
Semantic Theory
Week 2 – Type Theory

Noortje Venhuizen
Harm Brouwer

Universität des Saarlandes

Summer 2020

1

First-order logic

First-order logic talks about:

• Individual objects

• Properties of and relations between individual objects

• Quantification over individual objects

2

Limitations of first-order logic

FOL is not expressive enough to capture all meanings that can be
expressed by basic natural language expressions:

Jumbo is a small elephant. 	 	 	 	 (Predicate modifiers)

Happy is a state of mind.	 	 	 	 (Second-order predicates)

Yesterday, it rained.	 	 	 	 	 	 (Non-logical sentence operators)

Bill and John have the same hair color. 	 (Higher-order quantification)

3

➔ What logically sound system can capture this diversity?

4

Introducing Russell's paradox

From: Logicomix — An epic search for truth; A. Doxiadis, C.H. Papadimitriou, A. Papadatos and A. Di Donna

Bertrand Russell

Russell's paradox for Higher-Order Logic

5

What if we extend the FOL interpretation of predicates, and simply interpret higher-
order predicates as sets of sets of properties?

Then, for every predicate P, we can define a set {x | P(x)} containing all and only
those entities for which P holds.

Now what if we define a set S = {X | X ∉ X} representing the set of all sets that are
not members of itself..

Paradox: does S belong to itself? 
If it does, then S must satisfy its constraints, namely that it doesn’t belong to
itself, which is not possible if we assume it belongs to S. 
If not, then S is a set that doesn’t belong to itself, hence it belongs to S. 

➔ Conclusion: We need a more restricted way of talking about
 properties and relations between properties!

Type Theory

In Type Theory, all logical expressions are assigned a type (that may
be basic or complex), which restricts how they can be combined.

Basic types:

• e – the type of individual terms (“entities”)

• t – the type of formulas (“truth-values”)

6

Complex types:

• If σ, τ are types, then ⟨σ, τ⟩ is a type

➔ This represents a functor expression that takes an expression of type σ as
its argument and returns an expression of type τ; this functor is sometimes
written as (σ→ τ) or simply (στ) (as in Winter-EFS)

Note: this is a “tau” (the Greek letter), not a “t”!

Winter-EFS Ch3
Page 50

Types & Function Application

Types of first-order expressions:

• Individual constants (Luke, Death Star) : e

• One-place predicates (walk, jedi): ⟨e, t⟩

• Two-place predicates (admire, fight with): ⟨e, ⟨e, t⟩⟩

• Three-place predicates (give, introduce): ⟨e, ⟨e, ⟨e, t⟩⟩⟩

7

➔ entity

➔ function from entities to truth values
(i.e., a property)
➔ function from entities to

properties
➔ function from entities to

entities to properties

Function application: Combining a functor of complex type ⟨ɑ, β⟩ with an
appropriate argument of type ɑ, results in an expression of type β: ⟨ɑ, β⟩(ɑ) ↦ β

• jedi’(luke’) :: ⟨e, t⟩(e) ⟹ t

• admire’(luke’) :: ⟨e,⟨e, t⟩⟩(e) ⟹ ⟨e, t⟩

➔ “luke is a jedi” has a truth value (true or false)

➔ “(to) admire luke” is a property

Winter-EFS Ch3
Page 53

More examples of types

Types of higher-order expressions:

• Predicate modifiers (expensive, small): ⟨⟨e, t⟩, ⟨e, t⟩⟩

• Second-order predicates (state of mind): ⟨⟨e, t⟩, t⟩

• Sentence operators (yesterday, unfortunately): ⟨t, t⟩

• Degree particles (very, too): ⟨⟨⟨e, t⟩, ⟨e, t⟩⟩, ⟨⟨e, t⟩, ⟨e, t⟩⟩⟩

8

Tip: If σ, τ are basic types, ⟨σ, τ⟩ can be abbreviated as στ. Thus, the type of
predicate modifiers and second-order predicates can be more conveniently written
as ⟨et, et⟩ and ⟨et, t⟩, respectively.

➔ function from properties
 to properties

➔ property of properties

➔ function from truth values
 to truth values

➔ complex function.. 😉

Type Theory — Vocabulary

Non-logical constants:

• For every type τ a (possibly empty) set of non-logical constants CONτ
(pairwise disjoint)

Variables:

• For every type τ an infinite set of variables VARτ (pairwise disjoint)

Logical symbols: ∀, ∃, ¬, ∧, ∨, →, ↔, =

Brackets: (,)

9

Type Theory — Syntax

For every type τ, the set of well-formed expressions WEτ is defined as follows:

(i) CONτ ⊆ WEτ and VARτ ⊆ WEτ;

(ii) If α ∈ WE⟨σ, τ⟩, and β ∈ WEσ, then α(β) ∈ WEτ;	 	 (function application)

(iii) If A, B are in WEt, then ¬A, (A ∧ B), (A ∨ B), (A → B), (A ↔ B) are in WEt;

(iv) If A is in WEt and x is a variable of arbitrary type, then ∀xA and ∃xA are in
WEt;

(v) If α, β are well-formed expressions of the same type, then α = β ∈ WEt;

(vi) Nothing else is a well-formed expression.

10

NB. This prevents us from running into Russell’s paradox!

Types can be derived for all expressions that constitute the logical
form of a sentence, as defined by its syntactic structure.

“Luke is a talented jedi”

	 	 	 	 	 	 :: ⟨e, t⟩:: ⟨⟨e, t⟩, ⟨e, t⟩⟩

 :: e :: ⟨e, t⟩

:: t

Type inferencing

11

	 	 	 talented’ 		 	 	 	 	 jedi’

luke’	 	 	 	 	 	 talented’(jedi’)

	 	 	 talented’(jedi’)(luke’)

Winter-EFS Ch3
Page 59-60

Note: we here ignore the semantic
contribution of “is” and “a” (see Winter, pg 61)

Type inferencing: examples

Recommended strategy: Start by describing the logical form of the
sentences (how are expressions combined logically, based on the given
syntactic bracketing), then derive types from there (see previous slide).

1. Yodae [is faster than Palpatinee].

2. Yodae [is much [faster than]] Palpatinee.

3. [[Han Solo]e fights] [because [[the Dark Side]e is rising]].

4. Obi-Wane [[told [Qui-Gon Jinn]e] he will take [the Jedi-exam]e].

12

Higher-order predicates

Higher-order quantification:

• Leia has the same hair colour as Padmé

	 	 ∃C (hair_colour(C) ∧ C(l’) ∧ C(p’))
	 	

13

⟨⟨e, t⟩,t⟩ ⟨e, t⟩ e

Higher-order equality:

• For p, q ∈ CONt, “p=q” expresses material equivalence: “p ↔ q”.

• For F, G ∈ CON⟨e, t⟩, “F=G” expresses co-extensionality: “∀x(Fx↔Gx)”

• For any formula φ of type t, φ=(x=x) is a representation of “φ is true”.

Type Theory — Semantics [1]

Let U be a non-empty set of entities.

The domain of possible denotations Dτ for every type τ is given by:

• De = U

• Dt = {0,1}

• D⟨σ,τ⟩ is the set of all functions from Dσ to Dτ

For any type τ, expressions of type τ denote elements of the domain Dτ

14

Winter-EFS Ch3
Page 51

Characteristic functions

Many natural language expressions have a type ⟨σ, t⟩

Expressions with type ⟨σ, t⟩ are functions mapping elements of type σ
to truth values: {0,1}

Such functions with a range of {0,1} are called characteristic functions,
because they uniquely specify a subset of their domain Dσ

15

The characteristic function of set M in a domain U is the function
FM: U→{0,1} such that for all a ∈ U, FM(a) = 1 iff a ∈ M.

NB: For first-order predicates, the FOL representation (using sets) and the type-
theoretic representation (using characteristic functions) are equivalent.

Winter-EFS Ch3
Page 46-47

Interpretation with characteristic functions:
example

For M = ⟨U, V⟩, let U consist of five entities. For selected types, we have the
following sets of possible denotations:

16

• Dt = {0,1}

• De = U = {e1, e2, e3, e4, e5}
e1→1
e2→0
e3→1
e4→0
e5→1

e1→1
e2→1
e3→0
e4→1
e5→1

e1→0
e2→1
e3→1
e4→0
e5→0

• D<e,t> ={		 ,	 	 ,	 , …}

Alternative set notation: D<e,t> = {{e1,e3,e5},{e1,e2,e4,e5},{e2,e3},…}

Type Theory — Semantics [2]

A model structure for a type theoretic language is a tuple M = ⟨U, V⟩
such that:

• U is a non-empty domain of individuals

• V is an interpretation function, which assigns to every α ∈ CONτ
an element of Dτ (where τ is an arbitrary type)

The variable assignment function g assigns to every typed variable
v ∈ VARτ an element of Dτ

17

Type Theory — Interpretation

Given a model structure M = ⟨U, V⟩ and a variable assignment g:
• ⟦α⟧M,g 		 	 = V(α)	 if α is a constant
	 	 	 	 = g(α)	 if α is a variable

• ⟦α(β)⟧M,g 	 	 = ⟦α⟧M,g(⟦β⟧M,g)
• ⟦α = β⟧M,g 		 = 1 	iff 	 ⟦α⟧M,g = ⟦β⟧M,g
• ⟦¬φ⟧M,g 	 	 = 1 	iff 	 ⟦φ⟧M,g = 0
• ⟦φ ∧ ψ⟧M,g 	 = 1 	iff 	 ⟦φ⟧M,g = 1 and ⟦ψ⟧M,g = 1
• ⟦φ ∨ ψ⟧M,g 	 = 1 	iff 	 ⟦φ⟧M,g = 1 or ⟦ψ⟧M,g = 1

…
For any variable v of type σ:

• ⟦∃vφ⟧M,g 	 	 = 1 	iff 	 there is a d ∈ Dσ such that ⟦φ⟧M,g[v/d] = 1
• ⟦∀vφ⟧M,g	 	 = 1 	iff 	 for all d ∈ Dσ : ⟦φ⟧M,g[v/d] = 1

18

Interpretation: Example

Luke is a talented jedi

	 	 	 	 	 	 jedi’ :: ⟨e, t⟩		 	 talented’:: ⟨⟨e, t⟩, ⟨e, t⟩⟩

	 	 	 luke’ :: e	 	 	 	 talented’(jedi’) :: ⟨e, t⟩

	 	 	 	 	 	 talented’(jedi’)(luke’) :: t

19

⟦talented’(jedi’)(luke')⟧M,g

= ⟦talented’(jedi’)⟧M,g (⟦luke’⟧M,g)

= ⟦talented’⟧M,g(⟦jedi’⟧M,g) (⟦luke’⟧M,g)

= VM(talented’)(VM(jedi’))(VM(luke’))

Interpretation: Example (cont.)

⟦Luke is a talented jedi⟧M,g = VM(talented’)(VM(jedi’))(VM(luke’))

VM(luke’) = e1 (∈ De)

VM(jedi') =	 	 (∈ D⟨e,t⟩)

VM(talented’) =	 	 	 	 	 (∈ D⟨⟨e,t⟩⟨e,t⟩⟩)	 	

20

e1→1
e2→0
e3→1
e4→0
e5→1

e1→1
e2→0
e3→1
e4→0
e5→1

e1→1
e2→0
e3→0
e4→0
e5→1

e1→0
e2→0
e3→1
e4→1
e5→1

e1→0
e2→0
e3→0
e4→0
e5→1

…

→

→

⇔ []{e1,e3,e5} → {e1,e5}
{e3,e4,e5} → {e5}

…

⇔ {e1,e3,e5}

VM(talented’)(VM(jedi’))

VM(talented’)(VM(jedi’))(VM(luke’))

Defining the right model

De = UM = {e1, e2, e3, e4, e5}

VM(anakin’e) = VM(darth_vader’e) = e2

VM(jedi’⟨e,t⟩) = 	 	 VM(dark_sider’⟨e,t⟩) =

21

Luke

Anakin

Leia

Palpatine

Yoda

 M:
Darth Vader

e1

e2

e3 e4

e5

e1→1
e2→1
e3→1
e4→1
e5→0

e1→0
e2→1
e3→0
e4→0
e5→1

…

Note that here “powerful” is
truth-preserving:
Powerful X⟨e,t⟩ ⊨ X⟨e,t⟩

e1→1
e2→1
e3→1
e4→1
e5→0

e1→0
e2→1
e3→0
e4→0
e5→1

e1→0
e2→1
e3→0
e4→0
e5→1

→

→

e1→0
e2→1
e3→0
e4→1
e5→0

VM(powerful’⟨⟨e,t⟩⟨e,t⟩⟩) =

Consider the following Model M:

Adjective classes & Meaning postulates

Some valid inferences in natural language:	

• Bill is a poor piano player ⊨ Bill is a piano player

• Bill is a blond piano player ⊨ Bill is blond

• Bill is a former professor ⊨ Bill isn’t a professor

22

➔ These entailments do not hold in type theory by definition. Why?

Meaning postulates: restrictions on models which constrain the
possible meaning of certain words

Adjective classes & Meaning postulates (cont.)

Restrictive or Subsective adjectives (“poor”)

• ⟦ poor N ⟧ ⊆ ⟦ N ⟧

• Meaning postulate: ∀G∀x(poor(G)(x) → G(x))

Intersective adjectives (“blond”)

• ⟦ blond N ⟧ = ⟦ blond ⟧ ∩ ⟦ N ⟧

• Meaning postlate: ∀G∀x(blond(G)(x) → (blond*(x) ∧ G(x))

• NB: blond ∈ WE⟨⟨e, t⟩, ⟨e, t⟩⟩ ≠ blond* ∈ WE⟨e, t⟩

Privative adjectives (“former”)

• ⟦ former N ⟧ ∩ ⟦ N ⟧ = ∅

• Meaning postlate: ∀G∀x(former(G)(x) → ¬G(x))

23

Reading material

• Winter: Elements of Formal Semantics (Chapter 3, Part I & II)
http://www.phil.uu.nl/~yoad/efs/main.html

24

http://www.phil.uu.nl/~yoad/efs/main.html

