Semantic Theory
Week 2 — Type Theory

Noortje Venhuizen
Harm Brouwer

Universitat des Saarlandes

Summer 2020



First-order logic

First-order logic talks about:
- Individual objects
- Properties of and relations between individual objects

- Quantification over individual objects



Limitations of first-order logic

FOL is not expressive enough to capture all meanings that can be
expressed by basic natural language expressions:

Jumbo is a small elephant. (Predicate modifiers)
Happy is a state of mind. (Second-order predicates)
Yestergay, it rained. (Non-logical sentence operators)

Bill and John have the same hair color.  (Higher-order quantification)

= What logically sound system can capture this diversity?



LOGIGOMIX

; I |
Introducing Russell's paradox 2y )

AN EPIC SEARCH FOR TRUTH
From: Logicomix — An epic search for truth; A. Doxiadis, C.H. Papadimitriou, A. Papadatos and A. Di Donna

ALECOS PAPADATOS, ans ANNIE D) DONNA

"Those who don't shave themselves are shaved -
by the barber." It sounds innocuous.. However; if Who will shave
token literally, it leads sfraight To paradox! the barber?
J [ \ _‘:}I:'“'
N

‘vua_g'w'\& a Town
| with g strict law

on shoning.

3

By i, every aghl
i wale is required
il o shave daily.

For, you see, the
guestion orises: 4

)
He obviously cannot choose
To shave himself, for...

R T

mBeing the barber, it would wiean
that he is shaved by the wan who
shoves oy ..

But he can't "0 To the barber',
for, agoin, Thot will wiean he'll shave
niwsels, which The barber isn't for!

But it's not obligatory
o shove yourseik. B

e

NS m—

Btz

who den't want

to, there s a
barber.

NG P 3
In foct, the low decrees: I
"Those who don't shave |

themsehves ore shoved
by the borber.”




Russell's paradox for Higher-Order Logic

What if we extend the FOL interpretation of predicates, and simply interpret higher-
order predicates as sets of sets of properties?

Then, for every predicate P, we can define a set {x | P(x)} containing all and only
those entities for which P holds.

Now what if we define a set S = {X | X ¢ X} representing the set of all sets that are
not members of itself..

Paradox: does S belong to itself?

If it does, then S must satisfy its constraints, namely that it doesn’t belong to
itself, which is not possible if we assume it belongs to S.
If not, then S is a set that doesn’t belong to itself, hence it belongs to S.

- Conclusion: \We need a more restricted way of talking about
properties and relations between properties!



Winter-EFS Ch3
Type Theory Page 50

In Type Theory, all logical expressions are assigned a type (that may
be basic or complex), which restricts how they can be combined.

Basic types:
- e —the type of individual terms (“entities”)

-t - the type of formulas (“truth-values”)

Complex types:

v

h) Note: this is a “tav” (the Greek letter), not a “t*!

If o, T are types, then <o, T) Is a type

=> This represents a functor expression that takes an expression of type o as
its argument and returns an expression of type T; this functor is sometimes
written as (o6— T) or simply (o) (as in Winter-EFS)



. L Winter-EFS Ch3
Types & Function Application Page 53

Types of first-order expressions:
- Individual constants (Luke, Death Star) : @ = entity

-+ One-place predicates (walk, jedi): (e, t) = function from entities to truth values
(i.e., a property)
- Two-place predicates (admire, fight with): (e, <(e, t)) = function from entities to
properties
- Three-place predicates (give, introduce): <e, <e, <e, t))) = function from entities to
entities to properties

Function application: Combining a functor of complex type <a, B> with an
appropriate argument of type a, results in an expression of type B: <a, B)(a) » B

- Jjedi’(luke’) :: (e, () =t = “luke is a jedi” has a truth value (true or false)

- admire’(luke’) :: <(e,(e, t))(e) = (e, t) = “(to) admire luke” is a property



More examples of types

Types of higher-order expressions:

- Predicate modifiers (expensive, small): (e, t), (e, t)) = function from properties
to properties
- Second-order predicates (state of mind): (e, t), t) = property of properties

-+ Sentence operators (yesterday, unfortunately): <t, t) = function from truth values
to truth values

- Degree particles (very, too): {{(e, t), <e, 1)), (e, t), (e, 1))) > complex function.. @

Tip: It @, T are basic types, <o, T) can be abbreviated as otT. Thus, the type of

predicate modifiers and second-order predicates can be more conveniently written
as (et, et) and <et, t), respectively.



Type Theory — Vocabulary

Non-logical constants:

- For every type T a (possibly empty) set of non-logical constants CONy
(pairwise disjoint)

Variables:

- For every type T an infinite set of variables VAR: (pairwise disjoint)

Logical symbols: v, 3, 7, A, v, 2, <, =

Brackets: (, )



Type Theory — Syntax

For every type T, the set of well-formed expressions WE- is defined as follows:
(l) CONT C WET and VART C WET,
(i) If a e WE, 1, and 3 € WEg, then a(3) € WEx; (function application)

(i) If A, B are in Wk, then =A, (A A B), (A v B), (A = B), (A < B) are in WE;;

(iv) If Alis in WEr and x is a variable of arbitrary type, then vxA and 3xA are in
WEt;

(v) If a, B are well-formed expressions of the same type, then a = 3 € WE;;
Nothlng else s a weII formed expressmn
“NB. This preven’rs us from running into Russell’s paradox!

10



| | Winter-EFS Ch3
Type Inferencing Page 59-60

Types can be derived for all expressions that constitute the logical
form of a sentence, as defined by its syntactic structure.

“Luke Is a talented jedi”

talented’ :: (e, D, <e, I jedi’:: (e, t)

luke’:: e talented’(jedr’):: <e, )

talented’(jedi’)(luke’) :: t

Note: we here ignore the semantic
contribution of “is” and a” (see Winter, pg 61)

11



Type inferencing: examples

Recommended strategy: Start by describing the logical form of the
sentences (how are expressions combined logically, based on the given
syntactic bracketing), then derive types from there (see previous slide).

1. Yodae [is faster than Palpatineg].

2. Yodae [is much [faster than]] Palpatinee.

3. [[Han Solo]e fights] [because [[the Dark Sidee is rising]].

4. Obi-Wane [[told [Qui-Gon Jinnle] he will take [the Jedi-examle].



Higher-order predicates

Higher-order quantification:

- [ eia has the same hair colour as Padmé

3C (hair_colour(C) A C(I') A C(p’))
K M T .
(e, Dt e, v

Higher-order equality:

- For p, g e CONy, “p=0” expresses material equivalence: “p < q”.
+ For F, G € CONe, v, “F=G” expresses co-extensionality: “vx(Fx«—Gx)”

- For any formula ¢ of type t, d=(x=X) is a representation of “¢ is true”.

13



| Winter-EFS Ch3
Type Theory — Semantics [1] Page 51

Let U be a non-empty set of entities.

The domain of possible denotations D+ for every type T Is given by:
De = U
Dt = {0,1}
Dw.v IS the set of all functions from Dg to D+

For any type T, expressions of type T denote elements of the domain Dr

14



. | Winter-EFS Ch3
Characteristic functions Page 46-47

Many natural language expressions have a type <o, t)

Expressions with type <o, t) are functions mapping elements of type o
to truth values: {0,1}

Such functions with a range of {0,1} are called characteristic functions,
because they uniquely specify a subset of their domain Dge

The characteristic function of set M in a domain U iIs the function

Fvm: U—{0,1} such that for alla € U, Fm(a) = 1 iff a € M.

NB: For first-order predicates, the FOL representation (using sets) and the type-
theoretic representation (using characteristic functions) are equivalent.

15



Interpretation with characteristic functions:
example

For M = <U, V), let U consist of five entities. For selected types, we have the
following sets of possible denotations:

Dt = {0,1}

De = U = {e1, €2, €3, €4, €5}

e1—1 e1—1 e1—0

ex2—0 | |ex—1 eo— 1
D<e,t> ={ es—1 |, es—=0|, les—1], }

es—0 | |es—1 es—0

es5— 1 es— 1 es—0

Alternative set notation: D<et> = {{€1,e3,65},{€1,62,64,65},{€2,€3},...]

16



Type Theory — Semantics [2]

A model structure for a type theoretic language is a tuple M = U, V)
such that:

U is a non-empty domain of individuals

-V is an interpretation function, which assigns to every a € CON«
an element of D¢ (where T Is an arbitrary type)

The variable assignment function g assigns to every typed variable
v € VAR an element of D+

17



Type Theory — Interpretation

Given a model structure M =

(U, V) and a variable assignment g:

- [aJMsg =V(a) If ais aconstant
=g(a) ifais avariable

© [a)IMe = [aIM9([BIM9)

- [a=pMe  =1iff [alM9=[BRIMa

© [-pIM9 =1iff [dIM9=0

(D APIMe =T
c [ovpIMe =T ff

For any variable v of type o:
-« [3avpIMe =1 iff
+ [vvdpIMe =1 iff

[dIM9 =1 and [PIM9 = 1
[oIMe =1 or [PIMe = 1

there is a d € Do such that [¢IMelv/d = 1
for all d € Do : [pIValvdl = 1

18



Interpretation: Example

Luke Is a talented jedi

jedi’ :: <e, t) talented’:: e, 1), <e, t))

luke’ :: e talented’(jedr’) :: <e, t)

talented’(jedr’)(luke’) :: t

[talented’(jedi’)(luke’) M9

= [talented’(jedi’)IM9 ([luke’TM.9)

= [talented’ JM9([jedi’TM:9) ([luke’IM.9)
= Vm(talented’)(Vm(jedi’))(Vm(luke’))

19



Interpretation:

—xample (cont.)

[Luke is a talented jediTM9 = Vu(talented’)(Vm(jed?’))(Vm(luke’))

Vm(talented’)

'L ez_’ . '»i‘

" D etiet)) @ |:{eg,e4,e5} ~ {es)

{e1,e3,e5) = {e1,e5) }

A Vu(talented’)(Vm(jedi’))
| Vu(talented’)(Vm(jedi’))(Vm(luke?))

20



Defining the right model

Consider the following Model M: M: Anakin
/ Darth Vader
De = Um = {€1, €2, €3, €4, €5} ( ez e
/\ 65)
Vm(anakin’e) = Vm(darth_vader’s) = e2 \
{ '93 e+ | Palpatine
o v Jem1 L [es0 Luke\ 4
Vm(jedi’ e ) = oo 1 Vm(dark_sider’ e 1) = o 1 J
e3— 1 ea—0 Lela
ej—” e4—0 Yoda
| e5—0 . _Les—1
(o1 1] B
ex—1 eo— 1
es—1| = | es—0
Vm(powertul'«evem) =77 o Note that here “powerful” is
T P --2> truth-preserving:
eo—1 o1 Powerful Xty E Xety
es—0| = | e3—0
es—0 es—0
es—1 | | es—1 |




Adjective classes & Meaning postulates

Some valid inferences in natural language:
- Bill is a poor piano player = Bill is a piano player
- Bill is a blond piano player = Bill is blond

- Bill is a former professor &= Bill isn’t a professor

-> These entailments do not hold in type theory by definition. Why?

Meaning postulates: restrictions on models which constrain the
possible meaning of certain words



Adjective classes & Meaning postulates (cont.)

Restrictive or Subsective adjectives (“poor”)
- [poorNJC NI

- Meaning postulate: vGvx(poor(G)(x) = G(x))

Intersective adjectives (“blond”)
- [blondN]= [blond]n[NTI
- Meaning postlate: vGvx(blond(G)(x) = (blond*(x) A G(x))

- NB: blond € WE(<e, t), (e, t)) # blond* € WE(e, t)

Privative adjectives (“former”)
- [formerN]n[N]=9

- Meaning postlate: vGvx(former(G)(x) = —G(x))



Reading material

- Winter: Elements of Formal Semantics (Chapter 3, Part | & |l)
http://www.phil.uu.nl/~yoad/efs/main.html



http://www.phil.uu.nl/~yoad/efs/main.html

