Semantic Theory Week 2 - Type Theory

Noortje Venhuizen
Harm Brouwer

Universität des Saarlandes

Summer 2020

First-order logic

First-order logic talks about:

- Individual objects
- Properties of and relations between individual objects
- Quantification over individual objects

Limitations of first-order logic

FOL is not expressive enough to capture all meanings that can be expressed by basic natural language expressions:

Jumbo is a small elephant.
Happy is a state of mind.
Yesterday, it rained.
Bill and John have the same hair color.
(Predicate modifiers)
(Second-order predicates)
(Non-logical sentence operators)
(Higher-order quantification)
\rightarrow What logically sound system can capture this diversity?

Introducing Russell's paradox

From: Logicomix - An epic search for truth; A. Doxiadis, C.H. Papadimitriou, A. Papadatos and A. Di Donna
 taken literally, it leads straight to paradox!

Russell's paradox for Higher-Order Logic

What if we extend the FOL interpretation of predicates, and simply interpret higherorder predicates as sets of sets of properties?

Then, for every predicate P, we can define a set $\{x \mid P(x)\}$ containing all and only those entities for which P holds.

Now what if we define a set $S=\{X \mid X \notin X\}$ representing the set of all sets that are not members of itself..

Paradox: does S belong to itself?
If it does, then S must satisfy its constraints, namely that it doesn't belong to itself, which is not possible if we assume it belongs to S.
If not, then S is a set that doesn't belong to itself, hence it belongs to S.
\rightarrow Conclusion: We need a more restricted way of talking about properties and relations between properties!

Type Theory

Winter-EFS Ch3 Page 50

In Type Theory, all logical expressions are assigned a type (that may be basic or complex), which restricts how they can be combined.

Basic types:

- \mathbf{e} - the type of individual terms ("entities")
- t - the type of formulas ("truth-values")

Complex types:

- If $\boldsymbol{\sigma}, \boldsymbol{\tau}$ are types, then $\langle\boldsymbol{\sigma}, \boldsymbol{\tau}\rangle$ is a type

Note: this is a "tau" (the Greek letter), not a "t"!

\rightarrow This represents a functor expression that takes an expression of type $\boldsymbol{\sigma}$ as its argument and returns an expression of type $\mathbf{\tau}$; this functor is sometimes written as ($\boldsymbol{\sigma} \rightarrow \mathbf{\tau}$) or simply ($\boldsymbol{\sigma}$) (as in Winter-EFS)

Types \& Function Application

Winter-EFS Ch3
 Page 53

Types of first-order expressions:

- Individual constants (Luke, Death Star) : e \rightarrow entity
- One-place predicates (walk, jedi): $\langle\mathbf{e}, \mathbf{t}\rangle \rightarrow$ function from entities to truth values (i.e., a property)
- Two-place predicates (admire, fight with): $\langle\mathbf{e},\langle\mathbf{e}, \mathbf{t}\rangle\rangle \rightarrow$ function from entities to properties
- Three-place predicates (give, introduce): $\langle\mathbf{e},\langle\mathbf{e},\langle\mathbf{e}, \mathbf{t}\rangle\rangle\rangle \rightarrow$ function from entities to entities to properties

Function application: Combining a functor of complex type $\langle\boldsymbol{a}, \boldsymbol{\beta}\rangle$ with an appropriate argument of type \mathbf{a}, results in an expression of type $\boldsymbol{\beta}:\langle\mathbf{a}, \boldsymbol{\beta}\rangle(\mathbf{a}) \mapsto \boldsymbol{\beta}$

- jedi'(luke’) :: $\langle\mathbf{e}, \mathbf{t}\rangle(\mathbf{e}) \Longrightarrow \mathbf{t} \rightarrow$ "luke is a jedi" has a truth value (true or false)
- admire' $\left(l u k{ }^{\prime}\right)::\langle\mathbf{e},\langle\mathbf{e}, \mathbf{t}\rangle\rangle(\mathbf{e}) \Longrightarrow\langle\mathbf{e}, \mathbf{t}\rangle \rightarrow$ "(to) admire luke" is a property

More examples of types

Types of higher-order expressions:

- Predicate modifiers (expensive, small): $\langle\langle\mathbf{e}, \mathbf{t}\rangle,\langle\mathbf{e}, \mathbf{t}\rangle\rangle \rightarrow$ function from properties to properties
- Second-order predicates (state of mind): $\langle\langle\mathbf{e}, \mathbf{t}\rangle, \mathbf{t}\rangle \quad \rightarrow$ property of properties
- Sentence operators (yesterday, unfortunately): $\langle\mathbf{t}, \mathbf{t}\rangle \rightarrow$ function from truth values to truth values
- Degree particles (very, too): $\langle\langle\langle\mathbf{e}, \mathbf{t}\rangle,\langle\mathbf{e}, \mathbf{t}\rangle\rangle,\langle\langle\mathbf{e}, \mathbf{t}\rangle,\langle\mathbf{e}, \mathbf{t}\rangle\rangle\rangle \rightarrow$ complex function.. (:)

Tip: If $\boldsymbol{\sigma}, \boldsymbol{\tau}$ are basic types, $\langle\boldsymbol{\sigma}, \boldsymbol{\tau}\rangle$ can be abbreviated as $\boldsymbol{\sigma}$. Thus, the type of predicate modifiers and second-order predicates can be more conveniently written as $\langle\mathbf{e t}$, et \rangle and $\langle\mathbf{e t}, \mathbf{t}\rangle$, respectively.

Type Theory - Vocabulary

Non-logical constants:

- For every type $\mathbf{\tau}$ a (possibly empty) set of non-logical constants CON $_{T}$ (pairwise disjoint)

Variables:

- For every type $\mathbf{\tau}$ an infinite set of variables VAR $_{T}$ (pairwise disjoint)

Logical symbols: $\forall, \exists, \neg, \wedge, \vee, \rightarrow, \leftrightarrow,=$

Brackets: (,)

Type Theory - Syntax

For every type τ, the set of well-formed expressions WE_{T} is defined as follows:
(i) $\operatorname{CON}_{T} \subseteq W E_{T}$ and $V A R_{T} \subseteq W E_{T}$;
(ii) If $a \in W_{(\sigma, T\rangle}$, and $\beta \in W_{E_{\sigma}}$, then $a(\beta) \in W_{T}$;
(iii) If A, B are in $W E_{t}$, then $\neg A,(A \wedge B)$, $(A \vee B),(A \rightarrow B),(A \leftrightarrow B)$ are in $W E_{t}$;
(iv) If A is in $W E_{t}$ and x is a variable of arbitrary type, then $\forall x A$ and $\exists x A$ are in WE_{t};
(v) If a, β are well-formed expressions of the same type, then $a=\beta \in W E_{t}$;
(vi) Nothing else is a well-formed expression.

NB. This prevents us from running into Russell's paradox!

Type inferencing

Winter-EFS Ch3 Page 59-60

Types can be derived for all expressions that constitute the logical form of a sentence, as defined by its syntactic structure.
"Luke is a talented jedi"

$$
\text { talented' :: }\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle \quad \text { jedi' }::\langle\mathrm{e}, \mathrm{t}\rangle
$$

luke':: e talented'(jedi'):: 〈e, t>
talented'(jedi')(luke') :: t

Type inferencing: examples

Recommended strategy: Start by describing the logical form of the sentences (how are expressions combined logically, based on the given syntactic bracketing), then derive types from there (see previous slide).

1. Yodae [is faster than Palpatinee].
2. Yodae $[$ is much [faster than]] Palpatine e.
3. [[Han Solo]e fights] [because [[the Dark Side]e is rising]].
4. Obi-Wane ${ }_{\mathrm{e}}[$ told [Qui-Gon Jinn]e] he will take [the Jedi-exam]e].

Higher-order predicates

Higher-order quantification:

- Leia has the same hair colour as Padmé

Higher-order equality:

- For $p, q \in C O N_{t}$, " $p=q$ " expresses material equivalence: " $p \leftrightarrow q$ ".
- For $F, G \in \mathrm{CON}_{\langle e, t\rangle}$, " $F=G$ " expresses co-extensionality: " $\forall x(F x \leftrightarrow G x)$ "
- For any formula ϕ of type $t, \phi=(x=x)$ is a representation of " ϕ is true".

Type Theory - Semantics [1]

Let \mathbf{U} be a non-empty set of entities.

The domain of possible denotations $\mathbf{D}_{\boldsymbol{\tau}}$ for every type $\mathbf{\tau}$ is given by:

- $D_{e}=U$
- $D_{t}=\{0,1\}$
- $D_{\langle\sigma, \tau\rangle}$ is the set of all functions from D_{σ} to D_{τ}

For any type $\boldsymbol{\tau}$, expressions of type $\boldsymbol{\tau}$ denote elements of the domain $\boldsymbol{D}_{\boldsymbol{\tau}}$

Characteristic functions

Many natural language expressions have a type $\langle\boldsymbol{\sigma}, \mathbf{t}\rangle$

Expressions with type $\langle\boldsymbol{\sigma}, \mathbf{t}\rangle$ are functions mapping elements of type $\boldsymbol{\sigma}$ to truth values: $\{\mathbf{0 , 1}\}$

Such functions with a range of $\{\mathbf{0 , 1} \mathbf{1}$ are called characteristic functions, because they uniquely specify a subset of their domain $\mathbf{D}_{\boldsymbol{\sigma}}$

> The characteristic function of set M in a domain U is the function $F_{M}: U \rightarrow\{0,1\}$ such that for all $a \in U, F_{M}(a)=1$ iff $a \in M$.

NB: For first-order predicates, the FOL representation (using sets) and the typetheoretic representation (using characteristic functions) are equivalent.

Interpretation with characteristic functions: example

For $M=\langle U, V\rangle$, let U consist of five entities. For selected types, we have the following sets of possible denotations:

- $D_{t}=\{0,1\}$
- $D_{e}=U=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$

Alternative set notation: $\mathrm{D}_{<\mathrm{e}, \mathrm{t}}=\left\{\left\{\mathrm{e}_{1}, \mathrm{e}_{3}, \mathrm{e}_{5}\right\},\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{4}, \mathrm{e}_{5}\right\},\left\{\mathrm{e}_{2}, \mathrm{e}_{3}\right\}, \ldots\right\}$

Type Theory - Semantics [2]

A model structure for a type theoretic language is a tuple $\mathbf{M}=\langle\mathbf{U}, \mathbf{V}\rangle$ such that:

- \mathbf{U} is a non-empty domain of individuals
- \mathbf{V} is an interpretation function, which assigns to every $\mathbf{a} \in \mathbf{C O N}_{\boldsymbol{\tau}}$ an element of $\mathbf{D}_{\boldsymbol{\tau}}$ (where $\boldsymbol{\tau}$ is an arbitrary type)

The variable assignment function g assigns to every typed variable $\mathbf{v} \in \mathbf{V A R}_{\boldsymbol{\tau}}$ an element of $\mathbf{D}_{\boldsymbol{\tau}}$

Type Theory - Interpretation

Given a model structure $\mathrm{M}=\langle\mathrm{U}, \mathrm{V}\rangle$ and a variable assignment g :

- $\llbracket a \rrbracket^{\mathrm{M}, \mathrm{g}} \quad=\mathrm{V}(\mathrm{a})$ if a is a constant

$$
=g(a) \quad \text { if } a \text { is a variable }
$$

- $\llbracket a(\beta) \rrbracket^{M, 9}=\llbracket a \rrbracket^{M, 9\left(\llbracket \beta \rrbracket^{M, 9)}\right.}$
- $\llbracket a=\beta \rrbracket^{M, g} \quad=1$ iff $\llbracket a \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \beta \rrbracket^{\mathrm{M}, \mathrm{g}}$
- $\llbracket \neg \phi \rrbracket^{M, g}=1$ iff $\llbracket \phi \rrbracket^{M, g}=0$
- $\llbracket \phi \wedge \psi \rrbracket^{M, g} \quad=1 \mathrm{iff} \llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ and $\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
- $\llbracket \phi \vee \psi \rrbracket^{\mathrm{M}, \mathrm{g}} \quad=1$ iff $\llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ or $\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$

For any variable v of type σ :

Interpretation：Example

Luke is a talented jedi

$$
\text { jedi' }::\langle\mathrm{e}, \mathrm{t}\rangle \quad \text { talented' }::\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle
$$

luke＇：：e talented＇（jedi＇）：：〈e，t \rangle
talented＇（jedi＇）（luke＇）：：t

【talented＇（jedi＇）（luke＇）】 ${ }^{M, g}$
$=\llbracket$ talented＇${ }^{\prime}$ jedi＇）$\rrbracket^{\mathrm{M}, \mathrm{g}}\left(\right.$（ 1 luke＇$\left.\rrbracket^{\mathrm{M}, \mathrm{g}}\right)$

$=\mathrm{V}_{\mathrm{M}}($ talented＇$)\left(\mathrm{V}_{\mathrm{M}}\left(\right.\right.$ jedi $\left.\left.^{\prime}\right)\right)\left(\mathrm{V}_{\mathrm{M}}\left(\right.\right.$ luke＇$\left.\left.^{\prime}\right)\right)$

Interpretation: Example (cont.)

【Luke is a talented jedi $\rrbracket^{\mathrm{M}, \mathrm{g}}=\mathrm{V}_{\mathrm{M}}\left(\right.$ talented $\left.^{\prime}\right)\left(\mathrm{V}_{\mathrm{M}}\left(\mathrm{jedi}{ }^{\prime}\right)\right)\left(\mathrm{V}_{\mathrm{M}}(\right.$ luke'$\left.)\right)$

Defining the right model

Consider the following Model M:
$D_{e}=U_{M}=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$
$V_{M}\left(\right.$ anakin' $\left.{ }^{e}\right)=V_{M}\left(\right.$ darth_vader' $\left.{ }_{e}\right)=e_{2}$
$V_{M}\left(j e\right.$ di $\left.^{\prime}\langle e, t\rangle\right)=\left[\begin{array}{l}e_{1} \rightarrow 1 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 1 \\ e_{4} \rightarrow 1 \\ e_{5} \rightarrow 0\end{array}\right] V_{M}\left(\right.$ dark_sider $\left.{ }^{\prime}\langle e, t\rangle\right)=\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 1\end{array}\right]$
$V_{M}\left(\right.$ powerful $\left.{ }_{\langle\langle e, t\rangle\langle e, t\rangle\rangle}\right)=\left[\begin{array}{l}{\left[\begin{array}{l}e_{1} \rightarrow 1 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 1 \\ e_{4} \rightarrow 1 \\ e_{4} \rightarrow 0\end{array}\right]} \\ e_{5} \rightarrow\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 1 \\ e_{5} \rightarrow 0\end{array}\right] \\ {\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 1\end{array}\right]}\end{array} \rightarrow\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 1\end{array}\right]\right.$
Note that here "powerful" is
\cdots truth-preserving: Powerful $X_{\langle e, t\rangle} \vDash X_{\langle e, t\rangle}$

Adjective classes \& Meaning postulates

Some valid inferences in natural language:

- Bill is a poor piano player \vDash Bill is a piano player
- Bill is a blond piano player \vDash Bill is blond
- Bill is a former professor \vDash Bill isn't a professor
\rightarrow These entailments do not hold in type theory by definition. Why?

Meaning postulates: restrictions on models which constrain the possible meaning of certain words

Adjective classes \& Meaning postulates (cont.)

Restrictive or Subsective adjectives ("poor")

- $\llbracket \operatorname{poor} N \rrbracket \subseteq \llbracket N \rrbracket$
- Meaning postulate: $\forall \mathrm{G} \forall \mathrm{x}(\operatorname{poor}(\mathrm{G})(\mathrm{x}) \rightarrow \mathrm{G}(\mathrm{x}))$

Intersective adjectives ("blond")

- 【 blond $N \rrbracket=\llbracket$ blond $\rrbracket \cap \llbracket N \rrbracket$
- Meaning postlate: $\forall G \forall x\left(\right.$ blond $(G)(x) \rightarrow\left(\right.$ blond $\left.^{*}(x) \wedge G(x)\right)$
- NB: blond $\in W E\langle\langle e, t\rangle,\langle e, t\rangle\rangle \neq$ blond $^{*} \in W E\langle e, t\rangle$

Privative adjectives ("former")

- \llbracket former $N \rrbracket \cap \llbracket N \rrbracket=\varnothing$
- Meaning postlate: $\forall \mathrm{G} \forall \mathrm{x}($ former $(\mathrm{G})(\mathrm{x}) \rightarrow \neg \mathrm{G}(\mathrm{x}))$

Reading material

- Winter: Elements of Formal Semantics (Chapter 3, Part I \& II) http://www.phil.uu.nl/~yoad/efs/main.html

