# Semantic Theory <br> Week 1 - Predicate Logic 

Noortje Venhuizen
Harm Brouwer

Universität des Saarlandes

Summer 2020

## Part I: <br> Sentence semantics



## Formalizing sentence meaning

Goal of Semantic Theory: formally describe sentence meaning

- Defining differences between various linguistic forms
- Using formal mathematical methods

Truth-conditional semantics:

The (traditional) perspective on sentence meaning according to which knowing the meaning of a (declarative) sentence requires knowing what the world would have to be like for the sentence to be true:

Sentence meaning = truth-conditions

## A central notion: Entailment

- Tina is tall and thin $\Rightarrow$ Tina is tall
- Tina is tall, and Ms. Turner is not tall $\Rightarrow$ Tina is not Ms.Turner
- A dog entered the room $\Rightarrow$ An animal entered the room
- Tweety is a bird $\nRightarrow$ Tweety can fly


## Definition

Given an indefeasible relation between two natural language sentences $S_{1}$ and $S_{2}$, where speakers intuitively judge $S_{2}$ to be true whenever $S_{1}$ is true, we say that $S_{1}$ entails $S_{2}$, and denote it $S_{1} \Rightarrow S_{2}$

## From sentences to truth conditions

In traditional semantic approaches sentences are interpreted "indirectly" via a logical translation.

Two steps of indirect interpretation:

## NB: This will be explained in what follows!

1. Translate sentences into logical formulas:

Every student works $\leftrightarrow \forall x\left(\right.$ student ${ }^{\prime}(x) \rightarrow$ work $\left.^{\prime}(x)\right)$
2. Interpret these formulas in a logical model:

$$
\begin{gathered}
\llbracket \forall X\left(\text { student' }(x) \rightarrow \text { work' }^{\prime}(x) \mathbb{I}^{M, g}=1\right. \\
\text { iff } \mathrm{V}_{M}\left(\text { student') } \subseteq \mathrm{V}_{M}(\text { work' }\right.
\end{gathered}
$$



## Step 1: from sentence to formula

Choosing the appropriate logical formalism

- Propositional logic: Propositions as basic atoms
- Syntax: propositions (p, q,..), logical connectives ( $\neg, \wedge, \vee, \rightarrow, \leftrightarrow)$
- Semantics: truth tables - truth conditions, entailment
- Limitation: propositions with internal structure
- Predicate logic: Predicates and arguments
- Syntax: predicates \& terms (love'(j',m'), mortal'(x), ...), quantifiers ( $\forall, \exists$ ), logical connectives ( $\wedge, \vee, \neg, \rightarrow, \leftrightarrow)$
- Semantics: model structures and variable assignments


Gottlob Frege Begriffsschrift (1879)

## Predicate Logic: Vocabulary

Non-logical expressions:
Individual constants: CON
n -place relation constants: PREDn, for all $\mathrm{n} \geq 0$
Infinite set of individual variables: VAR

Logical connectives: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow, \forall, \exists$

Brackets: (, )

## Predicate Logic: Syntax

## Logic in action Ch4: Page 26

## Terms: $\operatorname{TERM}=$ VAR $\cup C O N$

Atomic formulas:

- $R\left(t_{1}, \ldots, t_{n}\right) \quad$ for $R \in P R E D n$ and $t_{1}, \ldots, t_{n} \in$ TERM
- $t_{1}=t_{2}$ for $t_{1}, t_{2} \in$ TERM

Well-formed formula (WFF):

1. All atomic formulas are WFFs;
2. If $\phi$ and $\psi$ are WFFs, then $\neg \phi,(\phi \wedge \psi),(\phi \vee \psi),(\phi \rightarrow \psi),(\phi \leftrightarrow \psi)$ are WFFs;
3. If $x \in V A R$, and $\Phi$ is a WFF, then $\forall x \phi$ and $\exists x \phi$ are WFFs;
4. Nothing else is a WFF.

## Variable binding

- Given a quantified formula $\forall \times \varnothing$ (or $\exists \times \phi$ ), we say that $\phi$ (and every part of $\phi$ ) is in the scope of the quantifier $\forall x$ (or $\exists x$ );
- A variable $x$ is bound in formula $\psi$ if $x$ occurs in the scope of $\forall x$ or $\exists x$ in $\psi$;
- If a variable is not bound in formula $\psi$, it occurs free in $\psi$;
- A closed formula is a formula without free variables.


## Formalizing Natural Language

1. Bill loves Mary.
2. Bill reads an interesting book.
3. Every student reads a book.
4. Bill passed every exam.
5. Not every student answered every question.
6. Only Mary answered every question.
7. Mary is annoyed when someone is noisy.
8. Although nobody makes noise, Mary is annoyed.

## Step 2: Interpretation

Logical models are simplified representations of states of affairs in the world


Truth conditions are defined with respect to arbitrary logical models
John is a student : for any M , 【student'(john) $\rrbracket^{M}=1$ iff $\mathrm{V}_{\mathrm{M}}(\mathrm{john}) \in \mathrm{V}_{\mathrm{M}}($ student')
$\mathrm{V}_{\mathrm{M} 1}$ (john) $\in \mathrm{V}_{\mathrm{M} 1}\left(\right.$ student') therefore: $\llbracket$ student'(john) $\rrbracket^{\mathrm{M1} 1}=1$
$\mathrm{V}_{\mathrm{M} 2}(j \mathrm{john}) \notin \mathrm{V}_{\mathrm{M} 2}\left(\right.$ student') therefore: $\llbracket$ student'(john) $\rrbracket^{\mathrm{M} 2}=0$

## A formal description of a model

## Logic in action Ch4: Pages 30-31

Model $\mathrm{M}=\left\langle\mathrm{U}_{\mathrm{M}}, \mathrm{V}_{\mathrm{M}}\right\rangle$, with:

- $\mathrm{U}_{\mathrm{M}}$ is the universe of M and
- $\mathrm{V}_{\mathrm{M}}$ is an interpretation function
$U_{M}=\{e 1, e 2, e 3, e 4, e 5\} \quad$ universe
$\mathrm{V}_{\mathrm{M}}($ john $)=\mathrm{e} 1$
constants
$V_{M}($ bill $)=e 5$
$\mathrm{V}_{\mathrm{M}}($ student $)=\{\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 4\}$
$\mathrm{V}_{\mathrm{M}}($ drink_coffee $)=\{\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3, \mathrm{e} 4\}$
$\mathrm{V}_{\mathrm{M}}(\mathrm{love})=\{\langle\mathrm{e} 1, \mathrm{e} 2\rangle,\langle\mathrm{e} 2, \mathrm{e} 1\rangle,\langle\mathrm{e} 4, \mathrm{e} 5\rangle\}$


1-place predicates
2-place predicates

## Interpretation in the model

```
Logic in action Ch4:
Pages 30-31
```

$V_{M}$ is an interpretation function assigning individuals $\left(\in U_{M}\right)$ to individual constants and $n$-ary relations over $U_{M}$ to $n$-place predicate symbols:

- $V_{M}(c) \in U_{M} \quad$ if $c$ is an individual constant
- $V_{M}(P) \subseteq U_{M}{ }^{n} \quad$ if $P$ is an n-place predicate symbol
- $V_{M}(P) \in\{0,1\} \quad$ if $P$ is an 0-place predicate symbol

NB: LiA uses slightly different notation.
A model is there described as the tuple $\langle D, 1\rangle$, where D describes the Domain (here: Universe, U) and I describes the interpretation function (here: V)

## Variables and quantifiers

How to interpret the following sentence in our model M :

- Someone is sad $\mapsto \exists x\left(\operatorname{sad}^{\prime}(x)\right)$


## Intuition:

- find an entity in the universe for which
 the statement holds: $\mathrm{V}_{\mathrm{M}}\left(\right.$ sad' $\left.^{\prime}\right)=\mathrm{e}_{4}$
- replace $x$ by $e_{4}$ in order to make $\exists x\left(\operatorname{sad}^{\prime}(x)\right)$ true

More formally:

- Interpret sentence relative to assignment function g: i.e., $\llbracket \exists x\left(\operatorname{sad}^{\prime}(x)\right) \rrbracket^{M, g}$, such that $g(x)=e_{4}$; this can be generalised to any $g^{\prime}$ as follows: $g^{\prime}\left[x / e_{4}\right](x)=e_{4}$


## Assignment functions

## Logic in action Ch4: Page 31

An assignment function $g$ assigns values to all variables

- $\mathrm{g}:: \mathrm{VAR} \rightarrow \mathrm{U}_{\mathrm{M}}$
- We write $g[x / d]$ for the assignment function $g$ ' that assigns $d$ to $x$ and assigns the same values as $g$ to all other variables.

|  | $x$ | $y$ | $z$ | $u$ | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $g$ | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $\ldots$ |
| $g\left[y / e_{1}\right]$ | $e_{1}$ | $e_{1}$ | $e_{3}$ | $e_{4}$ | $\ldots$ |
| $g\left[x / e_{1}\right]$ | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $\ldots$ |
| $g[y / g(z)]$ | $e_{1}$ | $e_{3}$ | $e_{3}$ | $e_{4}$ | $\ldots$ |
| $g\left[y / e_{1}\right]\left[u / e_{1}\right]$ | $e_{1}$ | $e_{1}$ | $e_{3}$ | $e_{1}$ | $\ldots$ |
| $g\left[y / e_{1}\right]\left[y / e_{2}\right]$ | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $\ldots$ |

## Interpretation of terms

## Logic in action Ch4: <br> Page 33

Interpretation of terms with respect to a model $M$ and a variable assignment $g$ :

$$
\begin{gathered}
\llbracket a \rrbracket^{M, g}=\quad V_{M}(a) \text { if } a \text { is an individual constant } \\
g(a) \quad \text { if } a \text { is a variable }
\end{gathered}
$$

## Interpretation of formulas

Interpretation of formulas with respect to a model M and variable assignment g :

- $\llbracket R\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{M, g}=1 \quad$ iff $\quad\left\langle\llbracket t_{1} \rrbracket^{M, g}, \ldots, \llbracket t_{n} \rrbracket^{M, g\rangle} \in V_{M}(R)\right.$
- $\llbracket \mathrm{t}_{1}=\mathrm{t}_{2} \rrbracket^{\mathrm{M}, \mathrm{g}}=1 \quad$ iff $\llbracket \mathrm{t}_{1} \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \mathrm{t}_{2} \rrbracket^{\mathrm{M}, \mathrm{g}}$
- $\llbracket \neg ゆ \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
iff $\llbracket \phi \rrbracket^{M, g}=0$
- $\llbracket \phi \wedge \psi \rrbracket^{M, g}=1$
iff
- $\llbracket \phi \vee \psi \rrbracket^{M, g}=$
if
- $\llbracket \Phi \rightarrow \psi \rrbracket^{\mathrm{M}, g}=1$
iff $\llbracket \phi \rrbracket^{M, g}=0$ or $\llbracket \psi \rrbracket^{M, g}=1$
- $\llbracket \Phi \leftrightarrow \psi \rrbracket^{M, g}=1$
iff $\llbracket ゆ \rrbracket^{M, g}=\llbracket \Psi \rrbracket^{M, g}$
- $\llbracket \exists Х Ф \rrbracket^{M, g}=1$
iff $\quad$ there is a $d \in U_{M}$ such that $\llbracket \phi \rrbracket^{M, g[x / d]}=1$
- $\llbracket \forall x \emptyset \rrbracket^{M, g}=1$
iff $\quad$ for all $d \in U_{M}, \llbracket \phi \rrbracket^{M, g[x / d]}=1$


## Truth, Validity and Entailment

A formula $\phi$ is true in a model $M$ iff:
$\llbracket \phi \rrbracket^{M, g}=1$ for every variable assignment $g$
A formula $\phi$ is valid $(\models \phi)$ iff:
$\phi$ is true in all models

A formula $\phi$ is satisfiable iff:
there is at least one model M such that $\phi$ is true in model M
A set of formulas $\Gamma$ is (simultaneously) satisfiable iff: there is a model M such that every formula in $\Gamma$ is true in M ("M satisfies Г," or "M is a model of Г")
$\Gamma$ entails a formula $\phi(\Gamma \vDash \phi)$ iff:
$\phi$ is true in every model structure that satisfies $\Gamma$

## Logical Equivalence

Formula $\phi$ is logically equivalent to formula $\psi(\phi \Leftrightarrow \psi)$, iff:

- $\llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}$ for all models M and variable assignments g .

For all closed formulas $\phi$ and $\psi$, the following assertions are equivalent:

1. $\phi \Leftrightarrow \psi \quad$ (logical equivalence)
2. $\phi \vDash \psi$ and $\psi \vDash \phi \quad$ (mutual entailment)
3. $\vDash \phi \leftrightarrow \psi \quad$ (validity of "material equivalence")

## Additional background

## Logical Equivalence Theorems: Propositions

1) $\neg \neg \phi \Leftrightarrow \phi$
2) $\phi \wedge \psi \Leftrightarrow \psi \wedge \phi$
3) $\phi \vee \psi \Leftrightarrow \psi \vee \Phi$
4) $\phi \wedge(\psi \vee x) \Leftrightarrow(\phi \wedge \psi) \vee(\phi \wedge x)$
5) $\quad \phi \vee(\Psi \wedge X) \Leftrightarrow(\phi \vee \Psi) \wedge(\phi \vee X)$
6) $\neg(\phi \wedge \psi) \Leftrightarrow \neg \phi \vee \neg \psi$
7) $\neg(\phi \vee \psi) \Leftrightarrow \neg \phi \wedge \neg \psi$
8) $\phi \rightarrow \neg \psi \Leftrightarrow \psi \rightarrow \neg \phi$
9) $\phi \rightarrow \psi \Leftrightarrow \neg \phi \vee \psi$
10) $\neg(\phi \rightarrow \psi) \Leftrightarrow \phi \wedge \neg \psi$

Double negation
Commutativity of $\wedge, \vee$

Distributivity of $\wedge$ and $\vee$
de Morgan's Laws

Law of Contraposition

## Logical Equivalence Theorems: Quantifiers

11) $\neg \forall \mathrm{X} \phi \Leftrightarrow \exists \mathrm{X} \neg \Phi$
12) $\neg \exists x \phi \Leftrightarrow \forall x \neg \varnothing$
13) $\forall x(\phi \wedge \Psi) \Leftrightarrow \forall x \Phi \wedge \forall x \Psi$
14) $\exists x(\phi \vee \Psi) \Leftrightarrow \exists x \phi \vee \exists x \Psi$
15) $\forall x \forall y \phi \Leftrightarrow \forall y \forall x \phi$
16) $\exists х \exists у \varnothing \Leftrightarrow \exists у \exists х \varnothing$
17) $\exists x \forall y \varnothing \Rightarrow \forall y \exists x \Phi$

Quantifier negation

Quantifier distribution

Quantifier Swap
... but not vice versa !

## Logical Equivalence Theorems: Quantifiers (cont.)

The following equivalences are valid theorems of FOL, provided that x does not occur free in $\phi$ :

Here, $\phi[x / y]$ is the result of replacing all free occurrences of $y$ in $\phi$ with $x$
18) $\exists y \emptyset \Leftrightarrow \exists x \phi[x / y]$
19) $\forall y \phi \Leftrightarrow \forall x \phi[x / y]$
20) $\phi \wedge \forall x \Psi \Leftrightarrow \forall x(\phi \wedge \Psi)$
21) $\phi \wedge \exists x \Psi \Leftrightarrow \exists x(\phi \wedge \Psi)$
22) $\Phi \vee \forall x \Psi \Leftrightarrow \forall x(\Phi \vee \Psi)$
23) $\phi \vee \exists x \Psi \Leftrightarrow \exists x(\phi \vee \Psi)$
24) $\phi \rightarrow \forall x \Psi \Leftrightarrow \forall x(\phi \rightarrow \Psi)$
25) $\phi \rightarrow \exists x \Psi \Leftrightarrow \exists x(\phi \rightarrow \Psi)$
26) $\exists x \Psi \rightarrow \phi \Leftrightarrow \forall x(\Psi \rightarrow \phi)$
27) $\forall x \Psi \rightarrow \phi \Leftrightarrow \exists x(\Psi \rightarrow \Phi)$

## Equivalence Transformations

(1) $\neg \exists x \forall y(P y \rightarrow R x y) \quad$ "Nobody masters every problem"
(2) $\forall x \exists y(P y \wedge \neg R x y) \quad$ "Everybody fails to master some problem"

We show the equivalence of (1) and (2) as follows:

$$
\begin{array}{rlrl}
\neg \exists x \forall y(P y \rightarrow R x y) & \Leftrightarrow \forall x \neg \forall y(P y \rightarrow R x y) & (\neg \exists x \phi \Leftrightarrow \forall x \neg \phi) \\
& \Leftrightarrow \forall x \exists y \neg(P y \rightarrow R x y) & & (\neg \forall x \phi \Leftrightarrow \exists x \neg \phi) \\
& \Leftrightarrow \forall x \exists y(P y \wedge \neg R x y) & & (\neg(\phi \rightarrow \psi) \Leftrightarrow \phi \wedge \neg \psi)
\end{array}
$$

## Reading material

- Required reading: Logic in Action, Chapter 4 (sections 4.5 \& 4.6) - http://www.logicinaction.org
- Further background: Winter, Elements of Formal Semantics, Chapter 2 - http://www.phil.uu.nl/~yoad/efs/main.html

