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Compositionality

The principle of compositionality: “The meaning of a complex 
expression is a function of the meanings of its parts and of the syntactic 
rules by which they are combined” (Partee et al.,1993) 

Compositional semantics construction: 

• compute meaning representations for sub-expressions 

• combine them to obtain a meaning representation for a complex 
expression. 
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Problematic case: “Not smoking⟨e,t⟩ [is healthy]⟨⟨e,t⟩,t⟩”



Lambda abstraction

λ-abstraction is the operation that transforms expressions of any 
type τ into a function ⟨σ,τ⟩, where σ is the type of the λ-variable. 
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If α is in WEτ, and x is in VARσ then λx(α) is in WE⟨σ, τ⟩

Formal definition:

• The scope of the λ-operator is the smallest WE to its right. Wider scope must be 
indicated by brackets.  

• We often use the “dot notation” λx.φ indicating that the λ-operator takes widest 
possible scope (over φ).



Interpretation of Lambda-expressions

If the λ-expression is applied to some argument, we can simplify the interpretation:  

• ⟦λvα⟧M,g(x) = ⟦α⟧M,g[v/x] 
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Example: “Bill is a non-smoker” 

⟦λx(¬S(x))(b’)⟧M,g = 1 

iff ⟦λx(¬S(x))⟧M,g(⟦b’⟧M,g) = 1 

iff  ⟦¬S(x)⟧M,g’ = 1 where g’=g[x/⟦b’⟧M,g] 

iff ⟦S(x)⟧M,g’ = 0 

iff ⟦S⟧M,g’(⟦x⟧M,g’) = 0  

iff VM(S)(VM(b’)) = 0

If α ∈ WEτ and v ∈ VARσ, then ⟦λvα⟧M,g is that function f : Dσ → Dτ 
such that for all a ∈ Dσ, f(a) = ⟦α⟧M,g[v/a]



β-Reduction

⟦λv(α)(β)⟧M,g = ⟦α⟧M,g[v/⟦β⟧M,g]  

⇒ all (free) occurrences of the λ-variable in α get the interpretation of β 
as value. 

This operation is called β-reduction


• λv(α)(β) ⇔ α[β/v] 

• α[β/v] is the result of replacing all free occurrences of v in α with β 
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Achtung: The equivalence is not unconditionally valid!



Variable capturing

Q: Are λv(α)(β) and α[β/v] always equivalent? 

• λx(drive’(x) ∧ drink’(x))(j’) ⇔ drive’(j’) ∧ drink’(j’)  

• λx(drive’(x) ∧ drink’(x))(y) ⇔ drive’(y) ∧ drink’(y) 

• λx(∀y know’(x)(y))(j’) ⇔ ∀y know(j’)(y) 

• λx(∀y know’(x)(y))(y) ⇎ ∀y know(y)(y)
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Let v, v’ be variables of the same type, and let α be any well-formed 
expression. 

• v is free for v’ in α iff no free occurrence of v’ in α is in the scope of a 
quantifier or a λ-operator that binds v. 



Conversion rules

• β-conversion: 		 λv(α)(β) ⇔ α[β/v] 
(if all free variables in β are free for v in α) 

• α-conversion: 		 λv.α ⇔ λw.α[w/v] 
(if w is free for v in α) 

• η-conversion: 		 λv.α(v) ⇔ α 
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Determiners as lambda-expressions

• a student works ➔ ∃x(student’(x) ∧ work’(x)) :: t 

• a student ➔ λP∃x(student’(x) ∧ P(x)) :: ⟨⟨e,t⟩,t⟩ 

• a, some ➔ λQλP∃x(Q(x) ∧ P(x)) :: ⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ 

• every student ➔ λP∀x(student’(x) → P(x)) :: ⟨⟨e,t⟩,t⟩ 

• every ➔ λQλP∀x(Q(x) → P(x)) :: ⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ 

• no student ➔ λP¬∃x(student(x) ∧ P(x)) :: ⟨⟨e,t⟩,t⟩ 

• no ➔ λQλP¬∃x(Q(x) ∧ P(x)) :: ⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ 

• someone ➔ λF∃xF(x) :: ⟨⟨e,t⟩,t⟩
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NL Quantifier Expressions: Interpretation 

• someone’∈ CON⟨⟨e,t⟩,t⟩, so VM(someone’) ∈ D⟨⟨e,t⟩,t⟩  

• D⟨⟨e,t⟩,t⟩ is the set of functions from D⟨e,t⟩ to Dt , i.e.,  
	 	 	    the set of functions from P(UM) to {0,1},  
	 	 	    which in turn is equivalent to P(P(UM)) 

• Thus, VM(someone’) ⊆ P(UM). More specifically:  

• VM(someone’) = {S ⊆ UM | S ≠ ∅}, if UM is a domain of persons
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⇒ More on Natural Language Quantifiers next week!



Every student works. 

(2) 	λPλQ∀x(P(x) → Q(x)) :: ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩ 

(3) 	λx.student’(x) ⇔η student’ :: ⟨e, t⟩ 

(1) 	λPλQ∀x(P(x) → Q(x))(student’)  
	 ⇔β λQ∀x(student’(x) → Q(x)) :: ⟨⟨e, t⟩, t⟩ 

(4)/(5) λx.work’(x) ⇔η work’ :: ⟨e, t⟩ 

(0) 	λQ∀x(student’(x) → Q(x))(work’) ⇔β ∀x(student’(x) → work’(x)) :: t

β-Reduction Example
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Transitive Verbs: Type Clash

• Someone reads a book
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		 	 	     read	 	 	 	      a book  
 
someone	 	 	 	 	 	     ?? 

	 	 	 	 	 	 	 ??

:: ⟨e,⟨e, t⟩⟩ :: ⟨⟨e, t⟩,t⟩

:: ⟨⟨e, t⟩,t⟩ :: ??

:: t

Solution: reverse functor-argument relation (again)  

read⟨⟨⟨e, t⟩,t⟩,⟨e, t⟩⟩	 	 (Type Raising)



Type Raising

It’s not enough to just change the type of the transitive verb: 

• read ➔ read’ ∈ CON⟨⟨⟨e,t⟩, t⟩, ⟨e, t⟩⟩ 

	 someone reads a book: 
	 λF∃xF(x)(read’(λP∃y(book’(y) ∧ P(y)))  
	 ⇔β ∃x(read’(λP∃y(book’(y) ∧ P(y)))(x) 

	 …but this does not support the following entailment: 
	 someone reads a book ⊨ there exists a book 

We need a more explicit λ-term: 

• read ➔ λQλz.Q(λx(read*(x)(z))) ∈ WE⟨⟨⟨e,t⟩, t⟩, ⟨e, t⟩⟩ 

	 	 where: read* ∈ WE⟨e, ⟨e, t⟩⟩ is the “underlying” first-order relation 
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Transitive Verbs: example

someone reads a book  

λF∃xF(x)(λQλz.Q(λx(read*(x)(z)))(λRλP.∃y(R(y) ∧ P(y)) (book’))) 

⇔β λF∃xF(x)(λQλz.Q(λx(read*(x)(z)))(λP.∃y(book’(y) ∧ P(y))))  

⇔β λF∃xF(x)(λz.(λP.∃y(book’(y) ∧ P(y)))(λx(read*(x)(z)))) 

⇔β λF∃xF(x)(λz.∃y(book’(y) ∧ λx(read*(x)(z))(y))) 

⇔β λF∃xF(x)(λz.∃y(book’(y) ∧ read*(y)(z))) 

⇔β ∃x(λz.∃y(book’(y) ∧ read*(y)(z)))(x) 

⇔β ∃x∃y(book’(y) ∧ read*(y)(x))
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Background reading material

• Gamut: Logic, Language, and Meaning Vol II  
(Chapter 4, minus 4.3) 

• Winter: Elements of Formal Semantics (Chapter 3)  
http://www.phil.uu.nl/~yoad/efs/main.html
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