Semantic Theory week 12 – Distributive Situation-state Spaces

Noortje Venhuizen (based on slides by Harm Brouwer)

Universität des Saarlandes

Summer 2017

Semantics: a psycholinguistic perspective

"charlie plays soccer"

play(charlie,soccer)

Distributed Situation Space (DSS)

- A non-symbolic, distributed representational scheme for meaning
- Situations are represented as vectors in a high-dimensional space called "*situation-state space*"
- DSS vectors capture dependencies between situations, allowing for 'world knowledge'-driven *direct inference*
- To encode all world knowledge, DSS vectors are derived from observations of *states-of-affairs* (situations) in a *microworld*

3

DSS—The main idea

- Take a snapshot of the world ("a sample") at many different (independent) points in time, and for each snapshot write down the full *state-of-affairs* in the world
- Meaning of individual propositions is determined by *collocation* with other propositions in full set of states-of-affairs (cf. Distributional Semantics)

Problem: How to record full state-of-affairs in the world for each snapshot?

Limit the scope of the world by using a confined microworld

Defining a Microworld

An *observation* (state-of-affairs) in a microworld is defined in terms of the set of *atomic events*; i.e., each atomic event is either the case or not the case

Class	Variable	Class members (concepts)	#	Event name		#
People	p	charlie, heidi, sophia	3	play(p,g)	$3 \times 3 =$	9
Games	g	chess, hide&seek, soccer	3	play(p,t)	$3 \times 3 =$	9
Toys	t	puzzle, ball, doll	3	win(p)		3
Places	x	bathroom, bedroom, playground, street	4	lose(p)		3
Manners of playing	$m_{ m play}$	well, badly	2	place(p,x)	$3 \times 4 =$	12
Manners of winning	$m_{ m win}$	easily, difficultly	2	$manner(play(p), m_{\mathrm{play}})$	$3 \times 2 =$	6
Predicates		play, win, lose, place, manner	5	$manner(win,\!m_{\mathrm{win}})$		2
					Total	44

> 2^44 (≈10^13) possible observations, but *world knowledge* precludes many

Microworld knowledge

World knowledge enforces constraints on event co-occurrence. Some examples:

- Personal characteristics—each person has a specialty, a preferred toy, and some persons frequent specific places
- Games and toys—each game/toy can only be played (with) in specific places, and has a number of possible player configurations; soccer is played with a ball
- Being there—everybody is exactly at one place; if hide&seek is played in the playground, all players are there; all chess players are in the same place
- Winning and losing—only one can win, and one cannot win and lose; if someone wins, all other players lose

Distributed Situation-state Space

v(place(sophia,street)) a DSS vector

... encodes the meaning of events 'truth-conditionally'

... can represent complex events (*compositionality*)

... contains probabilistic information about events (*world knowledge*)

play(charlie, chess) ^ win(heidi) ^ ... ^ lose(charlie)

DSS: Compositionality

The DSS vectors of *atomic events* are the columns of the DSS matrix

The DSS vectors of *complex events* can be found through (fuzzy) propositional logic:

$$\vec{v}(\neg a) = 1 - \vec{v}(a)$$

 $\vec{v}(a \land b) = \vec{v}(a)\vec{v}(b)$ where $\vec{v}(a \land a) = \vec{v}(a)$

Which gives us $\vec{v}(a \uparrow b) = \vec{v}(\neg \vec{v}(a \land b))$ and hence *functional completeness*:

$$\vec{v}(a \lor b) = \vec{v}(\vec{v}(a \uparrow a) \uparrow \vec{v}(b \uparrow b))$$
$$\vec{v}(a \to b) = \vec{v}(a \uparrow \vec{v}(b \uparrow b)) = \vec{v}(a \uparrow \vec{v}(a \uparrow b))$$
$$\vec{v}(a \lor b) = \vec{v}(\vec{v}(a \uparrow \vec{v}(a \uparrow b)) \uparrow \vec{v}(b \uparrow \vec{v}(a \uparrow b)))$$

> allows for deriving DSS vectors for events of arbitrary logical complexity

DSS: Probabilistic information

Situation vectors encode events by means of *co-occurrence probabilities*

Prior belief in atomic event *a* (= estimate of its probability):

$$B(a) = \frac{1}{k} \sum_{i} \vec{v}_i(a) \approx Pr(a)$$

Prior conjunction belief of atomic events *a* and *b*:

$$B(a \wedge b) = \frac{1}{k} \sum_{i} \vec{v}_i(a) \vec{v}_i(b) \approx Pr(a \wedge b) \quad \text{where} \quad B(a \wedge a) = B(a)$$

Prior conditional belief of atomic event a given b:

$$B(a|b) = \frac{B(a \wedge b)}{B(b)} \approx Pr(a|b)$$

Critically, a and b can be atomic or complex events

 $B(a|b) \approx Pr(a|b)$ means $\vec{v}(b)$ encodes b and all that depends upon b; this allows 'world knowledge'-driven inference

Q

Microworld Probabilities

Quantifying comprehension

Beyond conditional belief—how much is event *a* 'understood' from event *b*

- Knowing *b* increases belief in *a*: the conditional belief B(a|b) is higher than the prior belief B(a)
- Knowing b decreases belief in a: the conditional belief B(a|b) is lower than the prior belief B(a)

$$comprehension(a,b) = \begin{cases} \frac{B(a|b) - B(a)}{1 - B(a)} & \text{if } B(a|b) > B(a)\\ \frac{B(a|b) - B(a)}{B(a)} & \text{otherwise} \end{cases}$$

- $-1 \leq comprehension(a,b) \leq +1$
- +1 = perfect positive comprehension: b took away all uncertainty in a
- -1 = perfect negative comprehension: b took away all certainty in a

From sentences to vectors

Use FOL as an intermediate representation for sentences; apply composition rules on DSS vectors to arrive at complex DSS vector

charlie plays chess	play(c, chess)		
chess is played by charlie	play(c, chess)		
girl plays chess	$play(h, chess) \lor play(s, chess)$		
heidi plays game	$play(h,chess)\lorplay(h,hide\&seek)\lorplay(h,soccer)$		
heidi plays with toy	$play(h, puzzle) \lor play(h, ball) \lor play(h, doll)$		
sophia plays soccer well	$play(s, soccer) \land manner(play(s), well)$		
sophia plays with ball in stree	$et play(s, ball) \land place(s, street)$		
someone plays with doll	$play(c, doll) \lor play(h, doll) \lor play(s, doll)$		
doll is played with	$play(c,doll)\lorplay(h,doll)\lorplay(s,doll)$		
$\textit{charlie plays} \qquad \qquad play(c,chess) \lor play(c,hide\&seek) \lor play(c,$			
	\lor play(c, puzzle) \lor play(c, ball) \lor play(c, doll)		

Applying DSS in a neural network model

play(charlie,chess) ^ place(charlie,bathroom)

"charlie", "plays", "chess", "in", "the", "bathroom" charlie plays chess in the bathroom

Word-by-word inferencing

• •	● ● ●												
mode	l:all_sents> dssScores basic_	_events "c	harlie pla	ys chess"									
****	**** Sentence: charlie plays chess												
****	Semantics: play(charlie, ches	55)											
****		charlie		plays		chess							
****		char tie		prays		ciless							
****		+0_08693	-0.01071	+0-07622	+0.72407	+0.80029							
**		.0100000	01010/1	1010/022		10100025							
***	plav(charlie.chess)	+0.08693	-0.01071	+0.07622	+0.72407	+0.80029	<pre>plav(charlie.chess)</pre>						
**	play(charlie.hide and seek)	+0.04279	-0.01568	+0.02710	-0.77386	-0.74676	play(charlie.hide and seek)						
****	play(charlie,soccer)	+0.12169	-0.03329	+0.08841	-0.87402	-0.78562	play(charlie,soccer)						
**	play(heidi,chess)	+0.01111	+0.00486	+0.01597	+0.41746	+0.43343	play(heidi,chess)						
****	<pre>play(heidi,hide_and_seek)</pre>	-0.08301	-0.00589	-0.08890	-0.77328	-0.86218	<pre>play(heidi,hide_and_seek)</pre>						
**	<pre>play(heidi,soccer)</pre>	+0.00730	-0.00709	+0.00021	-0.88450	-0.88429	play(heidi,soccer)						
***	play(sophia,chess)	+0.00809	+0.00035	+0.00844	+0.35767	+0.36612	play(sophia,chess)						
***	<pre>play(sophia,hide_and_seek)</pre>	-0.11984	-0.00710	-0.12694	-0.71115	-0.83810	<pre>play(sophia,hide_and_seek)</pre>						
****	play(sophia,soccer)	+0.03251	-0.02039	+0.01211	-0.90027	-0.88816	play(sophia,soccer)						
****	play(charlie,puzzle)	-0.03140	+0.04140	+0.01001	-0.69627	-0.68626	play(charlie,puzzle)						
****	play(charlie,ball)	+0.01103	-0.00114	+0.00989	-0.81493	-0.80505	play(charlie,ball)						
****	play(charlie,doll)	-0.23204	+0.1122/	-0.11977	-0.67018	-0.78995	play(charlie,doll)						
****	play(heidi,puzzle)	-0.12599	+0.04865	-0.0//33	-0.12012	-0.19746	play(neidi, puzzle)						
***	play(heidi, dall)	+0.003/3	-0.00318	+0.00055	-0.3/381	-0.37527	play(heidi, dall)						
****	play(cophia_puzzle)	+0.00541	-0.02422	-0.00010	-0.20051	+0.21209	play(rephia_puzzle)						
****	play(sophia ball)	+0 00015	-0.03433	+0 00012	-0 40504	-0.39683	play(sophia ball)						
skokokok	play(sophia.doll)	-0.03115	+0.02611	-0.00504	-0.07983	-0.08487	play(sophia.doll)						
**	win(charlie)	+0.09208	-0.03814	+0.05393	+0.19446	+0.24839	win(charlie)						
**	win(heidi)	+0.01076	-0.10392	-0.09316	-0.11974	-0.21290	win(heidi)						
****	win(sophia)	+0.01201	-0.06818	-0.05617	-0.34537	-0.40154	win(sophia)						
**	lose(charlie)	+0.08350	-0.04772	+0.03578	-0.00125	+0.03453	lose(charlie)						
****	lose(heidi)	+0.01591	-0.01308	+0.00283	+0.05884	+0.06167	lose(heidi)						
***	lose(sophia)	+0.02748	-0.02746	+0.00001	+0.06213	+0.06214	lose(sophia)						
****	<pre>place(charlie,bathroom)</pre>	-0.45570	-0.04047	-0.49617	-0.40434	-0.90052	<pre>place(charlie,bathroom)</pre>						
***	<pre>place(charlie,bedroom)</pre>	+0.11246	+0.01725	+0.12972	+0.71078	+0.84050	place(charlie,bedroom)						
****	place(charlie,playground)	-0.24599	+0.07566	-0.17033	-0.65517	-0.82550	<pre>place(charlie,playground)</pre>						
****	place(charlie,street)	+0.07425	-0.02316	+0.05109	-0.86119	-0.81011	place(charlie,street)						
****	place(heidi,bathroom)	-0.01684	+0.02099	+0.00415	-0.44904	-0.44489	place(heidi,bathroom)						
****	place(heidi,bedroom)	-0.00530	+0.00981	+0.00451	+0.459/2	+0.46424	place(heidi,bedroom)						
****	place(heidi,playground)	-0.02113	-0.01805		-0.29/45	-0.33664	place(heidi,playground)						
	place(neidi,street)	+0.01236	-0.00930	+0.00307	-0.0/340	-0.57038	place(neidi,street)						
	place(sophia, badroom)	-0.03023	+0.03362	+0.00558	-0.34/21	-0.34104	place(sophia, badroom)						
****	place(sophia, playaround)	-0.01585	+0 01660	-0.03886	-0 15051	-0.19837	place(sophia, playaround)						
****	place(sophia_street)	+0.03195	-0.01436	+0.01759	-0.60041	-0.58283	place(sophia_street)						
****	manner(play(charlie).well)	+0.04509	-0.00978	+0.03531	+0.05307	+0.08838	manner(play(charlie).well)						
xxxxx	manner(play(charlie), hadly)	+0.04845	-0.01236	+0.03610	+0.05926	+0.09535	manner(play(charlie), badly)						
****	<pre>manner(play(heidi),well)</pre>	-0.01155	+0.00267	-0.00888	+0.01330	+0.00442	manner(play(heidi),well)						
***	<pre>manner(play(heidi),badly)</pre>	-0.02207	+0.00191	-0.02016	+0.01801	-0.00215	<pre>manner(play(heidi),badly)</pre>						
****	<pre>manner(play(sophia),well)</pre>	+0.00287	-0.01083	-0.00797	-0.13684	-0.14481	<pre>manner(play(sophia),well)</pre>						
***	<pre>manner(play(sophia),badly)</pre>	+0.00391	-0.00347	+0.00044	-0.02596	-0.02552	<pre>manner(play(sophia),badly)</pre>						
****	manner(win,easily)	+0.01757	-0.01269	+0.00488	+0.03096	+0.03583	manner(win,easily)						
***	<pre>manner(win,difficultly)</pre>	+0.01483	-0.01074	+0.00409	+0.01167	+0.01576	<pre>manner(win,difficultly)</pre>						

model:all_sents>

DSS evaluation

The DSS representations are...

- Neurally plausible can be implemented at the neural level (e.g., in a neural network model)
- Expressive capture various aspects of meaning, e.g., negation, quantification
- Compositional meaning of complex propositions is derived from the meaning of their parts
- Graded—capture probabilistic dependencies between propositions
- Inferential capture inferences that go beyond literal propositional content
- Incremental—can be constructed on a word-by-word basis

Back to Semantic Theory

DSSs as collections of logical models

 Each observation in a DSS (i.e., each row in the matrix) represents a *logical model*

DSSs as collections of logical models (cont.)

- Each observation in a DSS (i.e., each row in the matrix) represents a *logical model*
- A set of observations is a collection of models that describes *possible states-of-affairs* in the world (ideally exhaustively, i.e., all *lawful* configurations of atomic events)
- This provides logical models with a *probabilistic dimension*
- DSS observations should in principle be able to capture all formal properties that logical models can -> How?

Back to: Generalized Quantifiers

 $\mathsf{Bill}\mapsto \lambda \mathsf{P}.\mathsf{P}(\mathsf{b}^*)$

• $[Bill]^M = \{ P \subseteq U_M \mid b^* \in P \}$ ~ "the set of properties P, such that Bill is P"

 $[[charlie]]^{DSS} = U(event(charlie)) = [[play(charlie,chess)]]^{DSS} \vee [[win(charlie)]]^{DSS} \vee \dots$

~ "the set of observations O, such that Charlie does something in O"

Back to: Presuppositions

(1) Charlie managed to win at chess
 » Charlie tried to win at chess

How to capture this in DSS?

- Add basic events: manage(charlie, win) & try(charlie, win)
- Add world knowledge: each observation that contains manage(charlie,win) or ¬manage(charlie,win) should also contain try(charlie,win).

Result: [manage(charlie,win)]^{DSS}, [¬manage(charlie,win)]^{DSS}, [[try(charlie,win)]^{DSS}

???

How to fix this?

DSS and Semantic Theory: open questions

How to capture other formal aspects of meaning?

- Lexical inferences
- Quantifier scope
- Monotonicity

.

. . .

- Event structure
- Temporal aspects
- Anaphoric reference