Semantic Theory Week 2 – Type Theory

Noortje Venhuizen Harm Brouwer

Universität des Saarlandes

Summer 2020

First-order logic

First-order logic talks about:

- Individual objects
- Properties of and relations between individual objects
- Quantification over individual objects

Limitations of first-order logic

FOL is not expressive enough to capture all meanings that can be expressed by basic natural language expressions:

Jumbo is a <u>small</u> elephant.	(Predicate modifiers)
Happy is a <u>state of mind.</u>	(Second-order predicates)
<u>Yesterday</u> , it rained.	(Non-logical sentence operators)
Bill and John have <u>the same</u> hair color.	(Higher-order quantification)

→ What *logically sound* system can capture this diversity?

Introducing Russell's paradox

From: Logicomix - An epic search for truth; A. Doxiadis, C.H. Papadimitriou, A. Papadatos and A. Di Donna

Bertrand Russell

LOGICOMIX

AN EPIC SEARCH FOR TRUTH

APOSTOLOS DOXIADIS, CHRISTOS H. PAPADIMITRIOU, Alecos papadatos, And Annie di Donna

Russell's paradox for Higher-Order Logic

What if we extend the FOL interpretation of predicates, and simply interpret higherorder predicates as sets of sets of properties?

Then, for every predicate P, we can define a set $\{x \mid P(x)\}$ containing all and only those entities for which P holds.

Now what if we define a set $S = \{X \mid X \notin X\}$ representing the set of all sets that are not members of itself.

Paradox: does S belong to itself?

If it does, then S must satisfy its constraints, namely that it doesn't belong to itself, which is not possible if we assume it belongs to S. If not, then S is a set that doesn't belong to itself, hence it belongs to S.

→ Conclusion: We need a more restricted way of talking about properties and relations between properties!

Type Theory

In Type Theory, all logical expressions are assigned a *type* (that may be basic or complex), which restricts how they can be combined.

Basic types:

- **e** the type of individual terms ("entities")
- t the type of formulas ("truth-values")

Complex types:

• If σ , τ are types, then $\langle \sigma, \tau \rangle$ is a type

Note: this is a "tau" (the Greek letter), not a "t"!

→ This represents a functor expression that takes an expression of type σ as its argument and returns an expression of type τ ; this functor is sometimes written as ($\sigma \rightarrow \tau$) or simply ($\sigma \tau$) (as in Winter-EFS)

📲 🚏 🛔 A

Winter-EFS Ch3

Page 50

Types of first-order expressions:

- Individual constants (Luke, Death Star) : e → entity
- One-place predicates (walk, jedi): (e, t) → function from entities to truth values (i.e., a property)
- Two-place predicates (admire, fight with): ⟨e, ⟨e, t⟩⟩ → function from entities to properties
- Three-place predicates (give, introduce): <e, <e, <e, <e, t>>> → function from entities to entities to properties

Function application: Combining a functor of complex type $\langle a, \beta \rangle$ with an appropriate argument of type a, results in an expression of type β : $\langle a, \beta \rangle \langle a \rangle \mapsto \beta$

- jedi'(luke') :: $\langle e, t \rangle \langle e \rangle \Longrightarrow t \rightarrow$ "luke is a jedi" has a truth value (true or false)
- admire'(luke') :: $\langle e, \langle e, t \rangle \rangle \langle e \rangle \Longrightarrow \langle e, t \rangle \rightarrow$ "(to) admire luke" is a property

More examples of types

Types of higher-order expressions:

- Predicate modifiers (expensive, small): (⟨e, t⟩, ⟨e, t⟩) → function from properties to properties
- Second-order predicates (state of mind): ⟨⟨e, t⟩, t⟩ → property of properties
- Sentence operators (yesterday, unfortunately): ⟨t, t⟩ → function from truth values to truth values
- Degree particles (very, too): ⟨⟨⟨e, t⟩, ⟨e, t⟩⟩, ⟨⟨e, t⟩, ⟨e, t⟩⟩ → complex function.. ☺

Tip: If σ , τ are basic types, $\langle \sigma, \tau \rangle$ can be abbreviated as $\sigma\tau$. Thus, the type of predicate modifiers and second-order predicates can be more conveniently written as $\langle et, et \rangle$ and $\langle et, t \rangle$, respectively.

Non-logical constants:

- For every type $\pmb{\tau}$ a (possibly empty) set of non-logical constants CON_{\tau} (pairwise disjoint)

Variables:

• For every type $\mathbf{\tau}$ an infinite set of variables VAR_{τ} (pairwise disjoint)

Logical symbols: \forall , \exists , \neg , \land , \lor , \rightarrow , \leftrightarrow , =

Brackets: (,)

Type Theory — Syntax

<u>For every type τ , the set of well-formed expressions WE_{τ} is defined as follows:</u>

- (i) $CON_{\tau} \subseteq WE_{\tau}$ and $VAR_{\tau} \subseteq WE_{\tau}$;
- (ii) If $\alpha \in WE_{\langle \sigma, \tau \rangle}$, and $\beta \in WE_{\sigma}$, then $\alpha(\beta) \in WE_{\tau}$; (function application)

(iii) If A, B are in WE_t, then $\neg A$, (A \land B), (A \lor B), (A \rightarrow B), (A \leftrightarrow B) are in WE_t;

(iv) If A is in WEt and x is a variable of arbitrary type, then ∀xA and ∃xA are in WEt;

(v) If α , β are well-formed expressions of the same type, then $\alpha = \beta \in WE_t$;

(vi) Nothing else is a well-formed expression.

NB. This prevents us from running into Russell's paradox!

Types can be derived for all expressions that constitute the logical form of a sentence, as defined by its syntactic structure.

"Luke is a talented jedi"

	talented' :: $\langle \langle e, t \rangle, \langle e, t \rangle \rangle$	jedi' :: <e, t=""></e,>		
luke':: e	talented'(jedi'):: <e, t=""></e,>			
talented'(jedi')(luke'):: t				

Note: we here ignore the semantic contribution of "is" and "a" (see Winter, pg 61)

Type inferencing: examples

Recommended strategy: Start by describing the logical form of the sentences (how are expressions combined logically, based on the given syntactic bracketing), then derive types from there (see previous slide).

- 1. Yoda_e [is faster than Palpatine_e].
- 2. Yoda_e [is <u>much</u> [faster than]] Palpatine_e.
- 3. [[Han Solo]_e fights] [because [[the Dark Side]_e is rising]].
- 4. Obi-Wan_e [[told [Qui-Gon Jinn]_e] he will take [the Jedi-exam]_e].

Higher-order predicates

Higher-order quantification:

• Leia has the same hair colour as Padmé

Higher-order equality:

- For p, q \in CON_t, "p=q" expresses material equivalence: "p \leftrightarrow q".
- For F, G \in CON_(e, t), "F=G" expresses co-extensionality: " $\forall x(Fx \leftrightarrow Gx)$ "
- For any formula ϕ of type *t*, $\phi = (x=x)$ is a representation of " ϕ is true".

Let **U** be a non-empty set of entities.

The domain of possible denotations D_{τ} for every type τ is given by:

- $D_e = U$
- $D_t = \{0, 1\}$
- $D_{\langle \sigma, \tau \rangle}$ is the set of all functions from D_{σ} to D_{τ}

For any type $\boldsymbol{\tau}$, expressions of type $\boldsymbol{\tau}$ denote elements of the domain $\boldsymbol{D}_{\boldsymbol{\tau}}$

Characteristic functions

Many natural language expressions have a type $\langle \sigma, t \rangle$

Expressions with type $\langle \sigma, t \rangle$ are functions mapping elements of type σ to truth values: {0,1}

Such functions with a range of $\{0,1\}$ are called *characteristic functions*, because they uniquely specify a subset of their domain D_{σ}

The characteristic function of set M in a domain U is the function $F_M: U \rightarrow \{0,1\}$ such that for all $a \in U$, $F_M(a) = 1$ iff $a \in M$.

NB: For first-order predicates, the FOL representation (using sets) and the typetheoretic representation (using characteristic functions) are equivalent.

Interpretation with characteristic functions: example

For $M = \langle U, V \rangle$, let U consist of five entities. For selected types, we have the following sets of possible denotations:

• $D_t = \{0, 1\}$

•
$$D_e = U = \{e_1, e_2, e_3, e_4, e_5\}$$

• $D_{\langle e,t \rangle} = \{ \begin{bmatrix} e_1 \to 1 \\ e_2 \to 0 \\ e_3 \to 1 \\ e_4 \to 0 \\ e_5 \to 1 \end{bmatrix}, \begin{bmatrix} e_1 \to 1 \\ e_2 \to 1 \\ e_3 \to 0 \\ e_4 \to 1 \\ e_5 \to 1 \end{bmatrix}, \begin{bmatrix} e_1 \to 0 \\ e_2 \to 1 \\ e_3 \to 1 \\ e_4 \to 0 \\ e_5 \to 0 \end{bmatrix}, \dots \}$

Alternative set notation: $D_{\langle e,t \rangle} = \{\{e_1,e_3,e_5\},\{e_1,e_2,e_4,e_5\},\{e_2,e_3\},\ldots\}$

Type Theory — Semantics [2]

A model structure for a type theoretic language is a tuple $\mathbf{M} = \langle \mathbf{U}, \mathbf{V} \rangle$ such that:

- **U** is a non-empty domain of individuals
- V is an interpretation function, which assigns to every $\alpha \in CON_{\tau}$ an element of D_{τ} (where τ is an arbitrary type)

The variable assignment function g assigns to every typed variable $v \in VAR_{\tau}$ an element of D_{τ}

Type Theory — Interpretation

Given a model structure $M = \langle U, V \rangle$ and a variable assignment g:

- $\llbracket \alpha \rrbracket^{M,g} = V(\alpha)$ if α is a constant
 - $= g(\alpha)$ if α is a variable
- $\llbracket \alpha(\beta) \rrbracket^{M,g} = \llbracket \alpha \rrbracket^{M,g} (\llbracket \beta \rrbracket^{M,g})$
- $\llbracket \alpha = \beta \rrbracket^{M,g}$ = 1 iff $\llbracket \alpha \rrbracket^{M,g} = \llbracket \beta \rrbracket^{M,g}$
- $\llbracket \neg \varphi \rrbracket^{M,g} = 1$ iff $\llbracket \varphi \rrbracket^{M,g} = 0$
- $\label{eq:main_states} \bullet \ [\![\varphi \land \psi]\!]^{M,g} = 1 \ \text{iff} \ [\![\varphi]\!]^{M,g} = 1 \ \text{and} \ [\![\psi]\!]^{M,g} = 1$
- $\label{eq:main_states} \bullet \ [\![\varphi \lor \psi]\!]^{M,g} = 1 \ \text{iff} \ [\![\varphi]\!]^{M,g} = 1 \ \text{or} \ [\![\psi]\!]^{M,g} = 1$

...

For any variable v of type σ :

- $[\exists v \varphi]^{M,g} = 1$ iff there is a $d \in D_{\sigma}$ such that $[\![\varphi]\!]^{M,g[v/d]} = 1$
- $\label{eq:main_states} \bullet \ [\![\forall v \varphi]\!]^{M,g} \qquad = 1 \ \text{iff} \quad \text{for all } d \in D_\sigma : [\![\varphi]\!]^{M,g[v/d]} = 1$

Interpretation: Example

Luke is a talented jedi

	jedi' :: <e, t=""></e,>	talented':: $\langle\langle e, t \rangle, \langle e, t \rangle \rangle$	
uke' :: e	talented'(jedi') :: <e, t=""></e,>		
	talented'(jedi')(lu	ke') :: t	

[talented'(jedi')(luke')]^{M,g}

- = $[talented'(jedi')]^{M,g}([luke']^{M,g})$
- $= [[talented']]^{M,g}([[jedi']]^{M,g}) ([[luke']]^{M,g})$
- $= V_M$ (talented')(V_M (jedi'))(V_M (luke'))

Interpretation: Example (cont.)

[[Luke is a talented jedi]]^{M,g} = V_M (talented')(V_M (jedi'))(V_M (luke'))

Defining the right model

Adjective classes & Meaning postulates

Some valid inferences in natural language:

- Bill is a poor piano player \models Bill is a piano player
- Bill is a blond piano player \models Bill is blond
- Bill is a former professor \models Bill isn't a professor
- → These entailments do not hold in type theory by definition. Why?

Meaning postulates: restrictions on models which constrain the possible meaning of certain words

Adjective classes & Meaning postulates (cont.)

Restrictive or Subsective adjectives ("poor")

- $\llbracket poor N \rrbracket \subseteq \llbracket N \rrbracket$
- Meaning postulate: $\forall G \forall x (poor(G)(x) \rightarrow G(x))$

Intersective adjectives ("blond")

- $\boldsymbol{\cdot} \hspace{0.2cm} \llbracket \hspace{0.2cm} \text{blond} \hspace{0.1cm} N \hspace{0.1cm} \rrbracket = \hspace{0.1cm} \llbracket \hspace{0.1cm} \text{blond} \hspace{0.1cm} \rrbracket \cap \hspace{0.1cm} \llbracket \hspace{0.1cm} N \hspace{0.1cm} \rrbracket$
- Meaning postlate: $\forall G \forall x (blond(G)(x) \rightarrow (blond^*(x) \land G(x)))$
- NB: blond \in WE $\langle\langle e, t \rangle, \langle e, t \rangle \rangle \neq$ blond* \in WE $\langle e, t \rangle$

Privative adjectives ("former")

- \llbracket former N $\rrbracket \cap \llbracket$ N $\rrbracket = \varnothing$
- Meaning postlate: $\forall G \forall x (former(G)(x) \rightarrow \neg G(x))$

Reading material

 Winter: Elements of Formal Semantics (Chapter 3, Part I & II) <u>http://www.phil.uu.nl/~yoad/efs/main.html</u>