Semantic Theory Week 4 - Typed Lambda Calculus

Noortje Venhuizen

Universität des Saarlandes

Summer 2017

Recap: Type Theory - Syntax

For every type τ, the set of well-formed expressions WE_{τ} is defined as follows:
(i) $\mathrm{CON}_{T} \subseteq \mathrm{WE}_{T}$ and $V A R_{T} \subseteq \mathrm{WE}_{T}$;
(ii) If $a \in W E_{\langle\sigma, \tau\rangle}$, and $\beta \in W E_{\sigma}$, then $a(\beta) \in W E_{T}$;
(iii) If A, B are in $W E_{t}$, then $\neg A,(A \wedge B),(A \vee B),(A \rightarrow B),(A \leftrightarrow B)$ are in $W E_{t}$;
(iv) If A is in $W E_{t}$ and x is a variable of arbitrary type, then $\forall x A$ and $\exists x A$ are in $W E_{t}$;
(v) If a, β are well-formed expressions of the same type, then $a=\beta \in W E_{t}$;
(vi) Nothing else is a well-formed expression.

Recap：Type Theory－Function application

（ii）If $a \in W E_{\langle\sigma, \tau\rangle}$ ，and $\beta \in W E_{\sigma}$ ，then $a(\beta) \in W E_{T}$
＂John is a talented piano player＂
piano＿player ：：〈e，t $\rangle \quad$ talented $::\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle$
john ：：e talented（piano＿player）：：〈e，t〉
talented（piano＿player）（john）：：t

Recap: Type Theory - Semantics

Interpretation relative to a model structure $\mathbf{M}=\langle\mathbf{U}, \mathbf{V}\rangle$ and an assignment function \mathbf{g}, where:

- \mathbf{U} is a non-empty set of entities and \mathbf{V} is an interpretation function, which assigns to every $\mathbf{a} \in \mathbf{C O N}_{\boldsymbol{\tau}}$ an element of $\mathbf{D}_{\boldsymbol{\tau}}$
- \mathbf{g} assigns to every typed variable $\mathbf{V} \in \mathbf{V A R}_{\boldsymbol{\tau}}$ an element of $\mathbf{D}_{\boldsymbol{\tau}}$

The domain of possible denotations $\mathbf{D}_{\boldsymbol{\tau}}$ for every type $\mathbf{\tau}$ is given by:

- $D_{e}=U$
- $D_{t}=\{0,1\}$
- $D_{\langle\sigma, \tau\rangle}$ is the set of all functions from D_{σ} to D_{τ}

Recap: Type Theory - Model

Consider the following Model M:
$D_{e}=U_{M}=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$
$V_{M}\left(\right.$ Anakin $\left._{e}\right)=V_{M}\left(\right.$ Darth Vader $\left._{e}\right)=e_{2}$
$V_{M}\left(\right.$ Yedi $\left.\left\langle e_{, t}\right\rangle\right)=\left[\begin{array}{l}e_{1} \rightarrow 1 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 1 \\ e_{4} \rightarrow 1 \\ e_{5} \rightarrow 0\end{array}\right] \quad V_{M}\left(\right.$ Dark_Sider $\langle\langle, t\rangle)=\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 1\end{array}\right]$

$V_{M}\left(\right.$ POWerful $_{\langle\langle e, t\rangle\langle e, t\rangle\rangle)}=\left[\begin{array}{l}{\left[\begin{array}{l}e_{1} \rightarrow 1 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 1 \\ e_{4} \rightarrow 1 \\ e_{5} \rightarrow 0\end{array}\right] \rightarrow\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 1 \\ e_{5} \rightarrow 0\end{array}\right]} \\ {\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 1\end{array}\right] \rightarrow\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 1\end{array}\right]}\end{array}\right]$

Recap: Type Theory - Interpretation

Given a model structure $\mathrm{M}=\langle\mathrm{U}, \mathrm{V}\rangle$ and a variable assignment g :
$\llbracket a \rrbracket^{\mathrm{M}, \mathrm{g}} \quad=\mathrm{V}(\mathrm{a}) \quad$ if a is a constant
$=g(a)$ if a is a variable
$\llbracket \alpha(\beta) \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \alpha \rrbracket^{\mathrm{M}, \mathrm{g}}\left(\llbracket \beta \rrbracket^{\mathrm{M}, g}\right)$
$\llbracket a=\beta \rrbracket^{\mathrm{M}, \mathrm{g}}=1 \mathrm{iff} \llbracket \alpha \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \beta \rrbracket^{\mathrm{M}, \mathrm{g}}$
$\llbracket \neg \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ iff $\llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=0$
$\llbracket \phi \wedge \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1 \mathrm{iff} \quad \llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ and $\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
$\llbracket \phi \vee \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ iff $\llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ or $\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$

For any variable v of type σ :
$\llbracket \exists \vee \phi \rrbracket^{\mathrm{M}, g} \quad=1$ iff there is a $d \in \mathrm{D}_{\sigma}$ such that $\llbracket \phi \rrbracket^{\mathrm{M}, g[\mathrm{l} / \mathrm{d}]}=1$
$\llbracket \forall V \phi \rrbracket^{\mathrm{M}, \mathrm{g}} \quad=1$ iff for all $d \in \mathrm{D}_{\sigma}: \llbracket \mathbb{T}^{\mathbb{M}^{M, g[v / d]}=1}$

Compositionality

The principle of compositionality: "The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined" (Partee et al., 1993)

Compositional semantics construction:

- compute meaning representations for sub-expressions
- combine them to obtain a meaning representation for a complex expression.

Problematic case: "Not smoking ${ }_{e, t\rangle}$ is healthy $\langle\langle e, t\rangle, t\rangle$ "

Lambda abstraction

λ-abstraction is an operation that takes an expression and "opens" specific argument positions.

Syntactic definition:

$$
\text { If } a \text { is in } W E_{\tau} \text {, and } x \text { is in } V A R_{\sigma} \text { then } \lambda x(a) \text { is in } W E_{\langle\sigma, \tau\rangle}
$$

- The scope of the λ-operator is the smallest WE to its right. Wider scope must be indicated by brackets.
- We often use the "dot notation" $\lambda \times . \phi$ indicating that the λ-operator takes widest possible scope (over ϕ).

Interpretation of Lambda-expressions

If $a \in W E_{\tau}$ and $v \in V_{A R}$, then $\llbracket \lambda v a \rrbracket^{M, g}$ is that function $f: D_{\sigma} \rightarrow D_{\tau}$ such that for all $a \in D_{0}, f(a)=\llbracket a \rrbracket^{M, g[V / a]}$

If the λ-expression is applied to some argument, we can simplify the interpretation:

- $\llbracket \lambda v a \rrbracket^{M, g}(x)=\llbracket a \rrbracket^{M, g[/ / / x]}$

Example: "Bill is a non-smoker"
$\llbracket \lambda x(\neg S(x))\left(b^{\prime}\right) \rrbracket^{M, g}=1$
iff $\llbracket \lambda x(\neg S(x)) \rrbracket^{M, g\left(\llbracket b ’ \rrbracket^{M, g}\right)=1}$
iff $\llbracket \neg S(x) \rrbracket^{M, g\left[x /\left[\llbracket b^{\prime} \mathbb{M}^{M, g]}\right.\right.}=1$
iff $\llbracket S(X) \rrbracket^{M, g\left[x /\left[b^{\prime}\right]^{M, g]}\right.}=0$
iff $\llbracket S \rrbracket^{M, g\left[x / \llbracket b^{\prime} \rrbracket^{M}, g\right]}\left(\llbracket \times \rrbracket^{M, g\left[X / \llbracket b^{\prime} \rrbracket^{M, g]}\right)}=0\right.$
iff $\mathrm{V}_{\mathrm{M}}(\mathrm{S})\left(\mathrm{V}_{\mathrm{M}}\left(\mathrm{b}^{\prime}\right)\right)=0$

β-Reduction

$\llbracket \lambda v(a)(\beta) \rrbracket^{M, g}=\llbracket a \rrbracket^{M, g\left[v /[\beta]^{M, g}\right]}$
\Rightarrow all (free) occurrences of the λ-variable in a get the interpretation of β as value.

This operation is called β-reduction

- $\lambda v(a)(\beta) \Leftrightarrow[\beta / v] a$
- $[\beta / v] a$ is the result of replacing all free occurrences of v in a with β.

Achtung: The equivalence is not unconditionally valid!

Variable capturing

Q: Are $\lambda v(\alpha)(\beta)$ and $[\beta / v] a$ always equivalent?

- $\lambda x\left(\operatorname{drive}^{\prime}(x) \wedge \operatorname{drink}^{\prime}(x)\right)\left(j^{\prime}\right) \Leftrightarrow \operatorname{drive}^{\prime}\left(j^{\prime}\right) \wedge \operatorname{drink}^{\prime}\left(j^{\prime}\right)$
- $\lambda x\left(\right.$ drive' $\left.^{\prime}(x) \wedge \operatorname{drink}^{\prime}(x)\right)(y) \Leftrightarrow \operatorname{drive}^{\prime}(y) \wedge \operatorname{drink}^{\prime}(y)$
- $\lambda x(\forall y$ know' $(x)(y))\left(j^{\prime}\right) \Leftrightarrow \forall y$ know(j')(y)
- NOT: $\lambda x(\forall y$ know' $(x)(y))(y) \Leftrightarrow \forall y \operatorname{know}(y)(y)$

Let v , v’ be variables of the same type, and let a be any well-formed expression.

- v is free for v^{\prime} in a iff no free occurrence of v^{\prime} in a is in the scope of a quantifier or a λ-operator that binds v.

Conversion rules

- β-conversion: $\lambda v(a)(\beta) \Leftrightarrow[\beta / v] a$
(if all free variables in β are free for vin a)
- a-conversion: $\quad \lambda v a \Leftrightarrow \lambda w[w / v] a$
(if w is free for v in a)
- η-conversion: $\quad \lambda v(a(v)) \Leftrightarrow a$

Determiners as lambda-expressions

- a student $\rightarrow \lambda \operatorname{P\exists x}\left(\right.$ student $\left.{ }^{\prime}(x) \wedge P(x)\right)::\langle\langle e, t\rangle, t\rangle$
- a, some $\rightarrow \lambda Q \lambda P \exists x(Q(x) \wedge P(x))::\langle\langle e, t\rangle,\langle\langle e, t\rangle, t\rangle\rangle$
- every student $\rightarrow \lambda P \forall x\left(\right.$ student $\left.{ }^{\prime}(x) \rightarrow P(x)\right)::\langle\langle e, t\rangle, t\rangle$
- every $\rightarrow \lambda Q \lambda P \forall x(Q(x) \rightarrow P(x))::\langle\langle e, t\rangle,\langle\langle e, t\rangle, t\rangle\rangle$
- no student $\rightarrow \lambda P \neg \exists x(s t u d e n t(x) \wedge P(x))::\langle\langle e, t\rangle, t\rangle$
- no $\rightarrow \lambda Q \lambda P \neg \exists x(Q(x) \wedge P(x))::\langle\langle e, t\rangle,\langle\langle e, t\rangle, t\rangle\rangle$
- someone $\rightarrow \lambda F \exists x F(x)::\langle\langle e, t\rangle, t\rangle$

NL Quantifier Expressions: Interpretation

- someone' $\in \operatorname{CON}\langle\langle e, t\rangle, t\rangle$, so $V_{M}($ someone' $) \in D_{\langle\langle e, t\rangle, t\rangle}$
- $D_{\langle\langle e, t\rangle, t\rangle}$ is the set of functions from $D_{\langle e, t\rangle}$ to D_{t}, i.e., the set of functions from $\mathcal{P}\left(\cup_{M}\right)$ to $\{0,1\}$, which in turn is equivalent to $\mathcal{P}\left(\mathcal{P}\left(U_{M}\right)\right)$.
- Thus, $\mathrm{V}_{\mathrm{M}}\left(\right.$ someone') $\subseteq \mathcal{P}\left(\cup_{M}\right)$. More specifically:
- $V_{M}($ someone $)=\left\{S \subseteq \cup_{M} \mid S \neq \varnothing\right\}$, if U_{M} is a domain of persons

β－Reduction Example

Every student works．
（2）$\lambda P \lambda Q \forall x(P(x) \rightarrow Q(x)):\langle\langle e, t\rangle,\langle\langle e, t\rangle, t\rangle$
（3）student＇：〈e，t〉
（1）$\lambda P \lambda Q \forall x(P(x) \rightarrow Q(x))($ student＇） $\Leftrightarrow^{\beta} \lambda Q \forall x($ student＇$(x) \rightarrow Q(x)):\langle\langle e, t\rangle, t\rangle$

（4）／（5）work＇：〈e，t〉
（0）$\lambda Q \forall x($ student＇$(x) \rightarrow Q(x))\left(\right.$ work＇$\left.^{\prime}\right)$
$\Leftrightarrow^{\beta} \forall x\left(\right.$ student＇$^{\prime}(x) \rightarrow$ work $\left.^{\prime}(x)\right): ~ t$

Transitive Verbs: Type Clash

- Someone reads a book

$$
\text { read }::\langle e,\langle e, t\rangle\rangle \quad \text { a book }::\langle\langle e, t\rangle, t\rangle
$$

```
someone :: <<e, t\rangle,t\rangle ?? :: ??
```

?? :: t

Solution: reverse functor-argument relation (again)
read $\langle\langle<e, t\rangle, t\rangle,\langle e, ~ t\rangle\rangle \quad$ (Type Raising)

Type Raising

It's not enough to just change the type of the transitive verb:

- read \rightarrow read' $\in \operatorname{CON}\langle\langle 《,, t\rangle, t\rangle,\langle e, t\rangle\rangle$

$$
\begin{aligned}
& \text { someone reads a book: } \\
& \lambda F \exists x F(x)(\text { read' }(\lambda \text { P } \exists y(\text { book' }(y) \wedge P(y))) \\
& \Leftrightarrow^{\beta} \exists x\left(\text { read' }\left(\lambda P \exists y\left(\text { book }{ }^{\prime}(y) \wedge P(y)\right)\right)(x)\right.
\end{aligned}
$$

...but this does not support the following entailment: someone reads a book \vDash there exists a book

We need a more explicit λ-term:

- read $\rightarrow \lambda Q \lambda z . Q(\lambda x(r e a d *(x)(z))) \in W^{\langle 《 e, t\rangle, t\rangle,\langle e, ~ t\rangle\rangle}$ where: read* $\in W E_{\langle e, ~\langle e, ~ t\rangle>}$ is the "underlying" first-order relation

Transitive Verbs: example

someone reads a book

```
\lambdaF\existsxF(x)(\lambdaQ\lambdaz.Q(\lambdax(read**(x)(z)))(\lambdaR\lambdaP.\existsy(R(y) ^ P(y)) (book)))
\Leftrightarrow\beta \lambdaF\existsxF(x)(\lambdaQ\lambdaz.Q(\lambdax(read*(x)(z)))(\lambdaP.\existsy(book'(y) ^P(y))))
\Leftrightarrow\beta \lambdaF\existsxF(x)(\lambdaz.(\lambdaP.\existsy(book'(y) ^ P(y)))(\lambdax(read*(x)(z)))
\Leftrightarrow\beta \lambdaF\existsxF(x)(\lambdaz.\existsy(book'(y) ^ \lambdax(read*}(x)(z))(y))
\Leftrightarrow\beta \lambdaF\existsxF(x)(\lambdaz.\existsy(book'(y) ^ read*(y)(z))
&\beta \existsx(\lambdaz.\existsy(book'(y) ^ read*(y)(z)))(x)
&\beta\existsx\existsy(book'(y) ^ read**(y)(x))
```


Type inferencing examples: revisited

6. Yodae encouraged Obi-Wane ${ }_{e}$ to take ${ }_{\langle e,\langle e, ~ t\rangle\rangle}$ the exame.

LF1: encourage(o)(T(e))(y*)
encourage $e_{\langle e,\langle e, ~ t\rangle,\langle e, ~ t\rangle\rangle}=\lambda x \lambda P \lambda y($ encourage $(x)(P)(y))$
LF2: encourage(o)(T(e)(o))(y*)
encourage $_{\langle e,\langle\langle e, ~ t\rangle,\langle e, ~ t\rangle\rangle}=\lambda x \lambda P \lambda y(e n c o u r a g e(x)(P(x))(y))$

We could take a similar approach for expects in:
5. Obi-Wane expects to pass $\langle e$, t \rangle.

Background reading material

- Gamut: Logic, Language, and Meaning Vol II
- Chapter 4 (minus 4.3)

