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First-order logic

First-order logic talks about:
- Individual objects
- Properties of and relations between individual objects

- Quantification over individual objects



Limitations of first-order logic

FOL is not expressive enough to capture all meanings that can be
expressed by basic natural language expressions:

Jumbo is a small elephant. (Predicate modifiers)
Happy is a state of mind. (Second-order predicates)
Yestergay, it rained. (Non-logical sentence operators)

Bill and John have the same hair color.  (Higher-order quantification)

= What logically sound system can capture this diversity?
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Russell's paradox for Higher-Order Logic

What if we extend the FOL interpretation of predicates, and simply interpret higher-
order predicates as sets of sets of properties?

Then, for every predicate P, we can define a set {x | P(x)} containing all and only
those entities for which P holds.

Now what if we define a set S = {X | X ¢ X} representing the set of all sets that are
not members of itself..

Paradox: does S belong to itself?

If it does, then S must satisfy its constraints, namely that it doesn’t belong to
itself, which is not possible if we assume it belongs to S.
If not, then S is a set that doesn’t belong to itself, hence it belongs to S.

- Conclusion: \We need a more restricted way of talking about
properties and relations between properties!



Winter-EFS Ch3
Type Theory Page 50

In Type Theory, all logical expressions are assigned a type (that may
be basic or complex), which restricts how they can be combined.

Basic types:
- e —the type of individual terms (“entities”)

-t - the type of formulas (“truth-values”)

Complex types:

v

h) Note: this is a “tav” (the Greek letter), not a “t*!

If o, T are types, then <o, T) Is a type

=> This represents a functor expression that takes an expression of type o as
its argument and returns an expression of type T; this functor is sometimes
written as (o6— T) or simply (o) (as in Winter-EFS)



. L Winter-EFS Ch3
Types & Function Application Page 53

Types of first-order expressions:
- Individual constants (Luke, Death Star) : @ = entity

-+ One-place predicates (walk, jedi): (e, t) = function from entities to truth values
(i.e., a property)
- Two-place predicates (admire, fight with): (e, <(e, t)) = function from entities to
properties
- Three-place predicates (give, introduce): <e, <e, <e, t))) = function from entities to
entities to properties

Function application: Combining a functor of complex type <a, B> with an
appropriate argument of type a, results in an expression of type B: <a, B)(a) » B

- Jjedi’(luke’) :: (e, () =t = “luke is a jedi” has a truth value (true or false)

- admire’(luke’) :: <(e,(e, t))(e) = (e, t) = “(to) admire luke” is a property



More examples of types

Types of higher-order expressions:

- Predicate modifiers (expensive, small): (e, t), (e, t)) = function from properties
to properties
- Second-order predicates (state of mind): (e, t), t) = property of properties

-+ Sentence operators (yesterday, unfortunately): <t, t) = function from truth values
to truth values

- Degree particles (very, too): {{(e, t), <e, 1)), (e, t), (e, 1))) > complex function.. @

Tip: It @, T are basic types, <o, T) can be abbreviated as otT. Thus, the type of

predicate modifiers and second-order predicates can be more conveniently written
as (et, et) and <et, t), respectively.



Type Theory — Vocabulary

Non-logical constants:

- For every type T a (possibly empty) set of non-logical constants CONy
(pairwise disjoint)

Variables:

- For every type T an infinite set of variables VAR: (pairwise disjoint)

Logical symbols: v, 3, 7, A, v, 2, <, =

Brackets: (, )



Type Theory — Syntax

For every type T, the set of well-formed expressions WE- is defined as follows:
(l) CONT C WET and VART C WET,
(i) If a e WE, 1, and 3 € WEg, then a(3) € WEx; (function application)

(i) If A, B are in Wk, then =A, (A A B), (A v B), (A = B), (A < B) are in WE;;

(iv) If Alis in WEr and x is a variable of arbitrary type, then vxA and 3xA are in
WEt;

(v) If a, B are well-formed expressions of the same type, then a = 3 € WE;;
Nothlng else s a weII formed expressmn
“NB. This preven’rs us from running into Russell’s paradox!
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Type Inferencing Page 59-60

Types can be derived for all expressions that constitute the logical
form of a sentence, as defined by its syntactic structure.

“Luke Is a talented jedi”

talented’ :: (e, D, <e, I jedi’:: (e, t)

luke’:: e talented’(jedr’):: <e, )

talented’(jedi’)(luke’) :: t

Note: we here ignore the semantic
contribution of “is” and a” (see Winter, pg 61)
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Type inferencing: examples

Recommended strategy: Start by describing the logical form of the
sentences (how are expressions combined logically, based on the given
syntactic bracketing), then derive types from there (see previous slide).

1. Yodae [is faster than Palpatineg].

2. Yodae [is much [faster than]] Palpatinee.

3. [[Han Solo]e fights] [because [[the Dark Sidee is rising]].

4. Obi-Wane [[told [Qui-Gon Jinnle] he will take [the Jedi-examle].



Higher-order predicates

Higher-order quantification:

- [ eia has the same hair colour as Padmé

3C (hair_colour(C) A C(I') A C(p’))
K M T .
(e, Dt e, v

Higher-order equality:

- For p, g e CONy, “p=0” expresses material equivalence: “p < q”.
+ For F, G € CONe, v, “F=G” expresses co-extensionality: “vx(Fx«—Gx)”

- For any formula ¢ of type t, d=(x=X) is a representation of “¢ is true”.
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| Winter-EFS Ch3
Type Theory — Semantics [1] Page 51

Let U be a non-empty set of entities.

The domain of possible denotations D+ for every type T Is given by:
De = U
Dt = {0,1}
Dw.v IS the set of all functions from Dg to D+

For any type T, expressions of type T denote elements of the domain Dr
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. | Winter-EFS Ch3
Characteristic functions Page 46-47

Many natural language expressions have a type <o, t)

Expressions with type <o, t) are functions mapping elements of type o
to truth values: {0,1}

Such functions with a range of {0,1} are called characteristic functions,
because they uniquely specify a subset of their domain Dge

The characteristic function of set M in a domain U iIs the function

Fvm: U—{0,1} such that for alla € U, Fm(a) = 1 iff a € M.

NB: For first-order predicates, the FOL representation (using sets) and the type-
theoretic representation (using characteristic functions) are equivalent.
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Interpretation with characteristic functions:
example

For M = <U, V), let U consist of five entities. For selected types, we have the
following sets of possible denotations:

Dt = {0,1}

De = U = {e1, €2, €3, €4, €5}

e1—1 e1—1 e1—0

ex2—0 | |ex—1 eo— 1
D<e,t> ={ es—1 |, es—=0|, les—1], }

es—0 | |es—1 es—0

es5— 1 es— 1 es—0

Alternative set notation: D<et> = {{€1,e3,65},{€1,62,64,65},{€2,€3},...]
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Type Theory — Semantics [2]

A model structure for a type theoretic language is a tuple M = U, V)
such that:

U is a non-empty domain of individuals

-V is an interpretation function, which assigns to every a € CON«
an element of D¢ (where T Is an arbitrary type)

The variable assignment function g assigns to every typed variable
v € VAR an element of D+
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Type Theory — Interpretation

Given a model structure M =

(U, V) and a variable assignment g:

- [aJMsg =V(a) If ais aconstant
=g(a) ifais avariable

© [a)IMe = [aIM9([BIM9)

- [a=pMe  =1iff [alM9=[BRIMa

© [-pIM9 =1iff [dIM9=0

(D APIMe =T
c [ovpIMe =T ff

For any variable v of type o:
-« [3avpIMe =1 iff
+ [vvdpIMe =1 iff

[dIM9 =1 and [PIM9 = 1
[oIMe =1 or [PIMe = 1

there is a d € Do such that [¢IMelv/d = 1
for all d € Do : [pIValvdl = 1

18



Interpretation: Example

Luke Is a talented jedi

jedi’ :: <e, t) talented’:: e, 1), <e, t))

luke’ :: e talented’(jedr’) :: <e, t)

talented’(jedr’)(luke’) :: t

[talented’(jedi’)(luke’) M9

= [talented’(jedi’)IM9 ([luke’TM.9)

= [talented’ JM9([jedi’TM:9) ([luke’IM.9)
= Vm(talented’)(Vm(jedi’))(Vm(luke’))
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Interpretation:

—xample (cont.)

[Luke is a talented jediTM9 = Vu(talented’)(Vm(jed?’))(Vm(luke’))

Vm(talented’)

'L ez_’ . '»i‘

" D etiet)) @ |:{eg,e4,e5} ~ {es)

{e1,e3,e5) = {e1,e5) }

A Vu(talented’)(Vm(jedi’))
| Vu(talented’)(Vm(jedi’))(Vm(luke?))

20



Defining the right model

Consider the following Model M: M: Anakin
/ Darth Vader
De = Um = {€1, €2, €3, €4, €5} ( ez e
/\ 65)
Vm(anakin’e) = Vm(darth_vader’s) = e2 \
{ '93 e+ | Palpatine
o v Jem1 L [es0 Luke\ 4
Vm(jedi’ e ) = oo 1 Vm(dark_sider’ e 1) = o 1 J
e3— 1 ea—0 Lela
ej—” e4—0 Yoda
| e5—0 . _Les—1
(o1 1] B
ex—1 eo— 1
es—1| = | es—0
Vm(powertul'«evem) =77 o Note that here “powerful” is
T P --2> truth-preserving:
eo—1 o1 Powerful Xty E Xety
es—0| = | e3—0
es—0 es—0
es—1 | | es—1 |




Adjective classes & Meaning postulates

Some valid inferences in natural language:
- Bill is a poor piano player = Bill is a piano player
- Bill is a blond piano player = Bill is blond

- Bill is a former professor &= Bill isn’t a professor

-> These entailments do not hold in type theory by definition. Why?

Meaning postulates: restrictions on models which constrain the
possible meaning of certain words



Adjective classes & Meaning postulates (cont.)

Restrictive or Subsective adjectives (“poor”)
- [poorNJC NI

- Meaning postulate: vGvx(poor(G)(x) = G(x))

Intersective adjectives (“blond”)
- [blondN]= [blond]n[NTI
- Meaning postlate: vGvx(blond(G)(x) = (blond*(x) A G(x))

- NB: blond € WE(<e, t), (e, t)) # blond* € WE(e, t)

Privative adjectives (“former”)
- [formerN]n[N]=9

- Meaning postlate: vGvx(former(G)(x) = —G(x))



Reading material

- Winter: Elements of Formal Semantics (Chapter 3, Part | & |l)
http://www.phil.uu.nl/~yoad/efs/main.html
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