Semantic Theory Week 8 – Discourse Representation Theory

Noortje Venhuizen Harm Brouwer

Universität des Saarlandes

Summer 2019

Recap: DRS Syntax

A discourse representation structure (DRS) K is a pair $\langle U_K, C_K \rangle$, where:

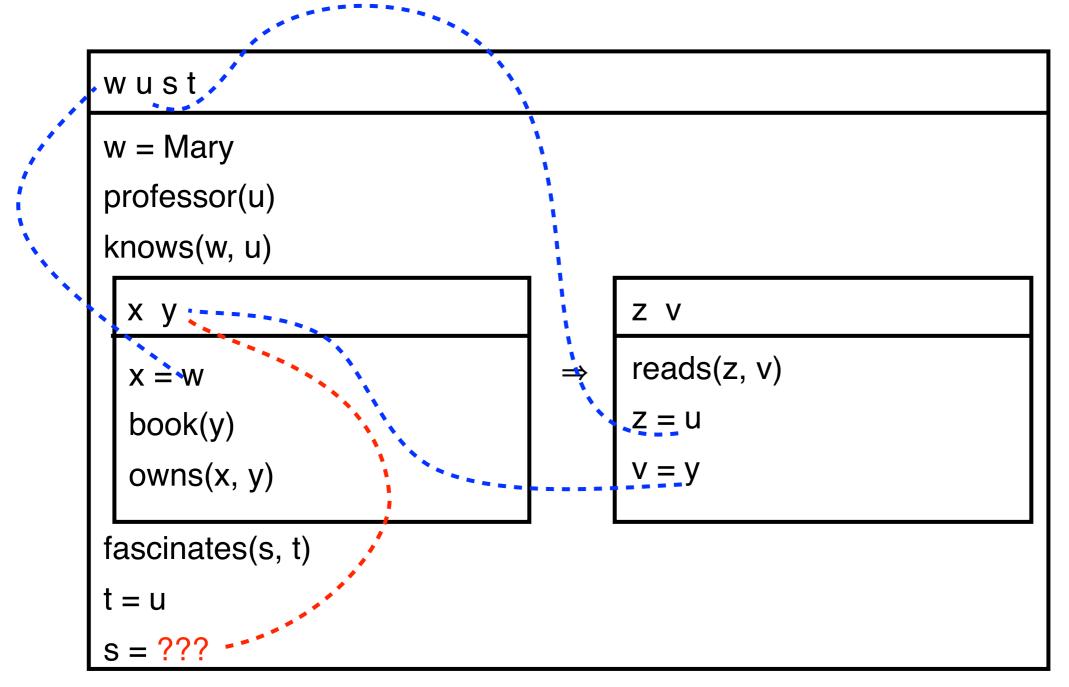
- $U_K \subseteq U_D$ and U_D is a set of discourse referents, and
- C_K is a set of well-formed DRS conditions

Well-formed DRS conditions:

 $R(u_1, ..., u_n)$ where:R is an n-place relation, $u_i \in U_D$ u = v $u, v \in U_D$ u = a $u \in U_D$, a is a constant $\neg K_1$ K_1 is a DRS $K_1 \Rightarrow K_2$ K_1 and K_2 are DRSs $K_1 \lor K_2$ K_1 and K_2 are DRSs

Anaphora and accessibility

Mary knows a professor. If she owns a book, he reads it.? It fascinates him.



Non-accessible discourse referents

Cases of non-accessibility:

- (1) If a professor owns a book, he reads it. It has 300 pages.
- (2) It is not the case that a professor owns a book. He reads it.
- (3) Every professor owns a book. He reads it.
- (4) If every professor owns a book, he reads it.
- (5) Peter owns a book, or Mary reads it.
- (6) Peter reads a book, or Mary reads a newspaper article. It is interesting.

Accessible discourse referents

The following discourse referents are accessible for a condition:

- DRs in the same local DRS
- DRs in a superordinate DRS
- DRs in the universe of an antecedent DRS, if the condition occurs in the consequent DRS.

We need a formal notion of DRS subordination

Subordination

A DRS K₁ is an immediate sub-DRS of a DRS K = $\langle U_K, C_K \rangle$ iff C_K contains a condition of the form

• $\neg K_1, K_1 \Rightarrow K_2, K_2 \Rightarrow K_1, K_1 \lor K_2 \text{ or } K_2 \lor K_1.$

 K_1 is a sub-DRS of K (notation: $K_1 \leq K$) iff

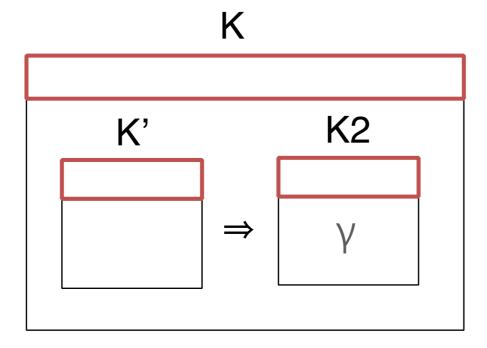
- $K_1 = K$, or
- K₁ is an immediate sub-DRS of K, or
- there is a DRS K₂ such that $K_1 \le K_2$ and K_2 is an immediate sub-DRS of K (i.e. reflexive, transitive closure)

 K_1 is a proper sub-DRS of K iff $K_1 \leq K$ and $K_1 \neq K$.

Let K, K₁, K₂ be DRSs such that K₁, K₂ \leq K, x \in U_{K1}, $\gamma \in$ C_{K2}

 \boldsymbol{x} is accessible from $\boldsymbol{\gamma}$ in \boldsymbol{K} iff

- $K_2 \leq K_1$ or
- there are K₃, K₄ \leq K such that K₁ \Rightarrow K₃ \in C_{K4} and K₂ \leq K₃



Free and bound variables in DRT

A DRS variable x, introduced in DRS K_i, is bound in global DRS K iff there exists a DRS K_j \leq K, such that:

 $(i) \quad x \in U(K_j).$

(ii) K_j is accessible for K_i in K

Properness: A DRS is *proper* iff it does not contain any free variables

Purity: A DRS is *pure* iff it does not contain any *otiose declarations* of variables

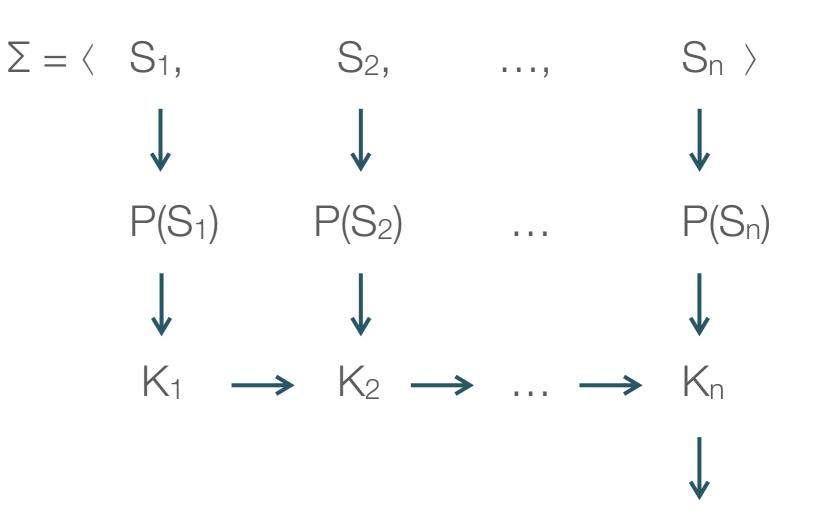
 $x \in U(K_1)$ and $x \in U(K_2)$ and $K_1 \leq K_2$

From text to DRS

Text

Syntactic Analysis

DRS Construction



Interpretation by model embedding: Truth-conditions of Σ

DRS Construction Algorithm

Let the following be a well-formed, *reducible* DRS condition:

• Conditions of form a or a(x1, ..., xn), where a is a context-free parse tree.

DRS construction algorithm:

- Given a text $\Sigma = \langle S_1, ..., S_n \rangle$, and a DRS K_0 (= $\langle \emptyset, \emptyset \rangle$, by default)
- Repeat for i = 1, ..., n:
 - Add parse tree $P(S_i)$ to the conditions of K_{i-1} .
 - Apply DRS construction rules to reducible conditions of K_{i-1}, until no reduction steps are possible any more.
 - The resulting DRS K_i is the discourse representation of text $\langle S_1,\ldots,S_i\rangle.$

DRS Interpretation

Given a DRS K = $\langle U_K, C_K \rangle$, with $U_K \subseteq U_D$

Let $M = \langle U_M, V_M \rangle$ be a FOL model structure appropriate for K, i.e. a model structure that provides interpretations for all predicates and relations occurring in K

DRS K is *true* in model M iff

 there is an embedding function for K in M which verifies all conditions in K

... where: an embedding of K into M is a (partial) function **f** from U_D to U_M such that $U_K \subseteq \text{Dom}(\mathbf{f})$.

Verifying embedding

An embedding **f** of K in M verifies K in M (**f** \models_M K) iff **f** verifies every condition $\alpha \in C_K$

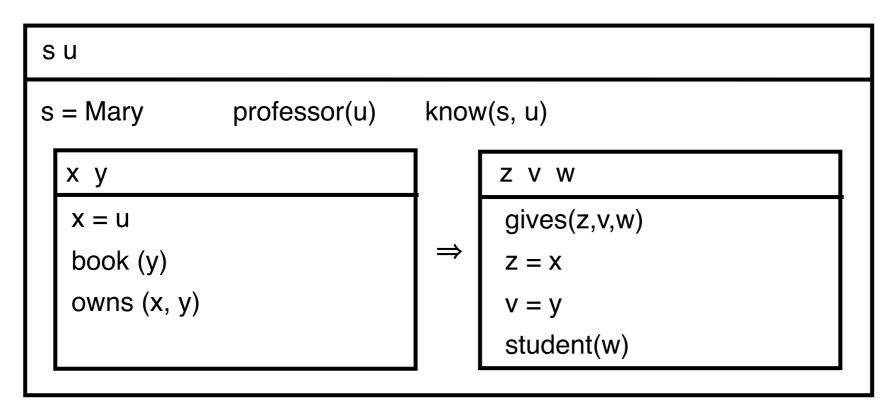
- $\boldsymbol{\cdot} \quad \boldsymbol{f} \models_M R(x_1, \ \ldots, \ x_n) \quad \text{ iff } \quad \langle \boldsymbol{f}(x_1), \ \ldots, \ \boldsymbol{f}(x_n) \rangle \in V_M(R)$
- $\mathbf{f} \models_M x = y$ iff $\mathbf{f}(x) = \mathbf{f}(y)$
- $\mathbf{f} \models_M x = a$ iff $\mathbf{f}(x) = V_M(a)$
- $\mathbf{f} \models_M \neg K_1$ iff there is no $\mathbf{g} \supseteq_{U_{K_1}} \mathbf{f}$ such that $g \models_M K_1$
- $\mathbf{f} \models_M K_1 \Rightarrow K_2$ iff for all $\mathbf{g} \supseteq_{U_{K_1}} \mathbf{f}$ such that $\mathbf{g} \models_M K_1$

there is a $\mathbf{h} \supseteq_{\mathsf{V}_{\mathsf{K}_2}} \mathbf{g}$ such that $\mathbf{h} \models_{\mathsf{M}} \mathsf{K}_2$

• $\mathbf{f} \models_{M} K_{1} \lor K_{2}$ iff there is a $\mathbf{g_{1}} \supseteq_{U_{K1}} \mathbf{f}$ such that $\mathbf{g_{1}} \models_{M} K_{1}$ or there is a $\mathbf{g_{2}} \supseteq_{U_{K2}} \mathbf{f}$ such that $\mathbf{g_{2}} \models_{M} K_{2}$

Verifying embedding: example

Mary knows a professor. If he owns a book, he gives it to a student.



...is **true** in $M = \langle U_M, V_M \rangle$ *iff* there is an $\mathbf{f} :: U_D \to U_M$, (with $\{s, u\} \subseteq \text{Dom}(\mathbf{f})$) such that: $\mathbf{f}(s) = V_M(\text{Mary}) \& \mathbf{f}(u) \in V_M(\text{prof'}) \& \langle \mathbf{f}(s), \mathbf{f}(u) \rangle \in V_M(\text{know})$, and for all $\mathbf{g} \supseteq_{\{x,y\}} \mathbf{f}$ s.t. $\mathbf{g}(x) = \mathbf{g}(u) (=\mathbf{f}(u)) \& \mathbf{g}(y) \in V_M(\text{book}) \& \langle \mathbf{g}(x), \mathbf{g}(y) \rangle \in V_M(\text{own})$, there is a $\mathbf{h} \supseteq_{\{z, v, w\}} \mathbf{g}$ s.t. $\langle \mathbf{h}(z), \mathbf{h}(v), \mathbf{h}(w) \rangle \in V_M(\text{give}) \& \mathbf{h}(z) = \mathbf{h}(x) (=\mathbf{g}(x)) \& \dots$ etc.

Translation of DRSs to FOL

Consider DRS K = $\langle \{x_1, \ \ldots, \ x_n\}, \ \{c_1, \ \ldots, \ c_k\} \rangle$

X ₁ X _n		
C1		
Cn		

K is truth-conditionally equivalent to the following FOL formula:

 $\exists X_1 \dots \exists X_n [C_1 \land \dots \land C_k]$

DRT and compositionality

- DRT is non-compositional on truth conditions: The difference in discourse-semantic status of the text pairs is not predictable through the (identical) truth conditions of its component sentences.
- Since structural information which cannot be reduced to truth conditions is required to compute the semantic value of texts, DRT is called a *representational* theory of meaning.

However...

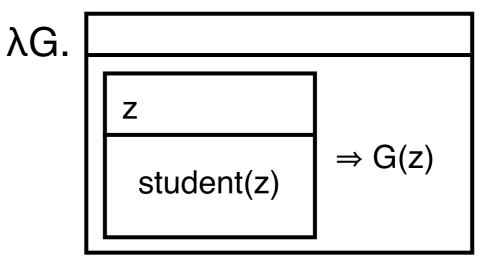
Wait a minute ...

- Why can't we just combine type theoretic semantics and DRT?
- Use λ -abstraction and reduction as we did before, but:
- Assume that the target representations which we want to arrive at are not First-Order Logic formulas, but DRSs.
- The result is called λ -DRT.

λ-DRSs

An expression in λ -DRT consists of a lambda prefix and a partially instantiated DRS.

• every student :: $\langle \langle e, t \rangle, t \rangle \mapsto$



Alternative notation: $\lambda G [\varnothing | [z | student(z)] \Rightarrow G(z)]$

• works :: $\langle e, t \rangle \mapsto \lambda x [\emptyset | work(x)]$

λ -DRT: β -reduction

Every student works

 $\mapsto \lambda G[\emptyset \mid [z \mid student(z)] \Rightarrow G(z)]](\lambda x [\emptyset \mid work(x)])$

 $\Rightarrow^{\beta} [\emptyset \mid [z \mid student(z)] \Rightarrow (\lambda x [\emptyset \mid work(x)])(z)]$

 $\Rightarrow^{\beta} [\emptyset \mid [z \mid student(z)] \Rightarrow [\emptyset \mid work(z)]]$

How do we define conjunction on DRSs?

(Naïve) Merge

The "merge" operation on DRSs combines two DRSs (conditions and universes).

• Let $K_1 = [U_1 | C_1]$ and $K_2 = [U_2 | C_2]$.

Merge: $K_1 + K_2 = [U_1 \cup U_2 | C_1 \cup C_2]$

Merge: An example

- a student $\mapsto \lambda G([z | student(z)] + G(z))$
- works $\mapsto \lambda x [\emptyset | work(x)]$

A student works $\mapsto \lambda G([z | student(z)] + G(z)) (\lambda x[\emptyset | work(x)])$

 $\Rightarrow^{\beta} [z | student(z)] + \lambda x [\emptyset | work(x)](z)$

 $\Rightarrow^{\beta} [z | student(z)] + [\emptyset | work(z)]$

 $\Rightarrow^{\beta} [z | student(z), work(z)]$

Compositional analysis

- Mary $\mapsto \lambda G([z | z = Mary] + G(z))$
- she $\mapsto \lambda G.G(z)$

Mary works. She is successful.

 $\mapsto \lambda K \lambda K'(K + K')([z | z = Mary, work(z)])([successful(z)])$

 $\Rightarrow^{\beta} \lambda K'([z | z = Mary, work(z)] + K')([successful(z)])$

 $\Rightarrow^{\beta} [z | z = Mary, work(z)] + ([successful(z)])$

 $\Rightarrow^{\beta} [z \mid z = Mary, work(z), successful(z)]$

Merge again

The "merge" operation on DRSs combines two DRSs (conditions and universes).

• Let $K_1 = [U_1 | C_1]$ and $K_2 = [U_2 | C_2]$.

Merge: $K_1 + K_2 \Rightarrow [U_1 \cup U_2 | C_1 \cup C_2]$

under the assumption that no discourse referent $u \in U_2$ occurs free in a condition $\gamma \in C_1$.

Variable capturing

In λ -DRT, discourse referents are captured via the interaction of β -reduction and DRS-binding:

• $\lambda K'([z | student(z), work(z)] + K')([| successful(z)])$

 $\Rightarrow^{\beta} [z | student(z), work(z)] + [| successful(z)]$

 $\Rightarrow^{\beta} [z \mid student(z), work(z), successful(z)]$

But the β -reduced DRS must still be *equivalent* to the original DRS!

So, the potential for capturing discourse referents must be captured into the interpretation of a λ -DRS. Possible, but tricky.

PDRT-SANDBOX is a Haskell library that implements Discourse Representation Theory (and the extension Projective DRT)

http://hbrouwer.github.io/pdrt-sandbox/

also available via: login.coli.uni-saarland.de:/proj/courses/semantics19

- Define your own DRSs, using the internal syntax or the settheoretic notation
- Show the DRSs in different output formats (boxes, linear boxes, set-theoretic, internal syntax)
- Composition of DRSs (using lambda's)
- Translate DRSs to FOL formulas

SANDBOX

DRS Syntax in PDRT-SANDBOX

DRS: DRS [...] [...] referents conditions

Referents: DRSRef "x", DRSRef "Mary"

Conditions:

Relation:	Rel	(DRSRel "man") [DRSRef "x"]
Identity:	Rel	(DRSRel "=") [DRSRef "x",DRSRef "y"]
Negation:	Neg	(DRS [] [])
Implication:	Imp	(DRS [] []) (DRS [] [])
Disjunction:	Or	(DRS [] []) (DRS [] [])

Properties: isPure(DRS [...] [...]), isProper(DRS [...] [...])

Using PDRT-SANDBOX on coli

```
~$ cp -r /proj/courses/semantics-19/pdrt-sandbox/ .
~$ cp /proj/courses/semantics-19/ghci .ghci
~$ cd pdrt-sandbox/
~/pdrt-sandbox$ make
[...]
~/pdrt-sandbox$ cd tutorials/
~/pdrt-sandbox/tutorials$ ghci DRSTutorial.hs
GHCi, version 7.10.3: http://www.haskell.org/ghc/ :? for help
[1 of 1] Compiling Main (DRSTutorial.hs, interpreted )
Ok, modules loaded: Main.
*Main>
```

Literature

Reading:

 Hans Kamp and Uwe Reyle: From Discourse to Logic, Kluwer: Dordrecht 1993.

Link:

 <u>https://plato.stanford.edu/entries/discourse-representation-</u> <u>theory/</u>