Semantic Theory week 7 – Event semantics

Noortje Venhuizen

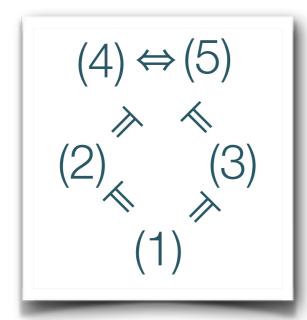
Universität des Saarlandes

Summer 2017

A problem with verbs and adjuncts

(1) The gardener killed the baron

- $\rightarrow kill_1(g',b')$ $kill_1::\langle e,\langle e,t\rangle \rangle$
- (2) The gardener killed the baron in the park $\mapsto \text{kill}_2(g',b',p')$ $\text{kill}_2::\langle e,\langle e,\langle e,t\rangle\rangle$
- (3) The gardener killed the baron at midnight $\mapsto kill_3(g',b',m')$ $kill_3::\langle e,\langle e,\langle e,t\rangle \rangle$
- (4) The gardener killed the baron at midnight in the park → kill₄(g',b',m',p') kill₄ ::
- (5) The gardener killed the baron in the park at midnight → kill₅(g',b',p',m') kill₅ ::

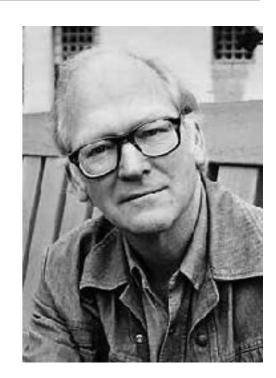


Q: How to explain the systematic logical entailment relations between the different uses of "kill"?

Davidson's solution: verbs introduce events.

Verbs expressing events have an additional event argument, which is not realised at linguistic surface:

• kill $\mapsto \lambda y \lambda x \lambda e(kill'(e,x,y)) :: \langle e,\langle e,\langle e,t\rangle \rangle \rangle$ arity = n+1



Sentences denote sets of events:

• $\lambda y \lambda x \lambda e(kill'(e,x,y))(b')(g') \Rightarrow^{\beta} \lambda e(kill'(e,g',b')) :: \langle e,t \rangle$

Existential closure turns sets of events into truth conditions

- $\lambda P \exists e(P(e)) :: \langle \langle e, t \rangle, t \rangle$
- $\lambda P \exists e(P(e))(\lambda e(kill'(e,g',b'))) \Rightarrow^{\beta} \exists e(kill'(e,g',b')) :: t$

Davisonian events and adjuncts

Adjuncts express two-place relations between events and the respective "circumstantial information": time, location, ...

- at midnight $\mapsto \lambda P \lambda e(P(e) \land time(e,m')) :: \langle \langle e,t \rangle, \langle e,t \rangle \rangle$
- in the park $\mapsto \lambda P \lambda e(P(e) \land Iocation(e,p')) :: \langle \langle e,t \rangle, \langle e,t \rangle \rangle$

The gardener killed the baron at midnight in the park

```
\Rightarrow \exists e \; (kill(e, g', b') \land time(e, m) \land location(e, p')) \} \vDash \exists e \; (kill(e, g', b') \land time(e, m')) \\ \Leftrightarrow \exists e \; (kill(e, g', b') \land location(e, p) \land time(e, m')) \} \vDash \exists e \; (kill(e, g', b') \land location(e, p')) \\ \vDash \exists e \; (kill(e, g', b') \land location(e, p')) \}
```

Compositional derivation of event-semantic representations

the gardener killed the baron

```
\lambda x_e \lambda y_e \lambda e_e [\text{kill(e, y, x) }](b')(g') \Rightarrow^{\beta} \lambda e [\text{kill(e, g', b') }]
... at midnight
```

 $\lambda F_{(e,t)}\lambda e_e$ [F(e) \wedge time(e, m')](λe_1 [kill(e₁, g', b')]) $\Rightarrow^{\beta} \lambda e$ [kill(e, g, b) \wedge time(e, m')]

... in the park

```
\lambda F_{\langle e,t \rangle} \lambda e_e [F(e) \wedge location(e, p')] (\lambda e_2 [kill(e<sub>2</sub>, g', b')\wedgetime(e<sub>2</sub>, m')]) \Rightarrow^{\beta} \lambda e [kill(e, g', b') \wedge time(e, m') \wedge location(e, p')]
```

Existential closure

 $\lambda P_{(e,t)} \exists e(P(e))(\lambda e'(K \land T \land L) \Rightarrow^{\beta} \exists e [kill(e, g', b') \land time(e, m') \land location(e, p')]$

Model structures with events

To interpret events, we need enriched ontological information

Ontology: The area of philosophy identifying and describing the basic "categories of being" and their relations.

A model structure with events is a triple $M = \langle U, E, V \rangle$, where

- U is a set of "standard individuals" or "objects"
- E is a set of events
- U \cap E = \emptyset ,
- V is an interpretation function like in first order logic

Sorted (first-order) logic

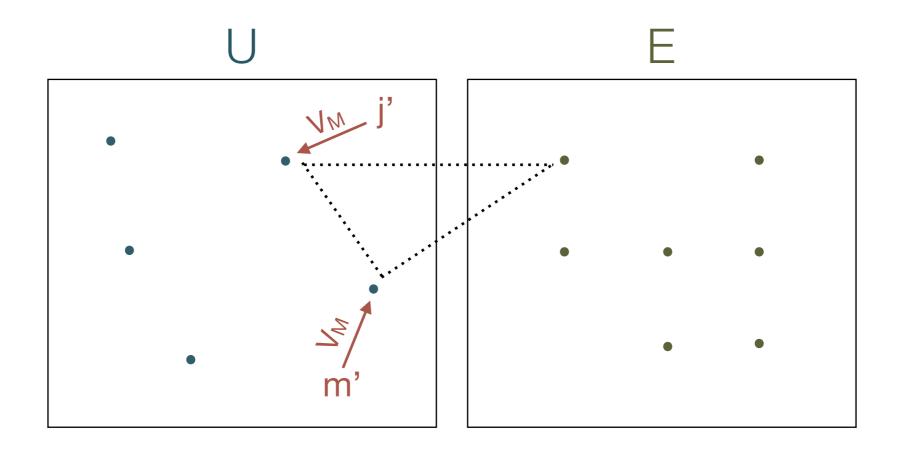
A variable assignment g assigns individuals (of the correct sortspecific domain) to variables:

- $g(x) \in U$ for $x \in VAR_U$ $VAR_U = \{x, y, z, ..., x_1, x_2, ...\}$ (Object variables)
- $g(e) \in E$ for $e \in VAR_E$ $VAR_E = \{ e, e', e'', ..., e_1, e_2, ... \}$ (Event variables)

Quantification ranges over sort-specific domains:

- $[\exists x \ \Phi]^{M,g} = 1$ iff there is an $a \in U$ such that $[\![\Phi]^{M,g[x/a]} = 1$
- $[\exists e \ \Phi]^{M,g} = 1$ iff there is an $a \in E$ such that $[\![\Phi]^{M,g[e/a]} = 1$
- (universal quantification analogous)

Interpreting events



Advantages of Davidsonian events

- ☑ Intuitive representation and semantic construction for adjuncts
- Uniform treatment of verb complements
- Uniform treatment of adjuncts and post-nominal modifiers
- Coherent treatment of tense information
- Highly compatible with analysis of semantic roles

Uniform treatment of verb complements

(1) Bill saw an elephant

$$\rightarrow$$
 3e 3x (see(e, b', x) \land elephant(x))

see ::
$$\langle e, \langle e, \langle e, t \rangle \rangle$$

(2) Bill saw an accident

see ::
$$\langle e, \langle e, \langle e, t \rangle \rangle$$

(3) Bill saw the children play

$$\rightarrow \exists e \exists e' (see(e, b, e') \land play(e', the-children))$$

see ::
$$\langle e, \langle e, \langle e, t \rangle \rangle$$

Uniform treatment of adjuncts and post-nominal modifiers

Treatment of adjuncts as predicate modifiers, analogous to attributive adjectives:

- red $\mapsto \lambda F \lambda x [F(x) \land red^*(x)]$ $\langle \langle e, t \rangle, \langle e, t \rangle \rangle$
- in the park $\mapsto \lambda F \lambda e [F(e) \land location(e, park)] \langle \langle e, t \rangle, \langle e, t \rangle \rangle$
- (1) The murder in the park...
- $\rightarrow \lambda F\lambda e[F(e) \land location(e, park)] (\lambda e_1 [murder(e_1)])$
- (2) The fountain in the park
- $\rightarrow \lambda F \lambda x [F(x) \land location(x, park)] (\lambda y [fountain(y)])$

Advantages of Davidsonian events

- ☑ Intuitive representation and semantic construction for adjuncts
- Uniform treatment of verb complements
- Uniform treatment of adjuncts and post-nominal modifiers
- Coherent treatment of tense information
- Highly compatible with analysis of semantic roles

Classical Tense Logic

John walks walk(john)

John walked P(walk(john))

John will walk F(walk(john))

Syntax like in first-order logic, plus

Φ has always been the case

Φ is always going to be the case

 if Φ is a well-formed formula, then PΦ, FΦ, HΦ, GΦ are also well-formed formulae.

Φ happened in the past

Φ will happen in the future

Classical Tense Logic (cont.)

Tense model structures are quadruples $M = \langle U, T, \langle V \rangle$ where

- U is a non-empty set of individuals (the "universe")
- T is a non-empty sets of points in time
- $U \cap T = \emptyset$
- < is a linear order on T
- V is a value assignment function, which assigns to every non-logical constant α a function from T to appropriate denotations of α

 $\llbracket P\Phi \rrbracket^{M, t, g} = 1$ iff there is a t' < t such that $\llbracket \Phi \rrbracket^{M, t', g} = 1$

 $\llbracket F\Phi \rrbracket^{M, t, g} = 1$ iff there is a t' > t such that $\llbracket \Phi \rrbracket^{M, t', g} = 1$

Temporal Relations and Events

- (1) The door opened, and Mary entered the room.
- (2) John arrived. Then Mary left.
- (3) Mary left, before John arrived.
- (4) John arrived. Mary had left already.

Q: How to formalize temporal relations between events?

Temporal Event Structure

A model structure with events and temporal precedence is defined as $M = \langle U, E, \langle e_u, V \rangle$, where

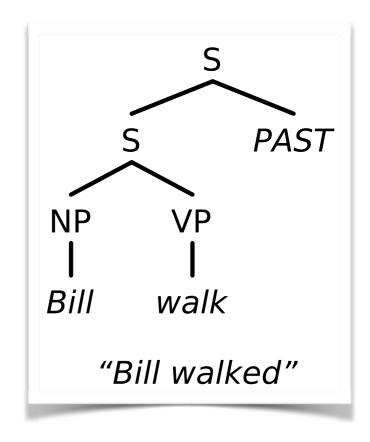
- Un $E = \emptyset$,
- < ⊆ E×E is an asymmetric relation (temporal precedence)
- $e_u \in E$ is the utterance event
- V is an interpretation function like in standard FOL
- Overlapping events: e e' iff neither e < e' nor e' < e

Tense in Semantic Construction

We can represent inflection as an abstract tense operator reflecting the temporal location of the reported event relative to the utterance event.

PAST
$$\mapsto \lambda P.\exists e [P(e) \land e < e_u] : \langle\langle e, t \rangle, t \rangle$$

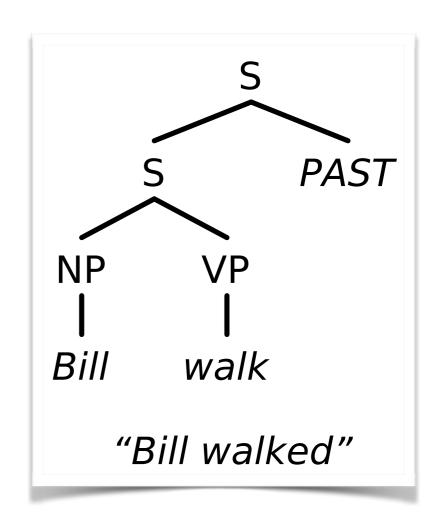
PRES
$$\mapsto \lambda P. \exists e [P(e) \land e \cdot e_u] : \langle \langle e, t \rangle, t \rangle$$



Tense in Semantic Construction

Standard function application results in integration of temporal information and binding of the event variable (i.e., replacing E-CLOS):

- walk $\mapsto \lambda x \lambda e [walk(e, x)]$
- Bill walk $\mapsto \lambda x \lambda e$ [walk(e, x)](b') $\Rightarrow^{\beta} \lambda e$ [walk(e, b')]
- Bill walk PAST
 ⇒ λΕ ∃e [E(e) ∧ e < e_u](λe' [walk(e', b)])
 ⇒^β ∃e [λe' [walk(e', b)](e) ∧ e < e_u]
 ⇒^β ∃e [walk(e, b) ∧ e < e_u]



Advantages of Davidsonian events

- ☑ Intuitive representation and semantic construction for adjuncts
- Uniform treatment of verb complements
- Uniform treatment of adjuncts and post-nominal modifiers
- Coherent treatment of tense information
- Highly compatible with analysis of semantic roles

Verbal arguments; a related problem?

- (1) John **broke** the window with a rock.
- (2) A rock broke the window.
- (3) The window broke.

And we're back to the same entailment issue:

 $\exists e(break_3(e, j, w, r)) \nvDash \exists e(break_2(e, r, w)) \nvDash \exists e(break_1(e, w))$

Semantic/Thematic roles

```
agent patient instrument

(1) John broke the window with a rock

→ ∃e [break(e) ∧ agent(e, j) ∧ patient(e, w) ∧ instrument(e, r)]

(2) A rock broke the window.

→ ∃e [break(e) ∧ patient(e, w) ∧ instrument(e, r)]

(3) The window broke.

→ ∃e [break(e) ∧ patient(e, w)]
```

In standard FOL: Thematic roles are implicitly represented by the canonical order of the arguments

In Davidsonian event semantics: Thematic roles are two-place relations between the event denoted by the verb, and an argument role filler.

Interpretation of events with thematic roles

```
John kisses Mary \rightarrow \exists e \text{ (kiss(e)} \land agent(e, j')} \land patient(e,m'))
 \llbracket \exists e \text{ (kiss(e)} \land agent(e, j')} \land patient(e,m')) \rrbracket^{M,g} = 1
iff there is an s \in E such that [kiss(e)]^{M,g[e/s]} = 1 and [agent(e, j')]^{M,g[e/s]} = 1
       and [patient(e,m')]^{M,g[e/s]} = 1
iff there is an s \in E such that s \in V_M(kiss) and \langle s, V_M(j') \rangle \in V_M(agent)
       and \langle s, V_M(m') \rangle \in V_M(patient)
                                                                                     VM kiss
                                                          agent
```

Thematic roles & verbal differences/similarities

Different verbs allow different thematic role configurations

- (1) a. John broke the window with a rock ———— agent, patient, instrument
 - b. John **smiled** at Mary ——— agent, recipient
- (2) a. The window **broke** allows inanimate subject
 - b. *The **bread** cut ——— does not allow inanimate subject

Thematic roles capture equivalences and entailment relations between different predicates

- (3) a. Mary gave Peter the book $\forall e[give(e) \leftrightarrow receive(e)] \models (3a) \leftrightarrow (3b)$
 - b. Peter **received** the book from Mary

Determining the role inventory

Fillmore (1968): "thematic roles form a small, closed, and universally applicable inventory conceptual argument types."

A typical role inventory might consist of the roles:

 Agent, Patient, Theme, Recipient, Instrument, Source, Goal, Beneficiary, Experiencer.

But... there are some difficult cases:

- (1) Lufthansa is replacing its 737s with Airbus 320
- (2) John sold the car to Bill for 3,000€
- (3) Bill bought the car from John for 3,000€

Semantic corpora with thematic roles

- Propbank: includes a separate role inventory for every lemma
- FrameNet: "Frame-based" role inventories

Frames are structured schemata representing complex prototypical situations, events, and actions

- (1) [Agent Lufthansa] is replacing Frame: REPLACING [Old its 737s] [New With Airbus A320s]
- (2) [Agent Lufthansa] is substituting Frame: REPLACING [New Airbus A320s] [Old for its 737s]

Semantic corpora with thematic roles (cont.)

Propbank (Palmer et al. 2005): Annotation of Penn TreeBank with predicate-argument structure.

- (1) [Arg0 Lufthansa] is replacing [Arg1 its 737s] [Arg2 with Airbus A320s]
- (2) [Arg0 Lufthansa] is substituting [Arg1 Airbus A320s] [Arg2 for its 737s]

FrameNet (Baker et al. 1998): A database of frames and a lexicon with frame information

- (3) [Agent Lufthansa] is replacing_{Frame: REPLACING} [Old its 737s] [New with Airbus A320s]
- (4) [Agent Lufthansa] is substituting Frame: REPLACING [New Airbus A320s] [Old for its 737s]

Pred	replace
Arg0	Lufthansa
Argl	its737s
Arg2	AirbusA320s

Pred	substitute
Arg0	Lufthansa
Argl	AirbusA320s
Pred Arg0 Arg1 Arg2	its737s

Frame	REPLACING
Agent	Lufthansa
Old	its737s
New	AirbusA320s

Advantages of Davidsonian events

- ☑ Intuitive representation and semantic construction for adjuncts
- Uniform treatment of verb complements
- Uniform treatment of adjuncts and post-nominal modifiers
- Plausible treatment of tense information
- Compatible with analysis of semantic roles

... but how does it combine with other semantic constructs?

A problem with events and quantification

```
John kissed Mary
\rightarrow \lambda P.P(i') [\lambda P.P(m')(\lambda y \lambda x \lambda e [kiss(e) \land agent(e,x) \land patient(e,y)])]
\Rightarrow^{\beta} \lambda e \text{ [kiss(e) } \land \text{ agent(e,j') } \land \text{ patient(e,m')]}
\RightarrowE-CLOS \existse [kiss(e) \land agent(e,j') \land patient(e,m')]
John kissed every girl
\rightarrow \lambda P.P(i') [\lambda P. \forall x(girl'(x) \rightarrow P(x))(\lambda y \lambda x \lambda e [kiss(e) \land agent(e,x) \land patient(e,y)])]
\Rightarrow^{\beta} \lambda e \left[ \forall x (girl'(x) \rightarrow kiss(e) \land agent(e,j') \land patient(e,x) \right]
\Rightarrow^{E-CLOS} \exists e [\forall x(girl'(x) \rightarrow kiss(e) \land agent(e,j') \land patient(e,x)]
```

Two solutions to the event quantification problem

Solution I

Interpret sentences as generalized quantifiers over events: $\langle\langle e,t \rangle,t \rangle$ instead of $\langle e,t \rangle$ (E-CLOS part of lexical semantics) (Champollion, 2010; 2015)

kiss
$$\mapsto \lambda F_{(v,t)}$$
. $\exists e \text{ (kiss(e) } \wedge F(e)) :: \langle \langle v,t \rangle, t \rangle \approx \{ F \mid F \cap KISS \neq \emptyset \}$

Separate type for events!

Solution II

Introduce separate types for regular NPs and quantified NPs, and restrict existential closure to regular NPs (Winter & Zwarts, 2011; de Groote & Winter, 2014)

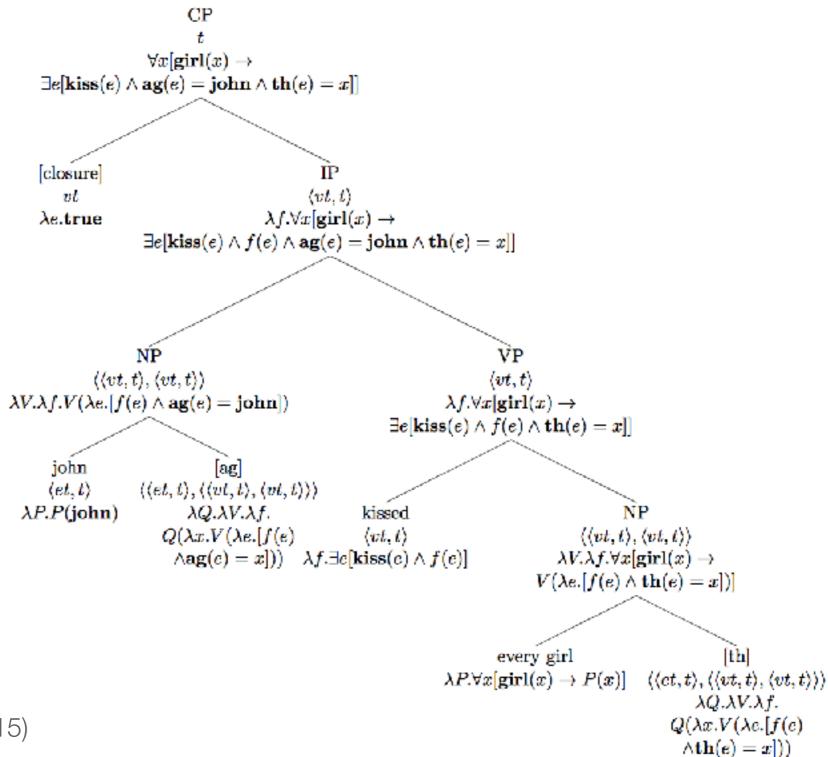
```
john \mapsto j :: e

every girl \mapsto \lambda P\lambda Q. \forall x (girl(x) \rightarrow Q(x)) :: \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle

kiss \mapsto \lambda x\lambda y\lambda e. kiss(e, x, y) :: \langle e, \langle e, \langle v, t \rangle \rangle \rangle

e-clos \mapsto \lambda P. \exists e(P(e)) :: \langle \langle v, t \rangle, t \rangle separate type for events!
```

Solution I: Sentences as GQs over events



Solution II: Type-restriction for existential closure

$$\frac{\vdash \text{EVERY} : N \to (NP \to S) \to S \qquad \vdash \text{GIRL} : N}{\vdash \text{EVERY GIRL} : (NP \to S) \to S} \tag{1}$$

$$\frac{\vdash \text{KISSED} : NP \to NP \to V \qquad x : NP \vdash x : NP}{x : NP \vdash \text{KISSED} \ x : NP \vdash \text{KISSED} \ x : NP \vdash \text{KISSED} \ x \text{ JOHN} : V} \tag{2}}{x : NP \vdash \text{E-CLOS} : V \to S \qquad x : NP \vdash \text{KISSED} \ x \text{ JOHN} : V}} \tag{2}$$

$$\frac{\vdash \text{E-CLOS} : V \to S \qquad x : NP \vdash \text{KISSED} \ x \text{ JOHN} : V}{x : NP \vdash \text{E-CLOS} (\text{KISSED} \ x \text{ JOHN}) : S} \tag{3}}{\vdash \lambda x \cdot \text{E-CLOS} (\text{KISSED} \ x \text{ JOHN}) : NP \to S}} \tag{3}$$

$$\frac{\vdash \text{EVERY GIRL} : (NP \to S) \to S \qquad \vdash \lambda x \cdot \text{E-CLOS} (\text{KISSED} \ x \text{ JOHN}) : NP \to S}{\vdash \text{EVERY GIRL} : (\lambda x \cdot \text{E-CLOS} (\text{KISSED} \ x \text{ JOHN})) : S}}$$