Semantic Theory Week 1 – Predicate Logic

Noortje Venhuizen Harm Brouwer

Universität des Saarlandes

Summer 2020

Part I: Sentence semantics

Formalizing sentence meaning

Goal of Semantic Theory: formally describe sentence meaning

- Defining differences between various linguistic forms
- Using *formal* mathematical methods

Truth-conditional semantics:

The (traditional) perspective on sentence meaning according to which knowing the meaning of a (declarative) sentence requires knowing what the world would have to be like for the sentence to be true:

Sentence meaning = truth-conditions

A central notion: Entailment

- Tina is tall and thin \Rightarrow Tina is tall
- Tina is tall, and Ms. Turner is not tall \Rightarrow Tina is not Ms.Turner
- A dog entered the room \Rightarrow An animal entered the room
- Tweety is a bird \Rightarrow Tweety can fly

Definition

Given an indefeasible relation between two natural language sentences S_1 and S_2 , where speakers intuitively judge S_2 to be true whenever S_1 is true, we say that S_1 entails S_2 , and denote it $S_1 \Rightarrow S_2$

From sentences to truth conditions

In traditional semantic approaches sentences are interpreted "indirectly" via a logical translation.

Two steps of indirect interpretation:

1. Translate sentences into logical formulas:

Every student works $\mapsto \forall x(student'(x) \rightarrow work'(x))$

2. Interpret these formulas in a logical model:

[[∀x(student'(x) → work'(x))]]^{M,g} = 1 *iff* V_M(student') ⊆ V_M(work') V_M(student') · · · · · · · ·

NB: This will be explained in what follows!

Step 1: from sentence to formula

Choosing the appropriate logical formalism

- Propositional logic: Propositions as basic atoms
 - Syntax: propositions (p, q,..), logical connectives $(\neg, \land, \lor, \rightarrow, \leftrightarrow)$
 - Semantics: truth tables truth conditions, entailment
 - Limitation: propositions with internal structure
- Predicate logic: Predicates and arguments
 - Syntax: predicates & terms (love'(j',m'), mortal'(x), ...), quantifiers (∀,∃), logical connectives (∧, ∨, ¬, →, ↔)
 - Semantics: model structures and variable assignments

Gottlob Frege Begriffsschrift (1879)

Predicate Logic: Vocabulary

Non-logical expressions:

Individual constants: CON

n-place relation constants: PREDⁿ, for all $n \ge 0$

Infinite set of individual variables: VAR

Logical connectives: \land , \lor , \neg , \rightarrow , \leftrightarrow , \forall , \exists

Brackets: (,)

Predicate Logic: Syntax

Logic in action Ch4: Page 26

Terms: TERM = VAR U CON

Atomic formulas:

- $\label{eq:relation} \bullet \quad R(t_1,\ldots,\,t_n) \qquad \text{for } R \in PRED^n \text{ and } t_1,\,\ldots,\,t_n \in TERM$
- $\label{eq:t1} \bullet \ t_1 = t_2 \qquad \qquad \text{for } t_1, \, t_2 \in \text{TERM}$

Well-formed formula (WFF):

- 1. All atomic formulas are WFFs;
- 2. If ϕ and ψ are WFFs, then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \rightarrow \psi)$, $(\phi \leftrightarrow \psi)$ are WFFs;
- 3. If $x \in VAR$, and ϕ is a WFF, then $\forall x \phi$ and $\exists x \phi$ are WFFs;
- 4. Nothing else is a WFF.

Logic in action Ch4: Page 27

- Given a quantified formula $\forall x \phi$ (or $\exists x \phi$), we say that ϕ (and every part of ϕ) is in the **scope** of the quantifier $\forall x$ (or $\exists x$);
- A variable x is **bound** in formula ψ if x occurs in the scope of $\forall x$ or $\exists x$ in ψ ;
- If a variable is not bound in formula ψ , it occurs **free** in ψ ;
- A **closed formula** is a formula without free variables.

Formalizing Natural Language

- 1. Bill loves Mary.
- 2. Bill reads an interesting book.
- 3. Every student reads a book.
- 4. Bill passed every exam.
- 5. Not every student answered every question.
- 6. Only Mary answered every question.
- 7. Mary is annoyed when someone is noisy.
- 8. Although nobody makes noise, Mary is annoyed.

Try translating a couple of these sentences!

Step 2: Interpretation

Logical models are simplified representations of states of affairs in the world

Truth conditions are defined with respect to arbitrary logical models

 $\begin{array}{l} \textit{John is a student :} \text{ for any } M, \circlestudent'(john) \circlestudent'(john) \circlestudent') \\ V_{M1}(john) \in V_{M1}(student') \ therefore: \circlestudent'(john) \circlestudent'(john) \circlestudent') \\ V_{M2}(john) \not\in V_{M2}(student') \ therefore: \circlestudent'(john) \circlestudent'(john) \circlestudent') \\ \end{array}$

Venhuizen & Brouwer - Semantic Theory 2020

A formal description of a model

Model M = $\langle U_M, V_M \rangle$, with:

- + U_M is the universe of M and
- + V_M is an interpretation function

 $U_{M} = \{e1, e2, e3, e4, e5\}$ Universe

```
V_M(john) = e1
... Constants
V_M(bill) = e5
```

 $V_M(student) = \{e1, e2, e4\}$ $V_M(drink_coffee) = \{e1, e2, e3, e4\}$

 $V_{M}(love) = \{ \langle e1, e2 \rangle, \langle e2, e1 \rangle, \langle e4, e5 \rangle \}$

1-place predicates

2-place predicates

Logic in action Ch4: Pages 30-31

 V_M is an interpretation function assigning individuals ($\in U_M$) to individual constants and n-ary relations over U_M to n-place predicate symbols:

- $\label{eq:VM} \bullet \ V_M(c) \in U_M \qquad \text{if c is an individual constant}$
- $\cdot \ V_M(P) \subseteq U_{M^n} \quad \text{ if } P \text{ is an } n\text{-place predicate symbol}$
- $V_M(P) \in \{0,1\}$ if P is an 0-place predicate symbol

NB: LiA uses slightly different notation. A model is there described as the tuple <D,I>, where D describes the Domain (here: Universe, U) and I describes the interpretation function (here: V)

Variables and quantifiers

How to interpret the following sentence in our model M:

• Someone is sad $\mapsto \exists x(sad'(x))$

Intuition:

- find an entity in the universe for which the statement holds: V_M(sad') = e₄
- replace x by e₄ in order to make ∃x(sad'(x)) true

More formally:

• Interpret sentence relative to assignment function g: i.e., $[\exists x(sad'(x))]^{M,g}$, such that $g(x) = e_4$; this can be generalised to any g' as follows: $g'[x/e_4](x) = e_4$

Assignment functions

An assignment function g assigns values to all variables

- g :: VAR \rightarrow U_M
- We write g[x/d] for the assignment function g' that assigns d to x and assigns the same values as g to all other variables.

	X	У	Z	u	
g	e ₁	e ₂	e ₃	e 4	
g[y/e ₁]	e ₁	e ₁	e ₃	e 4	
g[x/e ₁]	e ₁	e ₂	e ₃	e 4	
g[y/g(z)]	e ₁	e ₃	e ₃	e 4	
g[y/e1][u/e1]	e ₁	e ₁	e ₃	e1	
g[y/e ₁][y/e ₂]	e ₁	e ₂	e ₃	e 4	

Interpretation of terms

Interpretation of terms with respect to a model *M* and a variable assignment *g*:

 $\llbracket \alpha \rrbracket^{M,g} = V_M(\alpha)$ if α is an individual constant

 $g(\alpha)$ if α is a variable

Interpretation of formulas

Interpretation of formulas with respect to a model M and variable assignment g:

- $\boldsymbol{\cdot} \quad \llbracket R(t_1,\,\ldots,\,t_n) \rrbracket^{M,g} = \boldsymbol{1} \quad \text{ iff } \quad \langle \llbracket t_1 \rrbracket^{M,g},\,\ldots,\,\llbracket t_n \rrbracket^{M,g} \rangle \in V_M(R)$
- $[t_1 = t_2]^{M,g} = 1$ iff $[t_1]^{M,g} = [t_2]^{M,g}$
- $\llbracket \neg \varphi \rrbracket^{M,g} = 1$ iff $\llbracket \varphi \rrbracket^{M,g} = 0$
- $\label{eq:main_states} \bullet \ [\![\varphi \land \psi]\!]^{M,g} = 1 \qquad \text{iff} \quad [\![\varphi]\!]^{M,g} = 1 \text{ and } [\![\psi]\!]^{M,g} = 1 \\$
- $\label{eq:main_states} \bullet \ [\![\varphi \lor \psi]\!]^{M,g} = 1 \qquad \text{iff} \quad [\![\varphi]\!]^{M,g} = 1 \text{ or } [\![\psi]\!]^{M,g} = 1 \\$
- $\cdot \ \llbracket \varphi \rightarrow \psi \rrbracket^{M,g} = 1 \qquad \text{iff} \ \llbracket \varphi \rrbracket^{M,g} = 0 \text{ or } \llbracket \psi \rrbracket^{M,g} = 1$
- $\llbracket \varphi \leftrightarrow \psi \rrbracket^{M,g} = 1$
- iff $\llbracket \varphi \rrbracket^{M,g} = \llbracket \psi \rrbracket^{M,g}$
- $\label{eq:main_star} \bullet \ [\![\exists x \varphi]\!]^{M,g} = 1 \qquad \qquad \text{iff} \quad there \ is \ a \ d \in U_M \ such \ that \ [\![\varphi]\!]^{M,g[x/d]} = 1$
- $\label{eq:main_states} \bullet \ [\![\forall x \varphi]\!]^{M,g} = 1 \qquad \qquad \text{iff} \quad \text{for all } d \in U_M, \ [\![\varphi]\!]^{M,g[x/d]} = 1$

Truth, Validity and Entailment

- A formula ϕ is true in a model M iff: $[\phi]^{M,g} = 1$ for every variable assignment g
- A formula ϕ is valid ($\models \phi$) iff: ϕ is true in all models

A formula ϕ is satisfiable iff:

there is at least one model M such that ϕ is true in model M

A set of formulas Γ is (simultaneously) satisfiable iff: there is a model M such that every formula in Γ is true in M ("M satisfies Γ," or "M is a model of Γ")

Γ entails a formula ϕ ($\Gamma \vDash \phi$) iff:

 φ is true in every model structure that satisfies Γ

Logical Equivalence

Formula ϕ is logically equivalent to formula ψ ($\phi \Leftrightarrow \psi$), iff:

• $\llbracket \varphi \rrbracket^{M,g} = \llbracket \psi \rrbracket^{M,g}$ for all models M and variable assignments g.

For all *closed* formulas ϕ and ψ , the following assertions are equivalent:

- 1. $\varphi \Leftrightarrow \psi$ (logical equivalence)
- 2. $\phi \models \psi$ and $\psi \models \phi$ (mutual entailment)
- 3. $\models \varphi \leftrightarrow \psi$ (validity of "material equivalence")

Additional background

Logical Equivalence Theorems: Propositions

- 1) $\neg \neg \varphi \Leftrightarrow \varphi$
- 2) $\varphi \land \psi \Leftrightarrow \psi \land \varphi$
- 3) $\varphi \lor \psi \Leftrightarrow \psi \lor \varphi$
- 4) $\varphi_{\wedge}(\psi_{\vee}\chi) \Leftrightarrow (\varphi_{\wedge}\psi)_{\vee}(\varphi_{\wedge}\chi)$
- 5) $\varphi \lor (\psi \land \chi) \Leftrightarrow (\varphi \lor \psi) \land (\varphi \lor \chi)$
- 6) $\neg(\phi \land \psi) \Leftrightarrow \neg \phi \lor \neg \psi$
- 7) $\neg(\varphi \lor \psi) \Leftrightarrow \neg \varphi \land \neg \psi$
- 8) $\varphi \rightarrow \neg \psi \Leftrightarrow \psi \rightarrow \neg \varphi$
- 9) $\varphi \rightarrow \psi \Leftrightarrow \neg \varphi \lor \psi$
- 10) $\neg(\phi \rightarrow \psi) \Leftrightarrow \phi \land \neg \psi$

Double negation

Commutativity of \land , \lor

Distributivity of \land and \lor

de Morgan's Laws

Law of Contraposition

Logical Equivalence Theorems: Quantifiers

- 11) $\neg \forall x \varphi \Leftrightarrow \exists x \neg \varphi$
- 12) $\neg \exists x \varphi \Leftrightarrow \forall x \neg \varphi$
- 13) $\forall x(\phi \land \Psi) \Leftrightarrow \forall x\phi \land \forall x\Psi$
- 14) $\exists x(\phi \lor \Psi) \Leftrightarrow \exists x \phi \lor \exists x \Psi$
- 15) $\forall x \forall y \varphi \Leftrightarrow \forall y \forall x \varphi$
- 16) $\exists x \exists y \varphi \Leftrightarrow \exists y \exists x \varphi$
- 17) $\exists x \forall y \varphi \Rightarrow \forall y \exists x \varphi$

Quantifier negation

Quantifier distribution

Quantifier Swap

... but not vice versa !

Logical Equivalence Theorems: Quantifiers (cont.)

The following equivalences are valid theorems of FOL, provided that x does not occur free in ϕ :

Here, $\phi[x/y]$ is the result of replacing all free occurrences of y in ϕ with x

- 23) $\phi \lor \exists x \Psi \Leftrightarrow \exists x (\phi \lor \Psi)$ 18) $\exists y \varphi \Leftrightarrow \exists x \varphi[x/y]$
- 24) $\phi \rightarrow \forall x \Psi \Leftrightarrow \forall x (\phi \rightarrow \Psi)$ 19) $\forall y \varphi \Leftrightarrow \forall x \varphi[x/y]$
- 20) $\Phi \land \forall x \Psi \Leftrightarrow \forall x (\Phi \land \Psi)$
- 21) $\Phi \land \exists x \Psi \Leftrightarrow \exists x (\Phi \land \Psi)$
- 22) $\Phi \lor \forall x \Psi \Leftrightarrow \forall x (\Phi \lor \Psi)$

- 25) $\phi \rightarrow \exists x \Psi \Leftrightarrow \exists x (\phi \rightarrow \Psi)$
- 26) $\exists x \Psi \rightarrow \Phi \Leftrightarrow \forall x (\Psi \rightarrow \Phi)$
- 27) $\forall x \Psi \rightarrow \Phi \Leftrightarrow \exists x (\Psi \rightarrow \Phi)$

Equivalence Transformations

- (1) $\neg \exists x \forall y (Py \rightarrow Rxy)$ "Nobody masters every problem"
- (2) $\forall x \exists y(Py \land \neg Rxy)$ "Everybody fails to master some problem"

We show the equivalence of (1) and (2) as follows:

 $\neg \exists x \forall y (Py \rightarrow Rxy) \quad \Leftrightarrow \forall x \neg \forall y (Py \rightarrow Rxy) \qquad (\neg \exists x \varphi \Leftrightarrow \forall x \neg \varphi)$ $\Leftrightarrow \forall x \exists y \neg (Py \rightarrow Rxy) \qquad (\neg \forall x \varphi \Leftrightarrow \exists x \neg \varphi)$

 $\Leftrightarrow \forall x \exists y (Py \land \neg Rxy) \qquad (\neg(\varphi \rightarrow \psi) \Leftrightarrow \varphi \land \neg \psi)$

Reading material

- Required reading: Logic in Action, Chapter 4 (sections 4.5 & 4.6) <u>http://www.logicinaction.org</u>
- Further background: Winter, Elements of Formal Semantics, Chapter 2 — <u>http://www.phil.uu.nl/~yoad/efs/main.html</u>