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Semantics: a psycholinguistic perspective
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“charlie plays soccer”

play(charlie,soccer)

Zwaan & Radvansky (1998). Psychol. Bull.



Distributed Situation Space (DSS)

• A non-symbolic, distributed representational scheme for 
meaning 

• Situations are represented as vectors in a high-dimensional 
space called “situation-state space” 

• DSS vectors capture dependencies between situations, allowing 
for ‘world knowledge’-driven direct inference

• To encode all world knowledge, DSS vectors are derived from 
observations of states-of-affairs (situations) in a microworld
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Frank et al. (2003). Cogn. Sci.; Frank et al. (2009). Cognition



DSS—The main idea

• Take a snapshot of the world (“a sample”) at many different (independent) points in time, 
and for each snapshot write down the full state-of-affairs in the world 

• Meaning of individual propositions is determined by collocation with other propositions in 
full set of states-of-affairs (cf. Distributional Semantics) 

Problem: How to record full state-of-affairs in the world for each snapshot? 

Limit the scope of the world by using a confined microworld
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[…]

t=1 t=2 t=3 t=n



Defining a Microworld

An observation (state-of-affairs) in a microworld is defined in terms of the set of 
atomic events; i.e., each atomic event is either the case or not the case 

 

> 2^44 (≈10^13) possible observations, but world knowledge precludes many

5
Frank et al. (2009). Cognition



Microworld knowledge

World knowledge enforces constraints on event co-occurrence. Some examples: 

• Personal characteristics—each person has a specialty, a preferred toy, and 
some persons frequent specific places 

• Games and toys—each game/toy can only be played (with) in specific 
places, and has a number of possible player configurations; soccer is 
played with a ball 

• Being there—everybody is exactly at one place; if hide&seek is played in 
the playground, all players are there; all chess players are in the same 
place  

• Winning and losing—only one can win, and one cannot win and lose; if 
someone wins, all other players lose

6
Frank et al. (2009). Cognition



Distributed Situation-state Space

a DSS vector 
… encodes the meaning of 
events ‘truth-conditionally’ 
… can represent complex 
events (compositionality) 

… contains probabilistic 
information about events (world 
knowledge)
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play(charlie,chess) ∧ win(heidi) ∧ … ∧ lose(charlie)

v(place(sophia,street))



The DSS vectors of atomic events are the columns of the DSS matrix 

The DSS vectors of complex events can be found through (fuzzy) propositional 
logic: 

Which gives us                                    and hence functional completeness: 

 > allows for deriving DSS vectors for events of arbitrary logical complexity

DSS: Compositionality
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~v(¬a) = 1� ~v(a)

~v(a ^ b) = ~v(a)~v(b) where ~v(a ^ a) = ~v(a)

~v(a " b) = ~v(¬~v(a ^ b))

~v(a _ b) = ~v(~v(a " a) " ~v(b " b))

~v(a ! b) = ~v(a " ~v(b " b)) = ~v(a " ~v(a " b))

~v(a Y b) = ~v(~v(a " ~v(a " b)) " ~v(b " ~v(a " b)))



DSS: Probabilistic information

Situation vectors encode events by means of co-occurrence probabilities
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Frank et al. (2009). Cognition

Critically, a and b can be atomic or complex events

                      means        encodes b and all that depends 
upon b; this allows ‘world knowledge’-driven inference
B(a|b) ⇡ Pr(a|b) ~v(b)

Prior conditional belief of atomic event a given b:

B(a|b) = B(a ^ b)

B(b)
⇡ Pr(a|b)

Prior conjunction belief of atomic events a and b:
B(a ^ b) =

1

k

X

i

~vi(a)~vi(b) ⇡ Pr(a ^ b) where B(a ^ a) = B(a)

Prior belief in atomic event a (= estimate of its probability):

B(a) =
1

k

X

i

~vi(a) ⇡ Pr(a)



Microworld Probabilities
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Pr(a) Pr(a|play(charlie,soccer)



Beyond conditional belief—how much is event a ‘understood’ from event b 

• Knowing b increases belief in a: the conditional belief B(a|b) is higher than 
the prior belief B(a) 

• Knowing b decreases belief in a: the conditional belief B(a|b) is lower than 
the prior belief B(a)

-1 ≤ comprehension(a,b) ≤ +1 
+1 = perfect positive comprehension: b took away all uncertainty in a 
-1 = perfect negative comprehension: b took away all certainty in a

Quantifying comprehension
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Frank et al. (2009). Cognition

comprehension(a, b) =

(
B(a|b)�B(a)

1�B(a) if B(a|b) > B(a)

B(a|b)�B(a)
B(a) otherwise



lose(charlie)
lose(heidi)

lose(sophia)
manner(play(charlie),badly)

manner(play(charlie),well)
manner(play(heidi),badly)

manner(play(heidi),well)
manner(play(sophia),badly)

manner(play(sophia),well)
manner(win,difficultly)

manner(win,easily)
place(charlie,bathroom)
place(charlie,bedroom)

place(charlie,playground)
place(charlie,street)

place(heidi,bathroom)
place(heidi,bedroom)

place(heidi,playground)
place(heidi,street)

place(sophia,bathroom)
place(sophia,bedroom)

place(sophia,playground)
place(sophia,street)

play(charlie,ball)
play(charlie,chess)

play(charlie,doll)
play(charlie,hide_and_seek)

play(charlie,puzzle)
play(charlie,soccer)

play(heidi,ball)
play(heidi,chess)

play(heidi,doll)
play(heidi,hide_and_seek)

play(heidi,puzzle)
play(heidi,soccer)
play(sophia,ball)

play(sophia,chess)
play(sophia,doll)

play(sophia,hide_and_seek)
play(sophia,puzzle)
play(sophia,soccer)

win(charlie)
win(heidi)

win(sophia)
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From sentences to vectors

Use FOL as an intermediate representation for sentences; apply 
composition rules on DSS vectors to arrive at complex DSS vector

13
Frank et al. (2009). Cognition



Applying DSS in a neural network model
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play(charlie,chess) ∧ place(charlie,bathroom)
[1,1,1,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,1,1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,
0,0,0,0,0,1,1,1,0,1,0,0,0,1,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,1,0,1,0,1,0,0,0,0,1,0,1,0,0,0,0,…]

“charlie”, “plays”, “chess”, “in”, “the”, “bathroom”
[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0],     …,    …

Input

Hidden

Output 

Training = learning 
to map sequences 
of words to DSSs

charlie plays chess in the bathroom



Word-by-word inferencing
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DSS evaluation

The DSS representations are… 

• Neurally plausible—can be implemented at the neural level (e.g., in a neural 
network model) 

• Expressive—capture various aspects of meaning, e.g., negation, quantification 

• Compositional—meaning of complex propositions is derived from the 
meaning of their parts  

• Graded—capture probabilistic dependencies between propositions 

• Inferential—capture inferences that go beyond literal propositional content  

• Incremental—can be constructed on a word-by-word basis

16
Brouwer et al. (2017). Festschrift for John Nerbonne



Back to Semantic Theory
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constructionSentence/  
Discourse 

Intermediate  
representation 

(e.g. proto-DRS)

construction resolution

Meaning 
Representation  
(e.g. FOL, DRS)

Truth-conditions

interpretation
verification

Truth value

ModelDSS?



DSSs as collections of logical models

• Each observation in a DSS (i.e., each row in the matrix) 
represents a logical model

18

charlie 

heidi 

chess

play

win

lose



DSSs as collections of logical models (cont.)

• Each observation in a DSS (i.e., each row in the matrix) 
represents a logical model 

• A set of observations is a collection of models that describes 
possible states-of-affairs in the world (ideally exhaustively, i.e., 
all lawful configurations of atomic events) 

• This provides logical models with a probabilistic dimension 

• DSS observations should in principle be able to capture all 
formal properties that logical models can

19

How?



Back to: Generalized Quantifiers

⟦charlie⟧DSS = U(event(charlie)) = ⟦play(charlie,chess)⟧DSS ⌵ ⟦win(charlie)⟧DSS ⌵ …
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Bill ↦ λP.P(b*) 

• ⟦Bill⟧M = { P ⊆ UM | b* ∈ P}	 	 	 	 	 	 	 	 	~ “the set of properties P, such that Bill is P”

1
0
0
0
1
…

1
1
0
0
0
…

1
1
0
0
1
…

~ “the set of observations O, such that Charlie does something in O”



Back to: Presuppositions

(1) Charlie managed to win at chess  
≫ Charlie tried to win at chess 

How to capture this in DSS? 

• Add basic events: manage(charlie,win) & try(charlie,win) 

• Add world knowledge: each observation that contains manage(charlie,win) or 
¬manage(charlie,win) should also contain try(charlie,win). 

Result: ⟦manage(charlie,win)⟧DSS, ⟦¬manage(charlie,win)⟧DSS, ⟦try(charlie,win)⟧DSS

0 1 1 0 0 …
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1 0 0 1 1 … 1 1 1 1 1 …

???
How to fix this?



DSS and Semantic Theory: open questions

How to capture other formal aspects of meaning? 

• Lexical inferences 

• Quantifier scope 

• Monotonicity 

• Event structure 

• Temporal aspects 

• Anaphoric reference 

• …
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