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First-order logic

First-order logic talks about: 

• Individual objects  

• Properties of and relations between individual objects 

• Quantification over individual objects  
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Limitations of first-order logic

FOL is not expressive enough to capture all meanings that can be 
expressed by basic natural language expressions:  

Jumbo is a small elephant. 	 	 	 	 (Predicate modifiers) 

Happy is a state of mind.	 	 	 	 (Second-order predicates) 

Yesterday, it rained.	 	 	 	 	 	 (Non-logical sentence operators) 

Bill and John have the same hair color. 	 (Higher-order quantification)
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➔ What logically sound system can capture this diversity?
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Introducing Russell's paradox

From: Logicomix — An epic search for truth; A. Doxiadis,  C.H. Papadimitriou, A. Papadatos and A. Di Donna

Bertrand Russell



Russell's paradox for Higher-Order Logic
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What if we extend the FOL interpretation of predicates, and simply interpret higher-
order predicates as sets of sets of properties? 

Then, for every predicate P, we can define a set {x | P(x)} containing all and only 
those entities for which P holds. 

Now what if we define a set S = {X | X ∉ X} representing the set of all sets that are 
not members of itself.. 

Paradox: does S belong to itself? 
If it does, then S must satisfy its constraints, namely that it doesn’t belong to 
itself, which is not possible if we assume it belongs to S. 
If not, then S is a set that doesn’t belong to itself, hence it belongs to S. 

➔ Conclusion: We need a more restricted way of talking about 
 properties and relations between properties!



Type Theory

In Type Theory, all logical expressions are assigned a type (that may 
be basic or complex), which restricts how they can be combined. 

Basic types:  

• e – the type of individual terms (“entities”)  

• t – the type of formulas (“truth-values”)  
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Complex types:  

•  If σ, τ are types, then ⟨σ, τ⟩ is a type  

 
➔ This represents a functor expression that takes an expression of type σ as 
its argument and returns an expression of type τ; this functor is sometimes 
written as (σ→ τ) or simply (στ) (as in Winter-EFS)

Note: this is a “tau” (the Greek letter), not a “t”!

Winter-EFS Ch3 
Page 50



Types & Function Application

Types of first-order expressions:  

• Individual constants (Luke, Death Star) : e  

• One-place predicates (walk, jedi): ⟨e, t⟩  

• Two-place predicates (admire, fight with): ⟨e, ⟨e, t⟩⟩  

• Three-place predicates (give, introduce): ⟨e, ⟨e, ⟨e, t⟩⟩⟩  
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➔ entity

➔ function from entities to truth values  
(i.e., a property)
➔ function from entities to  

properties
➔ function from entities to  

entities to properties

Function application: Combining a functor of complex type ⟨ɑ, β⟩ with an 
appropriate argument of type ɑ, results in an expression of type β: ⟨ɑ, β⟩(ɑ) ↦ β 

• jedi’(luke’) :: ⟨e, t⟩(e) ⟹ t 

• admire’(luke’) :: ⟨e,⟨e, t⟩⟩(e) ⟹ ⟨e, t⟩

➔ “luke is a jedi” has a truth value (true or false)

➔ “(to) admire luke” is a property

Winter-EFS Ch3 
Page 53



More examples of types

Types of higher-order expressions:  

• Predicate modifiers (expensive, small): ⟨⟨e, t⟩, ⟨e, t⟩⟩  

• Second-order predicates (state of mind): ⟨⟨e, t⟩, t⟩ 

• Sentence operators (yesterday, unfortunately): ⟨t, t⟩  

• Degree particles (very, too): ⟨⟨⟨e, t⟩, ⟨e, t⟩⟩, ⟨⟨e, t⟩, ⟨e, t⟩⟩⟩  
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Tip: If σ, τ are basic types, ⟨σ, τ⟩ can be abbreviated as στ. Thus, the type of 
predicate modifiers and second-order predicates can be more conveniently written 
as ⟨et, et⟩ and ⟨et, t⟩, respectively. 

➔ function from properties 
 to properties

➔ property of properties

➔ function from truth values 
 to truth values

➔ complex function.. 😉 



Type Theory — Vocabulary 

Non-logical constants:  

• For every type τ a (possibly empty) set of non-logical constants CONτ 
(pairwise disjoint)  

Variables:  

• For every type τ an infinite set of variables VARτ (pairwise disjoint)  

Logical symbols: ∀, ∃, ¬, ∧, ∨, →, ↔, =  

Brackets: (, ) 
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Type Theory — Syntax

For every type τ, the set of well-formed expressions WEτ is defined as follows: 

(i) CONτ ⊆ WEτ and VARτ ⊆ WEτ; 

(ii) If α ∈ WE⟨σ, τ⟩, and β ∈ WEσ, then α(β) ∈ WEτ;	 	     (function application) 

(iii) If A, B are in WEt, then ¬A, (A ∧ B), (A ∨ B), (A → B), (A ↔ B) are in WEt; 

(iv) If A is in WEt and x is a variable of arbitrary type, then ∀xA and ∃xA are in 
WEt; 

(v) If α, β are well-formed expressions of the same type, then α = β ∈ WEt; 

(vi) Nothing else is a well-formed expression.
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NB. This prevents us from running into Russell’s paradox!



Types can be derived for all expressions that constitute the logical 
form of a sentence, as defined by its syntactic structure. 

“Luke is a talented jedi” 

	 	 	 	 	 	 :: ⟨e, t⟩:: ⟨⟨e, t⟩, ⟨e, t⟩⟩

 :: e :: ⟨e, t⟩

:: t

Type inferencing

11

	 	 	 talented’ 		  	 	 	 	        jedi’ 
 
luke’	 	 	 	 	 	 talented’(jedi’) 

	 	 	 talented’(jedi’)(luke’)

Winter-EFS Ch3 
Page 59-60

Note: we here ignore the semantic  
contribution of “is” and “a” (see Winter, pg  61)



Type inferencing: examples

Recommended strategy: Start by describing the logical form of the 
sentences (how are expressions combined logically, based on the given 
syntactic bracketing), then derive types from there (see previous slide). 

1. Yodae [is faster than Palpatinee].  

2. Yodae [is much [faster than]] Palpatinee.  

3. [[Han Solo]e fights] [because [[the Dark Side]e is rising]]. 

4. Obi-Wane [[told [Qui-Gon Jinn]e] he will take [the Jedi-exam]e].
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Higher-order predicates

Higher-order quantification: 

• Leia has the same hair colour as Padmé  

	 	 ∃C (hair_colour(C) ∧ C(l’) ∧ C(p’))  
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⟨⟨e, t⟩,t⟩ ⟨e, t⟩ e

Higher-order equality: 

• For p, q ∈ CONt, “p=q” expresses material equivalence: “p ↔ q”. 

• For F, G ∈ CON⟨e, t⟩, “F=G” expresses co-extensionality: “∀x(Fx↔Gx)” 

• For any formula φ of type t, φ=(x=x) is a representation of “φ is true”. 



Type Theory — Semantics [1]

Let U be a non-empty set of entities. 

The domain of possible denotations Dτ for every type τ is given by: 

• De = U 

• Dt = {0,1} 

• D⟨σ,τ⟩ is the set of all functions from Dσ to Dτ 

For any type τ, expressions of type τ denote elements of the domain Dτ 
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Winter-EFS Ch3 
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Characteristic functions

Many natural language expressions have a type ⟨σ, t⟩ 

Expressions with type ⟨σ, t⟩ are functions mapping elements of type σ 
to truth values: {0,1} 

Such functions with a range of {0,1} are called characteristic functions, 
because they uniquely specify a subset of their domain Dσ 
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The characteristic function of set M in a domain U is the function  
FM: U→{0,1} such that for all a ∈ U, FM(a) = 1 iff a ∈ M. 

NB: For first-order predicates, the FOL representation (using sets) and the type-
theoretic representation (using characteristic functions) are equivalent.

Winter-EFS Ch3 
Page 46-47



Interpretation with characteristic functions: 
example

For M = ⟨U, V⟩, let U consist of five entities. For selected types, we have the 
following sets of possible denotations: 
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• Dt = {0,1}

• De = U = {e1, e2, e3, e4, e5}
e1→1 
e2→0 
e3→1 
e4→0 
e5→1

e1→1 
e2→1 
e3→0 
e4→1 
e5→1

e1→0 
e2→1 
e3→1 
e4→0 
e5→0

• D<e,t> ={		   ,	 	 ,	     , …}

Alternative set notation: D<e,t> = {{e1,e3,e5},{e1,e2,e4,e5},{e2,e3},…} 



Type Theory — Semantics [2]

A model structure for a type theoretic language is a tuple M = ⟨U, V⟩ 
such that:  

• U is a non-empty domain of individuals  

• V is an interpretation function, which assigns to every α ∈ CONτ 
an element of Dτ (where τ is an arbitrary type) 

The variable assignment function g assigns to every typed variable  
v ∈ VARτ an element of Dτ 
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Type Theory — Interpretation

Given a model structure M = ⟨U, V⟩ and a variable assignment g: 
• ⟦α⟧M,g 		 	 = V(α)	  if α is a constant 
	 	 	 	 = g(α)	  if α is a variable 

• ⟦α(β)⟧M,g 	 	 = ⟦α⟧M,g(⟦β⟧M,g) 
• ⟦α = β⟧M,g 		 = 1 	iff 	 ⟦α⟧M,g = ⟦β⟧M,g 
• ⟦¬φ⟧M,g 	 	 = 1 	iff 	 ⟦φ⟧M,g = 0 
• ⟦φ ∧ ψ⟧M,g 	 = 1 	iff 	 ⟦φ⟧M,g = 1 and ⟦ψ⟧M,g = 1 
• ⟦φ ∨ ψ⟧M,g 	 = 1 	iff 	 ⟦φ⟧M,g = 1 or ⟦ψ⟧M,g = 1 

… 
For any variable v of type σ: 

• ⟦∃vφ⟧M,g 	 	 = 1 	iff 	 there is a d ∈ Dσ such that ⟦φ⟧M,g[v/d] = 1 
• ⟦∀vφ⟧M,g	 	 = 1 	iff 	 for all d ∈ Dσ : ⟦φ⟧M,g[v/d] = 1
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Interpretation: Example

Luke is a talented jedi  

	 	 	 	 	 	 jedi’ :: ⟨e, t⟩		 	 talented’:: ⟨⟨e, t⟩, ⟨e, t⟩⟩  
 
	 	 	 luke’ :: e	 	 	 	 talented’(jedi’) :: ⟨e, t⟩ 
 
	 	 	 	 	 	 talented’(jedi’)(luke’) :: t 
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⟦talented’(jedi’)(luke')⟧M,g  

= ⟦talented’(jedi’)⟧M,g (⟦luke’⟧M,g)  

= ⟦talented’⟧M,g(⟦jedi’⟧M,g) (⟦luke’⟧M,g) 

= VM(talented’)(VM(jedi’))(VM(luke’))



Interpretation: Example (cont.)

⟦Luke is a talented jedi⟧M,g = VM(talented’)(VM(jedi’))(VM(luke’)) 

VM(luke’) = e1 (∈ De) 

VM(jedi')  =	 	    (∈ D⟨e,t⟩) 

VM(talented’) =	 	 	 	 	 (∈ D⟨⟨e,t⟩⟨e,t⟩⟩)	 	
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e1→1 
e2→0 
e3→1 
e4→0 
e5→1

e1→1 
e2→0 
e3→1 
e4→0 
e5→1

e1→1 
e2→0 
e3→0 
e4→0 
e5→1

e1→0 
e2→0 
e3→1 
e4→1 
e5→1

e1→0 
e2→0 
e3→0 
e4→0 
e5→1

…

→

→

⇔ [        ]{e1,e3,e5} → {e1,e5} 
{e3,e4,e5} → {e5} 

…

⇔ {e1,e3,e5}

VM(talented’)(VM(jedi’))

VM(talented’)(VM(jedi’))(VM(luke’))



Defining the right model

De = UM = {e1, e2, e3, e4, e5} 

VM(anakin’e) = VM(darth_vader’e) = e2 

VM(jedi’⟨e,t⟩) = 	 	 VM(dark_sider’⟨e,t⟩) =  
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Luke

Anakin

Leia

Palpatine

Yoda

   M:
Darth Vader

e1

e2

e3 e4

e5

e1→1 
e2→1 
e3→1 
e4→1 
e5→0

e1→0 
e2→1 
e3→0 
e4→0 
e5→1

…

Note that here “powerful” is 
truth-preserving:  
Powerful X⟨e,t⟩ ⊨ X⟨e,t⟩

e1→1 
e2→1 
e3→1 
e4→1 
e5→0

e1→0 
e2→1 
e3→0 
e4→0 
e5→1

e1→0 
e2→1 
e3→0 
e4→0 
e5→1

→

→

e1→0 
e2→1 
e3→0 
e4→1 
e5→0

VM(powerful’⟨⟨e,t⟩⟨e,t⟩⟩) = 

Consider the following Model M:



Adjective classes & Meaning postulates

Some valid inferences in natural language:	  

• Bill is a poor piano player ⊨ Bill is a piano player  

• Bill is a blond piano player ⊨ Bill is blond  

• Bill is a former professor ⊨ Bill isn’t a professor  
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➔ These entailments do not hold in type theory by definition. Why?

Meaning postulates: restrictions on models which constrain the 
possible meaning of certain words



Adjective classes & Meaning postulates (cont.)

Restrictive or Subsective adjectives (“poor”) 

• ⟦ poor N ⟧ ⊆ ⟦ N ⟧


• Meaning postulate: ∀G∀x(poor(G)(x) → G(x))


Intersective adjectives (“blond”) 

• ⟦ blond N ⟧ =  ⟦ blond ⟧ ∩ ⟦ N ⟧


• Meaning postlate: ∀G∀x(blond(G)(x) → (blond*(x) ∧ G(x))


• NB: blond ∈ WE⟨⟨e, t⟩, ⟨e, t⟩⟩ ≠  blond* ∈ WE⟨e, t⟩


Privative adjectives (“former”) 

• ⟦ former N ⟧ ∩ ⟦ N ⟧ = ∅


• Meaning postlate: ∀G∀x(former(G)(x) → ¬G(x))
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Reading material

• Winter: Elements of Formal Semantics (Chapter 3, Part I & II)  
http://www.phil.uu.nl/~yoad/efs/main.html
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http://www.phil.uu.nl/~yoad/efs/main.html

