevents that the same operation applies a second time onthe same item and therefore allows only one adjunction on a given node.This
ag would be ignored for cases of alternative de�nition of tag deriva-tions which allow for repeated adjunctions on a same node as suggested in[Schabes and Shieber1994].10.2 The AlgorithmThe algorithm is a bottom-up parser that uses top-down information. It isa general recognizer for TAGs with adjunction constraints. Unlike the CKY-type algorithm for TAGs, it requires no condition on the grammar: the ele-mentary trees (initial or auxiliary) need not to be binary and they may havethe empty string as frontier. The algorithm given below is o�-line: it needsto know the length n of the input string before starting any computation.However it can very easily be modi�ed to an on-line algorithm by the use ofan end-marker in the input string.The pseudo code for the recognizer is shown in Fig. 10.8. Each operationis stated as inference rules using the following notation:item1 item2add item3 conditionsIt speci�es that if the items above the horizontal line are present in thechart, then item below the horizontal line must be added to the chart only ifthe conditions of application are met.In addition, we use the following notations. A tree � will be considered tobe a function from tree addresses to symbols of the grammar (terminal andnon-terminal symbols): if x is a valid address in �, then �(x) is the label ofthe node at address x in the tree �.Addresses of nodes in a tree are encoded by Gorn-positions as de�nedby the following inductive de�nition: 0 is the address of the root node,k (k natural number) is the address of the kth child of the root node,

Tree-Adjoining Grammars 45x � y (x is an address; y a natural number) is the address of the yth child ofthe node at address x.Given a tree � and an address add in �, we de�ne Adj(�; add) to bethe set of auxiliary trees that can be adjoined at the node at address addin �; OA(�; dot) is de�ned as a boolean, true when the node at addressdot in the tree � has an obligatory adjoining constraint, false otherwise;Foot(�) is de�ned as the address of the foot node of the tree � if thereis one, otherwise Foot(�) is unde�ned. For TAGs with no constraints onadjunction, Adj(�; add) is the set of elementary auxiliary trees whose rootnode is labeled by �(add).10.3 An ExampleWe give an example that illustrates how the recognizer works. The gram-mar used for the example (see Fig. 10.9) generates the language L =fanbnecndnjn � 0g. It consists of an initial tree � and an auxiliary tree�. There is a null adjoining constraint on the root node and on the foot nodeof �.The input string given to the recognizer is: aabbeccdd. The correspondingchart is shown in Fig. 10.10. The input is recognized since[�; 0; right; above; 0;�;�; 9; nil] is in the chart C. For purpose of explana-tion, we have preceded each item with a number that uniquely identi�es theitem and the operation(s) that caused it to be placed into the chart are writ-ten to its right. We used the following abbreviations: init for the initializationstep, pred(k) for the Predict operation applied to the item numbered by k,sc(k) for the Scan operation applied to the item numbered by k, compl(k+l)for the Complete operation applied to the items numbered by k and l andadj(k+l) for the Adjoin operation applied to the items numbered by k andl. With this convention, one can trace step by step the construction of thechart. For example,31. [�; dot : 2; rb; 1; 4; 5; 8; t] adj(30+24)stands for the item [�; dot : 2; rb; 1; 4; 5; 8; t] uniquely identi�ed by the num-ber 31 which was placed into the chart by applying the Adjoin operation onthe items identi�ed by the numbers 30 and 24.10.4 ImplementationThe algorithm described previously can be implemented to follow an arbitrarysearch space strategy by using a priority function that ranks the items to beprocessed. The ranking function can also be de�ned to obtain a left to rightbehavior as for context-free grammars [Earley1968].In order to bound the worst case complexity as stated in the next section,arrays must be used to implement e�ciently the di�erent operations. Due tothe lack of space we do not address these issues.

46 Joshi and SchabesLet G = (�;NT; I;A; S) be a TAG.Let a1 � � � an be the input string.program recognizerbeginC = f[�; 0; la; 0;�;�; 0; nil]j � 2 I; �(0) = S gApply the following operations on each item in the chart Cuntil no more items can be added to the chart C:(1) [�; dot; la; i; j; k; l; nil][�; dot; ra; i; j; k; l+ 1; nil] �(dot) 2 �;�(dot) = al+1(2) [�; dot; la; i; j; k; l; nil][�; dot; ra; i; j; k; l; nil] �(dot) 2 �;�(dot) = �(3) [�; dot; la; i; j; k; l; nil][�; 0; la; l;�;�; l; nil] �(dot) 2 NT; � 2 Adj(�; dot)(4) [�; dot; la; i; j; k; l; nil][�; dot; lb; i; j; k; l; nil] �(dot) 2 NT;OA(�; dot) = false(5) [�; dot; lb; l;�;�; l; nil][�; dot0; lb; l;�;�; l; nil] dot = Foot(�); � 2 Adj(�; dot0)(6) [�; dot; rb; i; j; k; l; nil] [�; dot0; lb; i;�;�; i; nil][�; dot0; rb; i; i; l; l; nil] dot0 = Foot(�),� 2 Adj(�; dot)(7) [�; dot; rb; i; j; k; l; true] [�; dot; la; h; j0; k0; i; sat?][�; dot; ra; h; j [j0; k [k0; l; sat?] �(dot) 2 NT(8) [�; 0; ra; i; j; k; l; nil] [�; dot; rb; j; p; q; k; nil][�; dot; rb; i; p; q; l; true] � 2 Adj(�; dot)If there is an item of the form [�; 0; ra; 0;�;�; n; nil] in C with � 2 Iand �(0) = S then return acceptance, otherwise return rejection.end. Fig. 10.8. Pseudo-code for the recognizer
(�)

e

S (�) a

c SN A d

S b

SN A

Fig. 10.9. TAG generating L = fanbnecndnjn � 0g

Tree-Adjoining Grammars 47
Input read Items in the chart1. [�; dot : 0; la; 0;�;�; 0; nil] init2. [�; dot : 0; la; 0;�;�; 0; nil] pred(1)3. [�; dot : 1; la; 0;�;�; 0; nil] pred(1)4. [�; dot : 1; la; 0;�;�; 0; nil] pred(2)a 5. [�; dot : 2; la; 0;�;�; 1; nil] sc(4)a 6. [�; dot : 0; la; 1;�;�; 1; nil] pred(5)a 7. [�; dot : 2:1; la; 1;�;�; 1; nil] pred(5)a 8. [�; dot : 1; la; 1;�;�; 1; nil] pred(6)aa 9. [�; dot : 2; la; 1;�;�; 2; nil] sc(8)aa 10. [�; dot : 0; la; 2;�;�; 2; nil] pred(9)aa 11. [�; dot : 2:1; la; 2;�;�; 2; nil] pred(9)aa 12. [�; dot : 1; la; 2;�;�; 2; nil] pred(10)aab 13. [�; dot : 2:2; la; 2;�;�; 3; nil] sc(11)aab 14. [�; dot : 2:2; lb; 3;�;�; 3; nil] pred(13)aab 15. [�; dot : 2:1; la; 3;�;�; 3; nil] pred(14)aab 16. [�; dot : 1; la; 3;�;�; 3; nil] pred(14)aabb 17. [�; dot : 2:2; la; 3;�;�; 4; nil] sc(15)aabb 18. [�; dot : 2:2; lb; 4;�;�; 4; nil] pred(17)aabb 19. [�; dot : 2:1; la; 4;�;�; 4; nil] pred(18)aabb 20. [�; dot : 1; la; 4;�;�; 4; nil] pred(18)aabbe 21. [�; dot : 0; rb; 4;�;�; 5; nil] sc(20)aabbe 22. [�; dot : 2:2; rb; 4; 4; 5; 5; nil] comp(21+18)aabbe 23. [�; dot : 2:3; la; 3; 4; 5; 5; nil] compl(22+15)aabbec 24. [�; dot : 2; rb; 3; 4; 5; 6; nil] sc(23)aabbec 25. [�; dot : 2:2; rb; 3; 3; 6; 6; nil] compl(24+14)aabbec 26. [�; dot : 2:3; la; 2; 3; 6; 6; nil] compl(25+13)aabbecc 27. [�; dot : 2; rb; 2; 3; 6; 7; nil] sc(26)aabbecc 28. [�; dot : 3; la; 1; 3; 6; 7; nil] compl(26+9)aabbeccd 29. [�; dot : 0; rb; 1; 3; 6; 8; nil] sc(28)aabbeccd 30. [�; dot : 0; ra; 1; 3; 6; 8; nil] compl(28+6)aabbeccd 31. [�; dot : 2; rb; 1; 4; 5; 8; t] adj(30+24)aabbeccd 32. [�; dot : 3; la; 0; 4; 5; 8; nil] compl(31+5)aabbeccdd 33. [�; dot : 0; rb; 0; 4; 5; 9; nil] sc(32)aabbeccdd 34. [�; dot : 0; ra; 0; 4; 5; 9; nil] compl(33+2)aabbeccdd 35. [�; dot : 0; rb; 0;�;�; 9; t] adj(34+21)aabbeccdd 36. [�; dot : 0; ra; 0;�;�; 9; nil] compl(35+1)Fig. 10.10. Items constituting the chart for the input:0 a 1 a 2 b 3 b 4 e 5 c 6 c 7 d 8 d 9

48 Joshi and Schabes10.5 ComplexityThe algorithm is a general parser for TAGs with constraints on adjunctionthat takes in worst case O(jAjjA[I jNn6) time and O(jA[I jNn4) space, n be-ing the length of the input string, jAj the number of auxiliary trees, jA[I j thenumber of elementary trees in the grammar and N the maximum number ofnodes in an elementary tree. The worst case complexity is similar to the CKY-type parser for TAG [Vijay-Shanker1987, Vijay-Shanker and Joshi1985].23The worst case complexity can be reached by the Adjoin operation. Anintuition of the validity of this result can be obtained by observing that theAdjoin operation[�; 0; ra; i; j; k; l; nil] [�; dot; rb; j;m; n; k; nil][�; dot; rb; i;m; n; l; true] � 2 Adj(�; dot)may be called at most jAjjA [I jNn6 time since there are at most n6instances of the indices (i; j; k; l;m; n) and at most jAj � jA [I jN (�; �; dot)pairs of dotted trees to combine. When it is used with unambiguous tree-adjoining grammars, the algorithm takes at most O(jAjjA[I jNn4)-time andlinear time on a large class of grammars.It is possible to achieve O(jA [I jNn6)-time worst complexity, howeverthe implementation for such bounds requires complex data structures.10.6 The ParserThe algorithm we described so far is a recognizer. However, if we includepointers from an item to a set of items of set of item pairs (pairs of itemsfor the Complete and the Adjoin operation, or item for the Scan and thePredict operations) which caused it to be placed in the chart (in a similarmanner to that shown in Fig. 10.10), the recognizer can be modi�ed to recordall parse trees of the input string.Instead of storing items of the form [�; dot; pos; i; j; k; l; sat?] in the chart,the parser stores items with a set of pairs or singletons of other items thatcaused them to exist. The fact that the same item may be added more thanonce re
ects the fact that the item can be obtained in more than one way.This corresponds to local or global ambiguity. Therefore, when an item isadded, if the item is already in the chart, the new items that caused thesame item to exist are added to the set of causes.2423 Recently Satta [Satta1994] was able to transfer the complexity bound of TAGparsing to the one of matrix multiplication. As a consequence, it is shown thatif one were to improve the bound of O(n6)-time for the TAG parsing problem,one would have implicitly improved upon the bound of O(n3)-time for matrixmultiplication. Although this is possible, it can require very elaborate (and nonpractical) techniques.24 These operations can be done in constant time since if an item is added morethan once, each of the pairs (or singletons) of items that caused it to be placeson the chart are distinct.

Tree-Adjoining Grammars 49The worst case time complexity for the parser is the same as for the recog-nizer (O(jAjjA [I jNn6)-time) since keeping track of the source of each itemdoes not introduce any overhead. However, the worst case space complexityincreases to O(jAjjA [I jNn6)-space since each cause of existence must berecorded. Due to the nature of each operation, the additional space requiredto record the derivation is not worse than O(jAjjA[I jNn6). For example, inthe case of the Adjoin operation,[�; 0; ra; i; j; k; l; nil] [�; dot; rb; j;m; n; k; nil][�; dot; rb; i;m; n; l; true] � 2 Adj(�; dot)for a given item [�; dot; rb; i;m; n; l; true] there can be at most O(jAjjA [I j) pairs of the form ([�; 0; ra; i; j; k; l; nil]; [�; dot; rb; j;m; n; k; nil]) whichneed to be stored.Once the recognizer has succeeded, it has encoded all possible parses inthe form of a graph (encoded with those pairs of causes) which takes in theworst case O(jGj2Nn6)-space. All the derivations can then be enumeratedby tracing back the causes of each item. Of course, the enumeration of allthe derivations may take exponential time when the string is exponentiallyambiguous or may not terminate when the input is in�nitely ambiguous.10.7 Parsing SubstitutionTAGs use adjunction as their basic composition operation. As a consequencetree-adjoining languages (TALs) are mildly context-sensitive and properlycontain context-free languages.25Substitution of non-terminal symbols is the basic operation used in CFG.Substitution can be very easily extended to trees and has been found to be auseful additional operation for obtaining appropriate structural descriptions[Abeill�e1988].Substitution of trees is de�ned to take place on speci�ed nodes on thefrontiers of elementary trees. When a node is marked to be substituted, noadjunction can take place on that node. Furthermore, substitution is alwaysmandatory. Only trees derived from initial trees rooted by a node of the samelabel can be substituted on a substitution node. The resulting tree is obtainedby replacing the node by the tree derived from the initial tree.The parser can be extended very easily to handle substitution. The algo-rithm must be modi�ed as follows.First, the ADJ function must disallow any adjunction to be taken placeon nodes marked for substitution.25 It is also possible to encode a context-free grammar with auxiliary trees us-ing adjunction only. However, although the languages correspond, the possibleencoding does not re
ect directly the original context free grammar since thisencoding uses adjunction.

50 Joshi and SchabesThen, more operations must be added to the parser: Predict Substi-tution and Complete Substitution. These two operations are explainedin details below.Given a tree � and an address add in �, assuming that the node at addressadd in � is marked for substitution, we de�ne Substit(�; add) to be the set ofinitial trees that can be substituted at the node at address add in �. For TAGswith no constraints on substitution, Substit(�; add) is the set of elementaryinitial trees whose root node is labeled by �(add).Predict Substitution operation predicts all possible initial trees thatcan be substituted at a node marked for substitution.[�; dot; la; i; j; k; l; sat?][�0; 0; la; l;�;�; l; nil] �0 2 Substit(�; dot) (10.1)Complete Substitution is a bottom-up operation that combines twoitems by substitution.[�; nil; ra; l;�;�;m; nil][�0; dot0; la; i; j; k; l; sat?][�0; dot0; ra; i; j; k;m; sat?] �0 2 Substit(�; dot)(10.2)The introduction of Predict Substitution and of Complete Sub-stitution does not increase the worst case complexity of the overall TAGparser.10.8 The Valid Pre�x Property and Parsing of Tree-AdjoiningGrammarThe valid pre�x property, the capability of a left to right parser to detecterrors \as soon as possible", is often unobserved in parsing CFGs. Earley'sparser for CFGs [Earley1968] maintains the valid pre�x property and obtainsa worst case complexity (O(n3)-time) as good as parsers that do not maintainit, such as the CKY parser [Younger1967, Kasami1965]. This follows from thepath set complexity, as we will see.A parser that satis�es the valid pre�x property will only consider hypothe-ses consistent with the input seen so far. More precisely, parsers satisfyingthe valid pre�x property guarantee that, as they read the input from left toright, the substrings read so far are valid pre�xes of the language de�nedby the grammar: if the parser has read the tokens a1 � � � ak from the in-put a1 � � � akak+1 � � �an, then it is guaranteed that there is a string of tokensb1 � � � bm (bi may not be part of the input) with which the string a1 � � �ak canbe su�xed to form a string of the language; i.e. a1 � � � akb1 � � � bm is a validstring of the language.2626 The valid pre�x property is independent from the on-line property. An on-lineleft to right parser is able to output for each new token read whether the string

Tree-Adjoining Grammars 51The valid pre�x property for an algorithm implies that it must have sometop-down component that enables it to compute which tokens are to be ex-pected as the input string is read. Pure bottom-up parsers as the CKY-typeparsers27 cannot have the valid pre�x property since they do not use anytop-down information.Maintaining the VPP requires a parser to recognize the possible parsetrees in a pre�x order. The pre�x traversal of the output tree consists of twocomponents: a top-down component that expands a constituent to go to thenext level down, and a bottom-up component that reduces a constituent togo to the next level up. When the VPP is maintained, these two componentsmust be constrained together.Context-free productions can be expanded independently of their context,in particular, independently of the productions that subsume them. The pathset (language de�ned as the set of paths from root to frontier of all derivedtrees) of CFGs is therefore a regular set.28 It follows that no additional com-plexity is required to correctly constrain the top-down and bottom-up behav-ior required by the pre�x traversal of the parse tree: the expansion and thereduction of a constituent.Contrary to CFGs, maintaining the valid pre�x property for TAGs seemscostly. Two observations corroborate this statement and an explanation canbe found in the path set complexity of TAG.Our �rst observation was that the worst case complexity of parsers forTAG that maintain the VPP is higher than the parsers that do not maintainVPP. Vijay-Shanker and Joshi [Vijay-Shanker and Joshi1985]29 proposed aCKY-type parser for TAG that achieves O(n6)-time worst case complexity.As the original CKY parser for CFGs, this parser does not maintain theVPP. The Earley-type parser developed for TAGs [Schabes and Joshi1988]is bottom-up and uses top-down prediction. It maintains the VPP at acost to its worst case complexity | O(n9)-time in the worst case. Otherparsers for TAGs have been proposed [Lang1988, Lavelli and Satta1991,Vijay-Shanker and Weir1990]. Although they achieve O(n6) worst case timecomplexity, none of these algorithms satis�es the VPP. To our knowledge,Schabes and Joshi's parser (1988) is the only known polynomial-time parserfor TAG which satis�es the valid pre�x property. It is still an open problemwhether a better worst case complexity can be obtained for parsing TAGswhile maintaining the valid pre�x property.seen so far is a valid string of the language. The valid pre�x property is alsosometimes referred as the error detecting property because it implies that errorscan be detected as soon as possible. However, the lack of VPP does not implythat errors are undetected.27 We exclude any use of top-down information, even precompiled before run-time.28 This result follows from Thatcher [Thatcher1971], who de�nes frontier to root�nite state tree automata.29 The parser is also reported in Vijay-Shanker [Vijay-Shanker1987].

52 Joshi and SchabesThe second observation is in the context of deterministic left to rightparsing of TAGs [Schabes and Vijay-Shanker1990] where it was for the �rsttime explicitly noticed that VPP is problematic to obtain. The authors werenot able to de�ne a bottom-up deterministic machine that satis�es the validpre�x property and which recognizes exactly tree-adjoining languages whenused non-deterministically. Instead, they used a deterministic machine thatdoes not satisfy the VPP, the bottom-up embedded push-down automaton.However, that machine recognizes exactly tree-adjoining languages when usednon-deterministically.The explanation for the di�culty of maintaining the VPP can be seenin in the complexity of the path set of TAGs. Tree-adjoining grammars gen-erate some languages that are context-sensitive. The path set of a TAG isa context-free language [Weir1988] and is therefore more powerful than thepath set of a CFG. Therefore in TAGs, the expansion of a branch may dependon the parent super-tree, i.e. what is above this branch. Going bottom-up,these dependencies can be captured by a stack mechanism since trees areembedded by adjunction. However, if one would like to maintain the validpre�x property, which requires traversing the output tree in a pre�x fashion,the dependencies are more complex than a context-free language and thecomplexity of the parsing algorithm increases.For example, consider the trees �; � and
 in Fig. 10.11. When
 is ad-joined into � at the B node, and the result is adjoined into � at the A node,the resulting tree yields the string ux'zx"vy"ty'w (see Fig. 10.11).If this TAG derived tree is recognized purely bottom-up from leaf toroot (and therefore without maintaining the VPP), a stack based mechanismsu�ces for keeping track of the trees to which to algorithm needs to comeback. This is illustrated by the fact that the tree domains are embedded (seebottom left tree in Fig. 10.11) when they are read from leaf to root in thederived tree.However, if this derivation is recognized from left to right while maintain-ing the valid pre�x property, the dependencies are more complex and can nolonger be captured by a stack (see bottom right tree in Fig. 10.11).The context-free complexity of the path set of TAGs makes the validpre�x property harder to maintain. We suspect that the same di�culty arisesfor context-sensitive formalism which use operations such as adjoining orwrapping [Joshi et al.1991].In conclusion, Earley's parser for context-free grammars has been ex-tended to tree-adjoining grammars. The notion of dotted rule was extendedto tree and a left to right tree traversal was designed to recognize adjunctionwhile reading the input from left to right. The parser for tree-adjoining gram-mars achieves O(jAjjA [I jNn6) time in the worst case. However, because ofpredictive information based on the pre�xes of the input, the parser behavesin practice much faster than its worst case.

Tree-Adjoining Grammars 53

v

A

B

B

A

u w

y'x'

x" y"

z t

A

y'

B

x' x" y"

(β)

A

B

B
z t

(γ)A

u v

(α)

w

v

A

B

B

A

u w

y'x'

x" y"

z t

B
o

tt
o

m
-u

p
 R

e
co

g
n

iti
o

n

Left to Right Recognition

vu wy'x' x" y"z tFig. 10.11. Above, a sequence of adjunctions; below left, bottom-up recognition ofthe derived tree; right, left to right recognition of the derived tree.This parser also handles various extensions of tree-adjoining grammarssuch as adjoining constraints and feature based tree-adjoining grammars[Vijay-Shanker and Joshi1988]. Its performance is further improved by astrategy which uses the lexicalized aspect of lexicalized tree-adjoining gram-mars. This parser is part of the XTAG System, which includes a wide coveragegrammar of English together with a morphological analyzer [XTAG-Group1995].See also Section 6.11. SummaryWe have presented a class of grammars, Tree-Adjoining Grammars (TAG).Although motivated originally by some important linguistic considerationsTAGs have turned out to be mathematically and computationally very inter-esting and have led to important mathematical results, which in turn haveimportant linguistic implications. Thus TAGs represent an important classof grammars which demostrate the fascinating interplay between formal lin-guistic properties and mathematical/computational properties investigatedin formal language theory and automata theory, including tree languagesand tree automata.

54 Joshi and SchabesReferences[Abeill�e et al.1990] Anne Abeill�e, Kathleen M. Bishop, Sharon Cote, and Yves Sch-abes. 1990. A lexicalized tree adjoining grammar for English. Technical ReportMS-CIS-90-24, Department of Computer and Information Science, Universityof Pennsylvania.[Abeill�e1988] Anne Abeill�e. 1988. Parsing french with tree adjoining grammar:some linguistic accounts. In Proceedings of the 12th International Conferenceon Computational Linguistics (COLING'88), Budapest, August.[Chomsky1981] N. Chomsky. 1981. Lectures on Government and Binding. Foris,Dordrecht.[CI1994] Special issue of Computational Intelligence, November 1994, 10(4). De-voted to Tree-Adjoining Grammars.[Earley1968] Jay C. Earley. 1968. An E�cient Context-Free Parsing Algorithm.Ph.D. thesis, Carnegie-Mellon University, Pittsburgh, PA.[Gazdar et al.1985] G. Gazdar, E. Klein, G. K. Pullum, and I. A. Sag. 1985. Gen-eralized Phrase Structure Grammars. Blackwell Publishing, Oxford. Also pub-lished by Harvard University Press, Cambridge, MA.[Gross1984] Maurice Gross. 1984. Lexicon-grammar and the syntactic analysis offrench. In Proceedings of the 10th International Conference on ComputationalLinguistics (COLING'84), Stanford, 2-6 July.[Joshi and Schabes1992] Aravind K. Joshi and Yves Schabes. 1992. Tree-adjoininggrammars and lexicalized grammars. In Maurice Nivat and Andreas Podelski,editors, Tree Automata and Languages. Elsevier Science.[Joshi and Srinivas1994] Aravind K. Joshi and B. Srinivas. 1994. Disambiguationof super parts of speech (Supertags): almost parsing. In Proceedings of the 17thInternational Conference on Computational Linguistics (COLING'94), Kyoto,Japan, August.[Joshi et al.1975] Aravind K. Joshi, L. S. Levy, and M. Takahashi. 1975. Treeadjunct grammars. Journal of Computer and System Sciences, 10(1).[Joshi et al.1991] Aravind K. Joshi, K. Vijay-Shanker, and David Weir. 1991. Theconvergence of mildly context-sensitive grammatical formalisms. In Peter Sells,Stuart Shieber, and Tom Wasow, editors, Foundational Issues in Natural Lan-guage Processing. MIT Press, Cambridge MA.[Joshi1985] Aravind K. Joshi. 1985. How much context-sensitivity is neces-sary for characterizing structural descriptions|Tree Adjoining Grammars. InD. Dowty, L. Karttunen, and A. Zwicky, editors, Natural Language Processing|Theoretical, Computational and Psychological Perspectives. Cambridge Univer-sity Press, New York. Originally presented in a Workshop on Natural LanguageParsing at Ohio State University, Columbus, Ohio, May 1983.[Joshi1987] Aravind K. Joshi. 1987. An Introduction to Tree Adjoining Grammars.In A. Manaster-Ramer, editor,Mathematics of Language. John Benjamins, Am-sterdam.[Kaplan and Bresnan1983] R. Kaplan and J. Bresnan. 1983. Lexical-functionalgrammar: A formal system for grammatical representation. In J. Bresnan,editor, The Mental Representation of Grammatical Relations. MIT Press, Cam-bridge MA.[Karttunen1986] Lauri Karttunen. 1986. Radical lexicalism. Technical Re-port CSLI-86-68, CSLI, Stanford University. Also in Alternative Conceptionsof Phrase Structure, University of Chicago Press, Baltin, M. and Kroch A.,Chicago, 1989.

Tree-Adjoining Grammars 55[Kasami1965] T. Kasami. 1965. An e�cient recognition and syntax algorithm forcontext-free languages. Technical Report AF-CRL-65-758, Air Force CambridgeResearch Laboratory, Bedford, MA.[Kroch and Joshi1985] Anthony Kroch and Aravind K. Joshi. 1985. Linguistic rele-vance of tree adjoining grammars. Technical Report MS-CIS-85-18, Departmentof Computer and Information Science, University of Pennsylvania, April.[Kroch1987] Anthony Kroch. 1987. Unbounded dependencies and subjacency in atree adjoining grammar. In A. Manaster-Ramer, editor, Mathematics of Lan-guage. John Benjamins, Amsterdam.[Lambek1958] Joachim Lambek. 1958. The mathematics of sentence structure.American Mathematical Monthly, 65:154{170.[Lang1988] Bernard Lang. 1988. The systematic constructions of Earley parsers:Application to the production of O(n6) Earley parsers for Tree Adjoining Gram-mars. Unpublished manuscript, December 30.[Lavelli and Satta1991] Alberto Lavelli and Giorgio Satta. 1991. Bidirectional pars-ing of lexicalized tree adjoining grammars. In Fifth Conference of the EuropeanChapter of the Association for Computational Linguistics (EACL'91), Berlin.[Pollard and Sag1987] Carl Pollard and Ivan A. Sag. 1987. Information-BasedSyntax and Semantics. Vol 1: Fundamentals. CSLI.[Rambow et al.1995] Owen Rambow, K. Vijay-Shanker, and David Weir. 1995. D-tree grammars. In Proceedings of the 33rd Annual Meeting of the Associationfor Computational Linguistics (ACL), Cambridge, MA, June, pp 151{158.[Rambow1994] Owen Rambow. 1994. Formal and Computational Aspects of Nat-ural Language Syntax. Ph.D. thesis, Department of Computer and InformationScience, University of Pennsylvania.[Resnick1994] P. Resnick. 1992. Probabilistic tree-adjoining grammars as frame-work for statistical natural language processing. In Proceedings of the 15thInternational Conference on Computational Linguistics (COLING'92), Nantes,France, August.[Satta1994] Giorgio Satta. 1994. Tree adjoining grammar parsing and booleanmatrix multiplication. Computational Linguistics, 20(2), 173{192.[Schabes and Joshi1988] Yves Schabes and Aravind K. Joshi. 1988. An Earley-type parsing algorithm for Tree Adjoining Grammars. In 26th Meeting of theAssociation for Computational Linguistics (ACL'88), Bu�alo, June.[Schabes and Joshi1989] Yves Schabes and Aravind K. Joshi. 1989. The rele-vance of lexicalization to parsing. In Proceedings of the International Workshopon Parsing Technologies, Pittsburgh, August. Also appeared under the titleParsing with Lexicalized Tree adjoining Grammar in Current Issues in ParsingTechnologies, MIT Press.[Schabes and Shieber1994] Yves Schabes and Stuart Shieber. 1994. An alternativeconception of tree-adjoining derivation. Computational Linguistics, 20(1), 91{124.[Schabes and Vijay-Shanker1990] Yves Schabes and K. Vijay-Shanker. 1990. De-terministic left to right parsing of Tree Adjoining Languages. In 28th Meetingof the Association for Computational Linguistics (ACL'90), Pittsburgh.[Schabes and Waters1995] Yves Schabes and Richard C. Waters. 1995. Tree-Insertion Grammars: A cubic time, parsable formalism that lexicalizes context-free grammars without changing the trees produced. Computational Linguistics,21(4), pp 479{514.[Schabes et al.1988] Yves Schabes, Anne Abeill�e, and Aravind K. Joshi. 1988.Parsing strategies with `lexicalized' grammars: Application to tree adjoininggrammars. In Proceedings of the 12th International Conference on Computa-tional Linguistics (COLING'88), Budapest, Hungary, August.

56 Joshi and Schabes[Schabes1990] Yves Schabes. 1990. Mathematical and Computational Aspects ofLexicalized Grammars. Ph.D. thesis, University of Pennsylvania, Philadelphia,PA, August. Available as technical report (MS-CIS-90-48, LINC LAB179) fromthe Department of Computer Science.[Schabes1991] Yves Schabes. 1991. Left to right parsing of tree-adjoining gram-mars. Computational Intelligence, 10(4), 506{524.[Schabes1992] Yves Schabes. 1992. Stochastic tree-adjoining grammars. In Proceed-ings of the 15th International Conference on Computational Linguistics (COL-ING'92), Nantes, France, August.[Schimpf and Gallier1985] K. M. Schimpf and J. H. Gallier. 1985. Tree pushdownautomata. Journal of Computer and System Sciences, 30:25{39.[Shieber and Schabes1990] Stuart Shieber and Yves Schabes. 1990. SynchronousTree-Adjoining Grammars. In Proceedings of the 13th International Conferenceon Computational Linguistics (COLING'90), Helsinki, Finland, August.[Steedman1987] Mark Steedman. 1987. Combinatory grammars and parasitic gaps.Natural Language and Linguistic Theory, 5:403{439.[Thatcher1971] J. W. Thatcher. 1971. Characterizing derivations trees of contextfree grammars through a generalization of �nite automata theory. Journal ofComputer and System Sciences, 5:365{396.[Vijay-Shanker and Joshi1985] K. Vijay-Shanker and Aravind K. Joshi. 1985. Somecomputational properties of Tree Adjoining Grammars. In 23rd Meeting of theAssociation for Computational Linguistics, pages 82{93, Chicago, Illinois, July.[Vijay-Shanker and Joshi1988] K. Vijay-Shanker and Aravind K. Joshi. 1988. Fea-ture structure based tree adjoining grammars. In Proceedings of the 12th In-ternational Conference on Computational Linguistics (COLING'88), Budapest,August.[Vijay-Shanker and Weir1990] K. Vijay-Shanker and David J. Weir. 1990. Parsingconstrained grammar formalisms. Computational Linguistics, 19(4), 591{636.[Vijay-Shanker1987] K. Vijay-Shanker. 1987. A Study of Tree Adjoining Gram-mars. Ph.D. thesis, Department of Computer and Information Science, Univer-sity of Pennsylvania.[Vijay-Shanker1992] K. Vijay-Shanker. 1992. Using description of trees in a tree-adjoining grammar. Computational Linguistics, 18(4), pp 481{517.[Weir1988] David J. Weir. 1988. Characterizing Mildly Context-Sensitive GrammarFormalisms. Ph.D. thesis, Department of Computer and Information Science,University of Pennsylvania.[XTAG-Group1995] XTAG-Group. 1995. A lexicalized tree-adjoining grammar ofEnglish. Technical Report, Institute for Research in Cognitive Science (IRCS),University of Pennsylvania, 95-03.[Younger1967] D. H. Younger. 1967. Recognition and parsing of context-free lan-guages in time n3. Information and Control, 10(2):189{208.

