Semantic Theory Week 3 - Typed Lambda Calculus

Noortje Venhuizen
Harm Brouwer

Universität des Saarlandes

Summer 2020

Compositionality

The principle of compositionality: "The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined" (Partee et al., 1993)

Compositional semantics construction:

- compute meaning representations for sub-expressions
- combine them to obtain a meaning representation for a complex expression.

Problematic case: "[Not smoking ${ }_{\langle e, t\rangle}$] [is healthy]

Logical connectives only apply to type t expressions -i.e., the connective \neg can be interpreted as a function of type $\langle t, t\rangle$ that reverses truth values: $[1 \rightarrow 0,0 \rightarrow 1]$

Lambda abstraction

λ-abstraction is the operation that transforms expressions of any type τ into a function $\langle\sigma, \tau\rangle$, where σ is the type of the λ-variable.

Formal definition:

If a is in $W E_{\tau}$, and x is in $\operatorname{VAR}_{\sigma}$ then $\lambda x(a)$ is in $W E_{\langle(0, T\rangle}$

- The scope of the λ-operator is the smallest WE to its right. Wider scope must be indicated by brackets.
- We often use the "dot notation" $\lambda \times . \phi$ indicating that the λ-operator takes widest possible scope (over ϕ).

Interpretation of Lambda-expressions

If $\mathbf{a} \in W E_{\tau}$ and $v \in V A R_{\sigma}$, then $\llbracket \lambda v \mathbf{a} \rrbracket^{M, g}$ is that function $f: D_{\sigma} \rightarrow D_{\tau}$ such that for all $a \in D_{\sigma}, f(a)=\llbracket \mathbf{a} \rrbracket^{\mathrm{M}, g[\mathrm{l} / \mathrm{a}]}$

If the λ-expression is applied to some argument, we can simplify the interpretation:

- $\llbracket \lambda v \mathbf{a} \rrbracket^{M, g}\left(\mathbb{[x} \mathbb{\rrbracket}^{M, g}\right)=\llbracket \mathbb{a} \rrbracket^{M, g[/[\llbracket]]^{M, g]}}$

Example: "Bill doesn't smoke" ("Bill is a non-smoker")
$\llbracket \lambda x(\neg S(x))\left(b^{\prime}\right) \rrbracket^{M, 9}=1$
iff $\llbracket \lambda \times(\neg S(x)) \rrbracket^{M, G([(b)} \rrbracket^{M, g)}=1$
iff $\llbracket\urcorner S(x) \rrbracket^{M, g^{\prime}}=1$ where $g^{\prime}=g\left[x /\left[b^{\prime} \rrbracket^{M, g]}\right.\right.$
iff $\llbracket S(x) \rrbracket \mathbb{M}, g^{\prime}=0$
iff $\llbracket \mathbb{S}^{M, G^{\prime}}\left(\llbracket \times \rrbracket^{M, g^{\prime}}\right)=0$
iff $V_{M}(S)\left(V_{M}\left(b^{\prime}\right)\right)=0$

β-Reduction (Function application)

$$
\llbracket \lambda \vee(\mathbf{a})(\boldsymbol{\beta}) \rrbracket^{M, g}=\llbracket \mathbf{a} \rrbracket^{\mathrm{M}, g[V /[\mathbb{\beta}] \mathrm{M}, \mathrm{~g}]}
$$

\Rightarrow all (free) occurrences of the λ-variable in $\boldsymbol{\alpha}$ get the interpretation of $\boldsymbol{\beta}$
as value.
This operation is called β-reduction

- $\lambda v(\mathbf{a})(\boldsymbol{\beta}) \Leftrightarrow \mathbf{a}[\boldsymbol{\beta} / \mathbf{v}]$
- $\boldsymbol{a}[\boldsymbol{\beta} / \mathbf{v}]$ is the result of replacing all free occurrences of \mathbf{v} in \mathbf{a} with $\boldsymbol{\beta}$

Achtung: The equivalence is not unconditionally valid ...

Variable capturing

Q: Are $\lambda v(\alpha)(\beta)$ and $\alpha[\beta / v]$ always equivalent?

- $\lambda x\left(\operatorname{drive}^{\prime}(x) \wedge \operatorname{drink}^{\prime}(x)\right)\left(j^{\prime}\right) \Leftrightarrow \operatorname{drive}{ }^{\prime}\left(j^{\prime}\right) \wedge \operatorname{drink}^{\prime}\left(j^{\prime}\right)$
- $\lambda x\left(\right.$ drive' $\left.^{\prime}(x) \wedge \operatorname{drink}^{\prime}(x)\right)(y) \Leftrightarrow \operatorname{drive}^{\prime}(y) \wedge \operatorname{drink}^{\prime}(y)$
- $\lambda x(\forall y$ know' $(x)(y))\left(j^{\prime}\right) \Leftrightarrow \forall y$ know(j')(y)
- $\lambda x(\forall y$ know' $(x)(y))(y) \leftrightarrow \forall y$ know $(y)(y) \quad$ Problem: y is not "free for x "

Definition: Let v, v' be variables of the same type, and let a be any wellformed expression.

- v is free for v^{\prime} in \mathbf{a} iff no free occurrence of v^{\prime} in \mathbf{a} is in the scope of a quantifier or a λ-operator that binds v.

Conversion rules

- β-conversion: $\quad \lambda \vee(\mathbf{a})(\boldsymbol{\beta}) \Leftrightarrow \boldsymbol{a}[\boldsymbol{\beta} / v]$
(if all free variables in $\boldsymbol{\beta}$ are free for v in \boldsymbol{a})
- a-conversion: $\quad \lambda v . \boldsymbol{a} \Leftrightarrow \lambda w . \boldsymbol{a}[\mathrm{w} / \mathrm{v}]$
(if w is free for v in \mathbf{a})
- η-conversion: $\quad \lambda \mathrm{v} \cdot \mathbf{a}(\mathrm{v}) \Leftrightarrow \boldsymbol{a}$

Determiners as lambda-expressions

- a student works $\rightarrow \exists x\left(\right.$ student' $(x) \wedge$ work' $\left.^{\prime}(x)\right)$:: t
- a student $\rightarrow \lambda$ Pヨx(student' $(x) \wedge P(x))::\langle\langle e, t\rangle, t\rangle$
- a, some $\rightarrow \lambda Q \lambda P \exists x(Q(x) \wedge P(x))::\langle\langle e, t\rangle,\langle\langle e, t\rangle, t\rangle\rangle$
- every student $\rightarrow \lambda P \forall x\left(\right.$ student $\left.{ }^{\prime}(x) \rightarrow P(x)\right)::\langle\langle e, t\rangle, t\rangle$
- every $\rightarrow \lambda Q \lambda P \forall x(Q(x) \rightarrow P(x))::\langle\langle e, t\rangle,\langle\langle e, t\rangle, t\rangle\rangle$
- no student $\rightarrow \lambda P \neg \exists x($ student $(x) \wedge P(x))::\langle\langle e, t\rangle, t\rangle$
- no $\rightarrow \lambda Q \lambda P \neg \exists x(Q(x) \wedge P(x))::\langle\langle e, t\rangle,\langle\langle e, t\rangle, t\rangle\rangle$
- someone $\rightarrow \lambda F \exists x F(x)::\langle\langle e, t\rangle, t\rangle$

NL Quantifier Expressions: Interpretation

- someone' $\in \operatorname{CON}{ }_{\langle\langle e, t\rangle, t\rangle}$, so $V_{M}($ someone' $) \in D_{\langle\langle e, t\rangle, t\rangle}$
- $D_{\langle\langle e, t\rangle, t\rangle}$ is the set of functions from $D_{\langle e, t\rangle}$ to D_{t}, i.e., the set of functions from $\mathcal{P}\left(U_{M}\right)$ (the powerset of $\left.U_{M}\right)$ to $\{0,1\}$, which in turn is equivalent to $\mathcal{P}\left(\mathcal{P}\left(\mathrm{U}_{\mathrm{M}}\right)\right)$

From $\mathrm{V}_{\mathrm{M}}($ someone' $) \in \mathcal{P}\left(\mathcal{P}\left(\mathrm{U}_{\mathrm{M}}\right)\right)$ it follows that $\mathrm{V}_{\mathrm{M}}($ someone' $) \subseteq \mathcal{P}\left(\mathrm{U}_{\mathrm{M}}\right)$ More specifically:

- $V_{M}\left(\right.$ someone') $=\left\{S \subseteq U_{M} \mid S \neq \varnothing\right\}$, if U_{M} is a domain of persons
\Rightarrow More on Natural Language Quantifiers in two weeks!

β-Reduction Example

Every student works.
(2) $\lambda P \lambda Q \forall x(P(x) \rightarrow Q(x))::\langle\langle e, t\rangle,\langle\langle e, t\rangle, t\rangle$
(3) λx.student' $(x) \Leftrightarrow n$ student' $::\langle e, t\rangle$

(1) $\lambda P \lambda Q \forall x(P(x) \rightarrow Q(x))($ student') $\Leftrightarrow \beta \lambda Q \forall x(s t u d e n t '(x) \rightarrow Q(x))::\langle\langle e, t\rangle, t\rangle$
(4)/(5) $\lambda x \cdot$ work $^{\prime}(x) \Leftrightarrow n$ work' $::\langle e, t\rangle$
(0) $\lambda Q \forall x\left(\right.$ student $\left.^{\prime}(x) \rightarrow Q(x)\right)\left(\right.$ work $\left.^{\prime}\right) \Leftrightarrow \beta \quad \forall x\left(\right.$ student $^{\prime}(x) \rightarrow$ work' $\left.^{\prime}(x)\right):: t$

Transitive Verbs: Type Clash

- Someone reads a book

$$
\begin{gathered}
\text { read }::\langle e,\langle e, t\rangle\rangle \quad \text { a book }::\langle\langle e, t\rangle, t\rangle \\
::\langle\langle e, t\rangle, t\rangle \quad \text { ?? :: ?? }
\end{gathered}
$$

?? :: t

Solution: reverse functor-argument relation (again)

- Logical form: someone(read(a book))
- Adjust type of first argument of transitive verb: read $\langle\langle e$, t,t,t,《e, t>> (Type Raising)

Type Raising

It's not enough to just change the type of the transitive verb:

- read \rightarrow read' $\in \mathrm{CON}_{\langle 《 e, t\rangle, t\rangle,\langle e, t\rangle\rangle}$

```
someone reads a book:
\lambdaF\existsxF(x)(read'(\lambdaP\existsy(book'(y) ^ P(y)))
\Leftrightarrow^}
```

Problem: this does not support the following entailment: someone reads a book \vDash there exists a book

Hence, we need a more explicit λ-term:

- read $\left.\rightarrow \lambda Q \lambda z . Q(\lambda x(r e a d *(x)(z))) \in W E_{\|\langle e, t\rangle, t,}\langle e, t\rangle\right\rangle$
where: read* $\in W E_{\langle e, ~\langle e, ~ t\rangle>}$ is the "underlying" first-order relation

Transitive Verbs: example

someone reads a book: someone(read(a book))
$\lambda F \exists x F(x)\left(\lambda Q \lambda z\left(Q\left(\lambda x\left(r_{\text {read }}{ }^{*}(x)(z)\right)\right)\right)\left(\lambda R \lambda P(\exists y(R(y) \wedge P(y)))\left(b o o k^{\prime}\right)\right)\right)$
$\Leftrightarrow \beta \lambda F \exists x F(x)\left(\lambda Q \lambda z\left(Q\left(\lambda x\left(\right.\right.\right.\right.$ read $\left.\left.\left.\left.^{\star}(x)(z)\right)\right)\right)\left(\lambda P\left(\exists y\left(b o k^{\prime}(y) \wedge P(y)\right)\right)\right)\right)$
$\Leftrightarrow \beta \lambda F \exists x F(x)\left(\lambda z\left(\lambda P(\exists y(b o o k '(y) \wedge P(y)))\left(\lambda x\left(\right.\right.\right.\right.$ read $\left.\left.\left.\left.^{*}(x)(z)\right)\right)\right)\right)$
$\Leftrightarrow \beta \lambda \operatorname{FgxF}(x)\left(\lambda z\left(\exists y\left(\right.\right.\right.$ book $^{\prime}(y) \wedge \lambda x\left(\right.$ read $\left.\left.\left.\left.^{*}(x)(z)\right)(y)\right)\right)\right)$
$\Leftrightarrow \beta \lambda F \exists x F(x)\left(\lambda z\left(\exists y\left(\operatorname{book}^{\prime}(y) \wedge\right.\right.\right.$ read $\left.\left.\left.^{\star}(y)(z)\right)\right)\right)$
$\Leftrightarrow \beta \exists x\left(\lambda z\left(\exists y\left(\operatorname{book}^{\prime}(y) \wedge \operatorname{read}^{*}(y)(z)\right)\right)(x)\right)$
$\leftrightarrow \beta \exists x \exists y\left(\operatorname{book}^{\prime}(y) \wedge \operatorname{read}^{\star}(y)(x)\right)$

Reading material

- Winter: Elements of Formal Semantics (Chapter 3, Part III) http://www.phil.uu.nl/~yoad/efs/main.html

