
Semantic Theory
Week 4 – Typed Lambda Calculus

Noortje Venhuizen 
Harm Brouwer

Universität des Saarlandes

Summer 2019

�1

Compositionality

The principle of compositionality: “The meaning of a complex
expression is a function of the meanings of its parts and of the syntactic
rules by which they are combined” (Partee et al.,1993)

Compositional semantics construction:

• compute meaning representations for sub-expressions

• combine them to obtain a meaning representation for a complex
expression.

�2

!

Problematic case: “Not smoking⟨e,t⟩ [is healthy]⟨⟨e,t⟩,t⟩”

Lambda abstraction

λ-abstraction is the operation that transforms expressions of any
type τ into a function ⟨σ,τ⟩, where σ is the type of the λ-variable.

�3

If α is in WEτ, and x is in VARσ then λx(α) is in WE⟨σ, τ⟩

Formal definition:

• The scope of the λ-operator is the smallest WE to its right. Wider scope must be
indicated by brackets.

• We often use the “dot notation” λx.φ indicating that the λ-operator takes widest
possible scope (over φ).

Interpretation of Lambda-expressions

If the λ-expression is applied to some argument, we can simplify the interpretation:

• ⟦λvα⟧M,g(x) = ⟦α⟧M,g[v/x]

�4

Example: “Bill is a non-smoker”

⟦λx(¬S(x))(b’)⟧M,g = 1

iff ⟦λx(¬S(x))⟧M,g(⟦b’⟧M,g) = 1

iff ⟦¬S(x)⟧M,g’ = 1 where g’=g[x/⟦b’⟧M,g]

iff ⟦S(x)⟧M,g’ = 0

iff ⟦S⟧M,g’(⟦x⟧M,g’) = 0

iff VM(S)(VM(b’)) = 0

If α ∈ WEτ and v ∈ VARσ, then ⟦λvα⟧M,g is that function f : Dσ → Dτ
such that for all a ∈ Dσ, f(a) = ⟦α⟧M,g[v/a]

β-Reduction

⟦λv(α)(β)⟧M,g = ⟦α⟧M,g[v/⟦β⟧M,g]

⇒ all (free) occurrences of the λ-variable in α get the interpretation of β
as value.

This operation is called β-reduction

• λv(α)(β) ⇔ α[β/v]

• α[β/v] is the result of replacing all free occurrences of v in α with β

�5

Achtung: The equivalence is not unconditionally valid!

Variable capturing

Q: Are λv(α)(β) and α[β/v] always equivalent?

• λx(drive’(x) ∧ drink’(x))(j’) ⇔ drive’(j’) ∧ drink’(j’)

• λx(drive’(x) ∧ drink’(x))(y) ⇔ drive’(y) ∧ drink’(y)

• λx(∀y know’(x)(y))(j’) ⇔ ∀y know(j’)(y)

• λx(∀y know’(x)(y))(y) ⇎ ∀y know(y)(y)

�6

Let v, v’ be variables of the same type, and let α be any well-formed
expression.

• v is free for v’ in α iff no free occurrence of v’ in α is in the scope of a
quantifier or a λ-operator that binds v.

Conversion rules

• β-conversion: 		 λv(α)(β) ⇔ α[β/v] 
(if all free variables in β are free for v in α)

• α-conversion: 		 λv.α ⇔ λw.α[w/v] 
(if w is free for v in α)

• η-conversion: 		 λv.α(v) ⇔ α

�7

Determiners as lambda-expressions

• a student works ➔ ∃x(student’(x) ∧ work’(x)) :: t

• a student ➔ λP∃x(student’(x) ∧ P(x)) :: ⟨⟨e,t⟩,t⟩

• a, some ➔ λQλP∃x(Q(x) ∧ P(x)) :: ⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩

• every student ➔ λP∀x(student’(x) → P(x)) :: ⟨⟨e,t⟩,t⟩

• every ➔ λQλP∀x(Q(x) → P(x)) :: ⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩

• no student ➔ λP¬∃x(student(x) ∧ P(x)) :: ⟨⟨e,t⟩,t⟩

• no ➔ λQλP¬∃x(Q(x) ∧ P(x)) :: ⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩

• someone ➔ λF∃xF(x) :: ⟨⟨e,t⟩,t⟩

�8

NL Quantifier Expressions: Interpretation

• someone’∈ CON⟨⟨e,t⟩,t⟩, so VM(someone’) ∈ D⟨⟨e,t⟩,t⟩

• D⟨⟨e,t⟩,t⟩ is the set of functions from D⟨e,t⟩ to Dt , i.e.,  
	 	 	 the set of functions from P(UM) to {0,1},  
	 	 	 which in turn is equivalent to P(P(UM))

• Thus, VM(someone’) ⊆ P(UM). More specifically:

• VM(someone’) = {S ⊆ UM | S ≠ ∅}, if UM is a domain of persons

�9

⇒ More on Natural Language Quantifiers next week!

Every student works.

(2) 	λPλQ∀x(P(x) → Q(x)) :: ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩

(3) 	λx.student’(x) ⇔η student’ :: ⟨e, t⟩

(1) 	λPλQ∀x(P(x) → Q(x))(student’)  
	 ⇔β λQ∀x(student’(x) → Q(x)) :: ⟨⟨e, t⟩, t⟩

(4)/(5) λx.work’(x) ⇔η work’ :: ⟨e, t⟩

(0) 	λQ∀x(student’(x) → Q(x))(work’) ⇔β ∀x(student’(x) → work’(x)) :: t

β-Reduction Example

�10

NP (1)

S (0)

VP (4)

IV (5)DET (2)

worksEvery

N (3)

student

Transitive Verbs: Type Clash

• Someone reads a book

�11

		 	 	 read	 	 	 	 a book  
 
someone	 	 	 	 	 	 ??

	 	 	 	 	 	 	 ??

:: ⟨e,⟨e, t⟩⟩ :: ⟨⟨e, t⟩,t⟩

:: ⟨⟨e, t⟩,t⟩ :: ??

:: t

Solution: reverse functor-argument relation (again)

read⟨⟨⟨e, t⟩,t⟩,⟨e, t⟩⟩	 	 (Type Raising)

Type Raising

It’s not enough to just change the type of the transitive verb:

• read ➔ read’ ∈ CON⟨⟨⟨e,t⟩, t⟩, ⟨e, t⟩⟩

	 someone reads a book: 
	 λF∃xF(x)(read’(λP∃y(book’(y) ∧ P(y)))  
	 ⇔β ∃x(read’(λP∃y(book’(y) ∧ P(y)))(x)

	 …but this does not support the following entailment: 
	 someone reads a book ⊨ there exists a book

We need a more explicit λ-term:

• read ➔ λQλz.Q(λx(read*(x)(z))) ∈ WE⟨⟨⟨e,t⟩, t⟩, ⟨e, t⟩⟩ 

	 	 where: read* ∈ WE⟨e, ⟨e, t⟩⟩ is the “underlying” first-order relation

�12

Transitive Verbs: example

someone reads a book

λF∃xF(x)(λQλz.Q(λx(read*(x)(z)))(λRλP.∃y(R(y) ∧ P(y)) (book’)))

⇔β λF∃xF(x)(λQλz.Q(λx(read*(x)(z)))(λP.∃y(book’(y) ∧ P(y))))

⇔β λF∃xF(x)(λz.(λP.∃y(book’(y) ∧ P(y)))(λx(read*(x)(z))))

⇔β λF∃xF(x)(λz.∃y(book’(y) ∧ λx(read*(x)(z))(y)))

⇔β λF∃xF(x)(λz.∃y(book’(y) ∧ read*(y)(z)))

⇔β ∃x(λz.∃y(book’(y) ∧ read*(y)(z)))(x)

⇔β ∃x∃y(book’(y) ∧ read*(y)(x))

�13

Background reading material

• Gamut: Logic, Language, and Meaning Vol II  
(Chapter 4, minus 4.3)

• Winter: Elements of Formal Semantics (Chapter 3)  
http://www.phil.uu.nl/~yoad/efs/main.html

�14

http://www.phil.uu.nl/~yoad/efs/main.html

