Semantic Theory Week 2 – Type Theory

Noortje Venhuizen Harm Brouwer

Universität des Saarlandes

Summer 2019

First-order logic

First-order logic talks about:

- Individual objects
- Properties of and relations between individual objects
- Quantification over individual objects

Limitations of first-order logic

FOL is not expressive enough to capture all meanings that can be expressed by basic natural language expressions:

Jumbo is a <u>small</u> elephant. (Predicate modifiers)

Happy is a state of mind. (Second-order predicates)

Yesterday, it rained. (Non-logical sentence operators)

Bill and John have the same hair color. (Higher-order quantification)

→ What *logically sound* system can capture this diversity?

Bertrand Russell

Q: Does the barber shave himself?

Russell's paradox

What if we extend the FOL interpretation of predicates, and interpret higher-order predicates as sets of sets of properties?

For every predicate P, we can define a set $\{x \mid P(x)\}$ containing all and only those entities for which P holds.

Then we can define a set $S = \{X \mid X \not\in X\}$ representing the set of all sets that are not members of itself.

Q: does S belong to itself?

→ We need a more restricted way of talking about properties and relations between properties!

Type Theory

Basic types:

- e the type of individual terms ("entities")
- t the type of formulas ("truth-values")

Complex types:

• If σ , τ are types, then $\langle \sigma, \tau \rangle$ is a type (representing a functor expression that takes a σ type expression as argument and returns a type τ expression; sometimes written as: $(\sigma \rightarrow \tau)$).

Types & Function Application

Types of first-order expressions:

- Individual constants (Luke, Death Star): e
- One-place predicates (walk, jedi): (e, t)
- Two-place predicates (fight, admire): (e, (e, t))
- Three-place predicates (give, introduce): (e, (e, (e, t)))

Function application: Combining a functor of complex type with an appropriate argument, resulting in an expression of a less complex type: $\langle \alpha, \beta \rangle \langle \alpha \rangle \mapsto \beta$

- jedi'(luke') :: ⟨e, t⟩(e) ⇒ t
- fight'(luke') :: $\langle \mathbf{e}, \langle \mathbf{e}, \mathbf{t} \rangle \rangle \langle \mathbf{e} \rangle \Longrightarrow \langle \mathbf{e}, \mathbf{t} \rangle$

More examples of types

Types of higher-order expressions:

- Predicate modifiers (expensive, small): ((e, t), (e, t))
- Second-order predicates (state of mind): ((e, t), t)
- Sentence operators (yesterday, possibly, unfortunately): (t, t)
- Degree particles (very, too): (((e, t), (e, t)), ((e, t), (e, t)))

Tip: If σ , τ are basic types, $\langle \sigma, \tau \rangle$ can be abbreviated as $\sigma \tau$. Thus, the type of predicate modifiers and second-order predicates can be more conveniently written as $\langle \mathbf{et}, \mathbf{et} \rangle$ and $\langle \mathbf{et}, \mathbf{t} \rangle$, respectively.

Type Theory — Vocabulary

Non-logical constants:

For every type τ a (possibly empty) set of non-logical constants CON_τ (pairwise disjoint)

Variables:

• For every type $\mathbf{\tau}$ an infinite set of variables VAR_{τ} (pairwise disjoint)

Logical symbols: \forall , \exists , \neg , \land , \lor , \rightarrow , \leftrightarrow , =

Brackets: (,)

Type Theory — Syntax

For every type τ , the set of well-formed expressions WE_T is defined as follows:

- (i) $CON_T \subseteq WE_T$ and $VAR_T \subseteq WE_T$;
- (ii) If $\alpha \in WE_{(\sigma, \tau)}$, and $\beta \in WE_{\sigma}$, then $\alpha(\beta) \in WE_{\tau}$; (function application)
- (iii) If A, B are in WE_t, then \neg A, (A \wedge B), (A \vee B), (A \rightarrow B), (A \leftrightarrow B) are in WE_t;
- (iv) If A is in WE_t and x is a variable of arbitrary type, then $\forall xA$ and $\exists xA$ are in WE_t;
- (v) If α , β are well-formed expressions of the same type, then $\alpha = \beta \in WE_t$;
- (vi) Nothing else is a well-formed expression.

Function application

```
(ii) If \alpha \in WE_{\langle \sigma, \tau \rangle}, and \beta \in WE_{\sigma}, then \alpha(\beta) \in WE_{\tau}
```

"Luke is a talented jedi"

talented'(jedi')(luke'):: t

Type inferencing: examples

- 1. Yodae [is faster than Palpatinee].
- 2. Yodae [is much [faster than]] Palpatinee.
- 3. [[Han Solo]_e fights] [because [[the Dark Side]_e is rising]].
- 4. Obi-Wane [[told [Qui-Gon Jinn]e] he will take [the Jedi-exam]e].

Higher-order predicates

Higher-order quantification:

Leia has the same <u>hair colour</u> as Padmé

$$\exists C \text{ (hair_colour(C)} \land C(I') \land C(p'))$$
 $\langle (e, t), t \rangle$ $\langle (e, t), t \rangle$

Higher-order equality:

- For p, $q \in CON_t$, "p=q" expresses material equivalence: "p \leftrightarrow q".
- For F, G ∈ CON_{⟨e, t⟩}, "F=G" expresses co-extensionality: "∀x(Fx↔Gx)"
- For any formula ϕ of type t, $\phi=(x=x)$ is a representation of " ϕ is true".

Type Theory — Semantics [1]

Let **U** be a non-empty set of entities.

The domain of possible denotations \mathbf{D}_{τ} for every type $\boldsymbol{\tau}$ is given by:

- $D_e = U$
- $D_t = \{0, 1\}$
- $D_{\langle \sigma, \tau \rangle}$ is the set of all functions from D_{σ} to D_{τ}

Expressions of type σ denote elements of D_{σ}

Characteristic functions

Many natural language expressions have a type (σ, t)

Expressions with type $\langle \sigma, t \rangle$ are functions mapping elements of type σ to truth values: $\{0,1\}$

Such functions with a range of $\{0,1\}$ are called *characteristic functions*, because they uniquely specify a subset of their domain D_{σ}

The characteristic function of set M in a domain U is the function $F_M: U \rightarrow \{0,1\}$ such that for all $a \in U$, $F_M(a) = 1$ iff $a \in M$.

NB: For first-order predicates, the FOL representation (using sets) and the type-theoretic representation (using characteristic functions) are equivalent.

Interpretation with characteristic functions: example

For $M = \langle U, V \rangle$, let U consist of five entities. For selected types, we have the following sets of possible denotations:

•
$$D_t = \{0, 1\}$$

•
$$D_e = U = \{e_1, e_2, e_3, e_4, e_5\}$$

•
$$D_{\langle e,t\rangle} = \{ \begin{bmatrix} e_1 \to 1 \\ e_2 \to 0 \\ e_3 \to 1 \\ e_4 \to 0 \\ e_5 \to 1 \end{bmatrix}, \begin{bmatrix} e_1 \to 1 \\ e_2 \to 1 \\ e_3 \to 0 \\ e_4 \to 1 \\ e_5 \to 1 \end{bmatrix}, \begin{bmatrix} e_1 \to 0 \\ e_2 \to 1 \\ e_3 \to 1 \\ e_4 \to 0 \\ e_5 \to 0 \end{bmatrix}, \dots \}$$

Alternative set notation: $D_{\langle e,t\rangle} = \{\{e_1,e_3,e_5\},\{e_1,e_2,e_4,e_5\},\{e_2,e_3\},...\}$

Type Theory — Semantics [2]

A model structure for a type theoretic language is a tuple $\mathbf{M} = \langle \mathbf{U}, \mathbf{V} \rangle$ such that:

- U is a non-empty domain of individuals
- **V** is an interpretation function, which assigns to every $\mathbf{\alpha} \in \mathbf{CON}_{\tau}$ an element of \mathbf{D}_{τ} (where τ is an arbitrary type)

The variable assignment function g assigns to every typed variable $\mathbf{v} \in \mathbf{VAR}_{\tau}$ an element of \mathbf{D}_{τ}

Type Theory — Interpretation

Given a model structure $M = \langle U, V \rangle$ and a variable assignment g:

For any variable v of type σ :

Interpretation: Example

Luke is a talented jedi

[talented'(jedi')(luke')]M,g

- = [talented'(jedi')]M,g ([luke']M,g)
- = [talented']M,g([jedi']M,g) ([luke']M,g)
- = V_M(talented')(V_M(jedi'))(V_M(luke'))

Interpretation: Example (cont.)

[Luke is a talented jedi] M,g = VM(talented')(VM(jedi'))(VM(luke'))

Background reading material

- Gamut: Logic, Language, and Meaning Vol II (Chapter 4)
- Winter: Elements of Formal Semantics (Chapter 3) http://www.phil.uu.nl/~yoad/efs/main.html