Semantic Theory Week 2 - Type Theory

Noortje Venhuizen
Harm Brouwer

Universität des Saarlandes

Summer 2019

First-order logic

First-order logic talks about:

- Individual objects
- Properties of and relations between individual objects
- Quantification over individual objects

Limitations of first-order logic

FOL is not expressive enough to capture all meanings that can be expressed by basic natural language expressions:

Jumbo is a small elephant.
Happy is a state of mind.
Yesterday, it rained.
Bill and John have the same hair color.
(Predicate modifiers)
(Second-order predicates)
(Non-logical sentence operators)
(Higher-order quantification)
\rightarrow What logically sound system can capture this diversity?

Bertrand Russell

Q: Does the barber shave himself?

Russell's paradox

What if we extend the FOL interpretation of predicates, and interpret higher-order predicates as sets of sets of properties?

For every predicate P , we can define a set $\{\mathrm{x} \mid \mathrm{P}(\mathrm{x})\}$ containing all and only those entities for which P holds.

Then we can define a set $S=\{X \mid X \notin X\}$ representing the set of all sets that are not members of itself.
Q : does S belong to itself?
\rightarrow We need a more restricted way of talking about properties and relations between properties!

Type Theory

Basic types:

- \mathbf{e} - the type of individual terms ("entities")
- \mathbf{t} - the type of formulas ("truth-values")

च

Complex types:

- If $\boldsymbol{\sigma}, \mathbf{\tau}$ are types, then $\langle\boldsymbol{\sigma}, \boldsymbol{\tau}\rangle$ is a type (representing a functor expression that takes a $\boldsymbol{\sigma}$ type expression as argument and returns a type $\mathbf{\tau}$ expression; sometimes written as: ($\boldsymbol{\sigma} \rightarrow \mathbf{\tau}$)).

Types \＆Function Application

Types of first－order expressions：
－Individual constants（Luke，Death Star）：e

- One－place predicates（walk，jedi）：〈e，t〉
- Two－place predicates（fight，admire）：〈e，〈e，t＞＞
－Three－place predicates（give，introduce）：$\langle\mathbf{e},\langle\mathbf{e},\langle\mathbf{e}, \mathbf{t}\rangle\rangle\rangle$
Function application：Combining a functor of complex type with an appropriate argument，resulting in an expression of a less complex type：$\langle\mathbf{a}, \boldsymbol{\beta}\rangle(\mathbf{a}) \mapsto \boldsymbol{\beta}$
－jedi＇${ }^{\prime}($ luke＇）$::\langle\mathbf{e}, \mathbf{t}\rangle(\mathbf{e}) \Longrightarrow \mathbf{t}$
－fight＇$\left(l u k e^{\prime}\right)::\langle\mathbf{e},\langle\mathbf{e}, \mathbf{t}\rangle\rangle(\mathbf{e}) \Longrightarrow\langle\mathbf{e}, \mathbf{t}\rangle$

More examples of types

Types of higher-order expressions:

- Predicate modifiers (expensive, small): 〈 $\langle\mathbf{e}, \mathbf{t}\rangle,\langle\mathbf{e}, \mathbf{t}\rangle\rangle$
- Second-order predicates (state of mind): $\langle\langle\mathbf{e}, \mathbf{t}\rangle, \mathbf{t}\rangle$
- Sentence operators (yesterday, possibly, unfortunately): 〈t, t>
- Degree particles (very, too): $\langle\langle\langle\mathbf{e}, \mathbf{t}\rangle,\langle\mathbf{e}, \mathbf{t}\rangle\rangle,\langle\langle\mathbf{e}, \mathbf{t}\rangle,\langle\mathbf{e}, \mathbf{t}\rangle\rangle\rangle$

Tip: If $\boldsymbol{\sigma}, \mathbf{\tau}$ are basic types, $\langle\boldsymbol{\sigma}, \mathbf{\tau}\rangle$ can be abbreviated as $\boldsymbol{\sigma}$. Thus, the type of predicate modifiers and second-order predicates can be more conveniently written as $\langle\mathbf{e t}, \mathbf{e t}\rangle$ and $\langle\mathbf{e t}, \mathbf{t}\rangle$, respectively.

Type Theory - Vocabulary

Non-logical constants:

- For every type $\mathbf{\tau}$ a (possibly empty) set of non-logical constants CON_{T} (pairwise disjoint)

Variables:

- For every type $\mathbf{\tau}$ an infinite set of variables VAR $_{T}$ (pairwise disjoint)

Logical symbols: $\forall, \exists, \neg, \wedge, \vee, \rightarrow, \leftrightarrow,=$

Brackets: (,)

Type Theory - Syntax

For every type τ, the set of well-formed expressions WE_{T} is defined as follows:
(i) $\operatorname{CON}_{T} \subseteq W E_{T}$ and $V A R_{T} \subseteq W E_{T} ;$
(ii) If $a \in W E_{\langle\sigma, T\rangle}$, and $\beta \in W_{E_{\sigma}}$, then $a(\beta) \in W_{T}$;
(iii) If A, B are in W_{E}, then $\neg A,(A \wedge B),(A \vee B),(A \rightarrow B),(A \leftrightarrow B)$ are in $W E_{t}$;
(iv) If A is in $W E_{t}$ and x is a variable of arbitrary type, then $\forall x A$ and $\exists x A$ are in WE_{t};
(v) If a, β are well-formed expressions of the same type, then $a=\beta \in W_{E} ;$
(vi) Nothing else is a well-formed expression.

Function application

(ii) If $a \in W E_{\langle\sigma, T\rangle}$, and $\beta \in W E_{\sigma}$, then $a(\beta) \in W E_{\tau}$
"Luke is a talented jedi"

```
jedi' :: 〈e, t>
talented':: \(\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle\)
```

luke':: e talented'(jedi'):: 〈e, t>
talented'(jedi')(luke') :: t

Type inferencing: examples

1. Yodae [is faster than Palpatinee].
2. Yodae [is much [faster than]] Palpatinee.
3. [[Han Solo]e fights] [because [[the Dark Side]e is rising]].
4. Obi-Wane [[told [Qui-Gon Jinn]e] he will take [the Jedi-exam]e].

Higher-order predicates

Higher-order quantification:

- Leia has the same hair colour as Padmé

Higher-order equality:

- For $p, q \in C O N_{t}$, " $p=q$ " expresses material equivalence: " $p \leftrightarrow q$ ".
- For $F, G \in C O N_{\langle e, t\rangle}$, " $F=G$ " expresses co-extensionality: " $\forall x(F x \leftrightarrow G x)$ "
- For any formula ϕ of type $t, \phi=(x=x)$ is a representation of " ϕ is true".

Type Theory - Semantics [1]

Let \mathbf{U} be a non-empty set of entities.

The domain of possible denotations $\mathbf{D}_{\boldsymbol{\tau}}$ for every type $\mathbf{\tau}$ is given by:

- $D_{e}=U$
- $D_{t}=\{0,1\}$
- $D_{\langle\sigma, \tau\rangle}$ is the set of all functions from D_{σ} to D_{T}

Expressions of type $\boldsymbol{\sigma}$ denote elements of $\boldsymbol{D}_{\boldsymbol{\sigma}}$

Characteristic functions

Many natural language expressions have a type $\langle\boldsymbol{\sigma}, \mathbf{t}\rangle$

Expressions with type $\langle\boldsymbol{\sigma}, \mathbf{t}\rangle$ are functions mapping elements of type $\boldsymbol{\sigma}$ to truth values: $\{\mathbf{0 , 1} \mathbf{1}$

Such functions with a range of $\{\mathbf{0 , 1}\}$ are called characteristic functions, because they uniquely specify a subset of their domain $\boldsymbol{D}_{\boldsymbol{\sigma}}$

> The characteristic function of set M in a domain U is the function $F_{M}: U \rightarrow\{0,1\}$ such that for all $a \in U, F_{M}(a)=1$ iff $a \in M$.

NB: For first-order predicates, the FOL representation (using sets) and the typetheoretic representation (using characteristic functions) are equivalent.

Interpretation with characteristic functions: example

For $M=\langle U, V\rangle$, let U consist of five entities. For selected types, we have the following sets of possible denotations:

- $D_{t}=\{0,1\}$
- $D_{e}=U=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$

$$
D_{<e, t\rangle}=\left\{\left[\begin{array}{c}
e_{1} \rightarrow 1 \\
e_{2} \rightarrow 0 \\
e_{3} \rightarrow 1 \\
e_{4} \rightarrow 0 \\
e_{5} \rightarrow 1
\end{array}\right],\left[\begin{array}{c}
e_{1} \rightarrow 1 \\
e_{3} \rightarrow 1 \\
e_{5} \rightarrow 1 \\
e_{3} \rightarrow 0 \\
e_{3} \rightarrow 1 \\
e_{5} \rightarrow 1 \\
e_{5} \rightarrow 1
\end{array}\right],\left[\begin{array}{c}
e_{1} \rightarrow 0 \\
e_{1} \rightarrow 1 \\
e_{3} \rightarrow 1 \\
e_{3} \rightarrow 1 \\
e_{5} \rightarrow 0 \\
e_{5} \rightarrow 0
\end{array}\right], \ldots\right\}
$$

Alternative set notation: $\mathrm{D}_{<\mathrm{e}, \mathrm{t}}=\left\{\left\{\mathrm{e}_{1}, \mathrm{e}_{3}, \mathrm{e}_{5}\right\},\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{4}, \mathrm{e}_{5}\right\},\left\{\mathrm{e}_{2}, \mathrm{e}_{3}\right\}, \ldots\right\}$

Type Theory - Semantics [2]

A model structure for a type theoretic language is a tuple $\mathbf{M}=\langle\mathbf{U}, \mathbf{V}\rangle$ such that:

- \mathbf{U} is a non-empty domain of individuals
- \mathbf{V} is an interpretation function, which assigns to every $\mathbf{a} \in \mathbf{C O N}_{\boldsymbol{\tau}}$ an element of $\mathbf{D}_{\boldsymbol{\tau}}$ (where $\mathbf{\tau}$ is an arbitrary type)

The variable assignment function g assigns to every typed variable $\mathbf{v} \in \mathbf{V A R}_{\boldsymbol{\tau}}$ an element of $\mathbf{D}_{\boldsymbol{\tau}}$

Type Theory - Interpretation

Given a model structure $\mathrm{M}=\langle\mathrm{U}, \mathrm{V}\rangle$ and a variable assignment g :

$\llbracket a \rrbracket^{M, g}$	$=V(a) \quad$ if a is a constant
	$=g(a) \quad$ if a is a variable
$\llbracket a(\beta) \rrbracket^{M, g}$	$\left.=\llbracket a \rrbracket^{M, g(} \llbracket \beta \rrbracket^{M, g}\right)$
$\llbracket a=\beta \rrbracket^{M, g}$	$=1$ iff $\llbracket a \rrbracket^{M, g}=\llbracket \beta \rrbracket^{M, g}$
$\llbracket \neg \phi \rrbracket^{M, g}$	$=1$ iff $\llbracket \phi \rrbracket^{M, g}=0$
$\llbracket \phi \wedge \psi \rrbracket^{M, g}$	$=1$ iff $\llbracket \phi \rrbracket^{M, g}=1$ and $\llbracket \psi \rrbracket^{M, g}=1$
$\llbracket \phi \vee \psi \rrbracket^{M, g}$	$=1$ iff $\llbracket \phi \rrbracket^{M, g}=1$ or $\llbracket \psi \rrbracket^{M, g}=1$

For any variable v of type σ :

$\llbracket \exists \vee \emptyset \rrbracket^{M, g}$	$=1$ iff
$\llbracket \forall V \emptyset \rrbracket^{M, g}$	$=1$ iff \quad for all $d \in D_{\sigma}: \llbracket \phi \rrbracket^{M, g[v / d]}=1$

Interpretation：Example

Luke is a talented jedi

$$
\text { jedi' }::\langle\mathrm{e}, \mathrm{t}\rangle \quad \text { talented' }::\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle
$$

luke＇：：e talented＇（jedi＇）：：〈e，t \rangle
talented＇（jedi＇）（luke＇）：：t

【talented＇（jedi＇）（luke＇）】】，${ }^{\mathrm{M}, \mathrm{g}}$
$=\llbracket$ talented＇$\left.{ }^{(j e d i}\right) \not \rrbracket^{\mathrm{M}, \mathrm{g}}\left(\llbracket \mid \mathrm{luke} \rrbracket^{\mathrm{M}, \mathrm{g}}\right)$

$=\mathrm{V}_{\mathrm{M}}($ talented＇$)\left(\mathrm{V}_{\mathrm{M}}\left(\right.\right.$ jedi $\left.\left.^{\prime}\right)\right)\left(\mathrm{V}_{\mathrm{M}}\left(\right.\right.$ luke＇$\left.\left.^{\prime}\right)\right)$

Interpretation: Example (cont.)

Background reading material

- Gamut: Logic, Language, and Meaning Vol II (Chapter 4)
- Winter: Elements of Formal Semantics (Chapter 3) http://www.phil.uu.nl/~yoad/efs/main.html

