Semantic Theory Week 3 - Type Theory

Noortje Venhuizen

Universität des Saarlandes

Summer 2017

First-order logic

First-order logic talks about:

- Individual objects
- Properties of and relations between individual objects
- Generalization across individual objects (quantification)

Limitations of first-order logic

FOL is not expressive enough to capture all meanings that can be expressed by basic natural language expressions:

Jumbo is a small elephant.
Blond is a hair color.
Yesterday, it rained.
Bill and John have the same hair color.
(Predicate modifiers)
(Second-order predicates)
(Non-logical sentence operators)
(Higher-order quantification)

What logical system can we use to capture this diversity?

Bertrand Russell

Q: Does the barber shave himself?

Russell's paradox

What if we extend the FOL interpretation of predicates, and interpret higher-order predicates as sets of sets of properties?

For every predicate P , we can define a set $\{\mathrm{x} \mid \mathrm{P}(\mathrm{x})\}$ containing all and only those entities for which P holds.

Then we can define a set $S=\{X \mid X \notin X\}$ representing the set of all sets that are not members of itself.

Q: does S belong to itself?
... we need a more restricted way of talking about properties and relations between properties!

Type Theory

Basic types:

- \mathbf{e} - the type of individual terms ("entities")
- \mathbf{t} - the type of formulas ("truth-values")

च

Complex types:

- If $\boldsymbol{\sigma}, \mathbf{\tau}$ are types, then $\langle\boldsymbol{\sigma}, \boldsymbol{\tau}\rangle$ is a type (representing a functor expression that takes a $\boldsymbol{\sigma}$ type expression as argument and returns a type $\mathbf{\tau}$ expression; sometimes written as: $(\boldsymbol{\sigma} \rightarrow \mathbf{\tau})$).

Types \＆Function Application

Types of first－order expressions：
－Individual constants（Luke，Saarbrücken）：e
－One－place predicates（sleep，walk）：$\langle\mathbf{e , t} \mathbf{t}\rangle$
－Two－place predicates（read，admire）：〈e，〈e，t〉＞
－Three－place predicates（give，introduce）：$\langle\mathbf{e},\langle\mathbf{e},\langle\mathbf{e}, \mathbf{t}\rangle\rangle\rangle$
Function application：Combining a functor of complex type with an appropriate argument，resulting in an expression of a less complex type：$\langle\mathbf{a}, \boldsymbol{\beta}\rangle(\mathbf{a}) \mapsto \boldsymbol{\beta}$
－sleep＇（john＇）：：$\langle\mathbf{e}, \mathbf{t}\rangle(\mathbf{e}) \Longrightarrow \mathbf{t}$
－admire＇（john＇）：：$\langle\mathbf{e},\langle\mathbf{e}, \mathbf{t}\rangle\rangle(\mathbf{e}) \Longrightarrow\langle\mathbf{e}, \mathbf{t}\rangle$

More examples of types

Types of higher-order expressions:

- Predicate modifiers (expensive, poor): $\langle\langle\mathbf{e}, \mathbf{t}\rangle,\langle\mathbf{e}, \mathbf{t}\rangle\rangle$
- Second-order predicates (hair colour): $\langle\langle\mathbf{e}, \mathbf{t}\rangle, \mathbf{t}\rangle$
- Sentence operators (yesterday, possibly, unfortunately): 〈t, t>
- Degree particles (very, too): $\langle\langle\langle\mathbf{e}, \mathbf{t}\rangle,\langle\mathbf{e}, \mathbf{t}\rangle\rangle,\langle\langle\mathbf{e}, \mathbf{t}\rangle,\langle\mathbf{e}, \mathbf{t}\rangle\rangle\rangle$

Tip: If $\boldsymbol{\sigma}, \mathbf{\tau}$ are basic types, $\langle\boldsymbol{\sigma}, \mathbf{\tau}\rangle$ can be abbreviated as $\boldsymbol{\sigma}$. Thus, the type of predicate modifiers and second-order predicates can be more conveniently written as $\langle\mathbf{e t}, \mathbf{e t}\rangle$ and $\langle\mathbf{e t}, \mathbf{t}\rangle$, respectively.

Type Theory - Vocabulary

Non-logical constants:

- For every type $\mathbf{\tau}$ a (possibly empty) set of non-logical constants CON_{T} (pairwise disjoint)

Variables:

- For every type $\mathbf{\tau}$ an infinite set of variables VAR $_{T}$ (pairwise disjoint)

Logical symbols: $\forall, \exists, \neg, \wedge, \vee, \rightarrow, \leftrightarrow,=$

Brackets: (,)

Type Theory - Syntax

For every type τ, the set of well-formed expressions WE_{T} is defined as follows:
(i) $\operatorname{CON}_{T} \subseteq W E_{T}$ and $V A R_{T} \subseteq W E_{T} ;$
(ii) If $a \in W E_{(\sigma, T\rangle}$, and $\beta \in W_{E_{\sigma}}$, then $a(\beta) \in W_{T}$;
(iii) If A, B are in $W E_{t}$, then $\neg A,(A \wedge B)$, $(A \vee B),(A \rightarrow B),(A \leftrightarrow B)$ are in $W E_{t}$;
(iv) If A is in $W E_{t}$ and x is a variable of arbitrary type, then $\forall x A$ and $\exists x A$ are in WE_{t};
(v) If a, β are well-formed expressions of the same type, then $a=\beta \in W_{E} ;$
(vi) Nothing else is a well-formed expression.

Function application

(ii) If $a \in W E_{\langle\sigma, \tau\rangle}$, and $\beta \in W E_{\sigma}$, then $a(\beta) \in W E_{\tau}$
"John is a talented piano player"

$$
\text { piano_player :: }\langle\mathrm{e}, \mathrm{t}\rangle \quad \text { talented }::\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle
$$

john :: e talented(piano_player) :: 〈e, t〉
talented(piano_player)(john) :: t

Higher-order predicates

Higher-order quantification:

- Bill has the same hair colour as John

Higher-order equality:

- For $p, q \in C O N_{t}$, " $p=q$ " expresses material equivalence: " $p \leftrightarrow q$ ".
- For $F, G \in C O N\langle e, t\rangle$, " $F=G$ " expresses co-extensionality: " $\forall x(F x \leftrightarrow G x)$ "
- For any formula ϕ of type $t, \phi=(\mathrm{x}=\mathrm{x})$ is a representation of " ϕ is true".

Type inferencing: examples

1. Yodae is faster than Palpatine $e_{\text {. }}$
2. Yodae is much faster than Palpatine e.
3. Anakine believes he will be a Jedi.
4. Obi-Wane told [Qui-Gon Jinn]e he will take [the Jedi-exam]e.
5. Obi-Wane expects to pass.
6. Yodae encouraged Obi-Wane to take the exam.
7. [Han Solo]e fights because [the Dark Side]e is rising.
8. Wookiee $\langle e, t\rangle$ is a hairier species than Ewok $\langle e, t\rangle$.

Type Theory - Semantics [1]

Let \mathbf{U} be a non-empty set of entities.

The domain of possible denotations $\mathbf{D}_{\boldsymbol{\tau}}$ for every type $\mathbf{\tau}$ is given by:

- $D_{e}=U$
- $D_{t}=\{0,1\}$
- $D_{\langle\sigma, \tau\rangle}$ is the set of all functions from D_{σ} to D_{T}

Expressions of type $\boldsymbol{\sigma}$ denote elements of $\boldsymbol{D}_{\boldsymbol{\sigma}}$

Characteristic functions

Many natural language expressions have a type $\langle\boldsymbol{\sigma}, \mathbf{t}\rangle$

Expressions with type $\langle\boldsymbol{\sigma}, \mathbf{t}\rangle$ are functions mapping elements of type $\boldsymbol{\sigma}$ to truth values: $\{\mathbf{0 , 1} \mathbf{1}$

Such functions with a range of $\{\mathbf{0 , 1}\}$ are called characteristic functions, because they uniquely specify a subset of their domain $\boldsymbol{D}_{\boldsymbol{\sigma}}$

> The characteristic function of set M in a domain U is the function $F_{M}: U \rightarrow\{0,1\}$ such that for all $a \in U, F_{M}(a)=1$ iff $a \in M$.

NB: For first-order predicates, the FOL representation (using sets) and the typetheoretic representation (using characteristic functions) are equivalent.

Interpretation with characteristic functions: example

For $M=\langle U, V\rangle$, let U consist of the persons John, Bill, Mary, Paul, and Sally. For selected types, we have the following sets of possible denotations:

- $D_{t}=\{0,1\}$
- $D_{e}=U=\{j, b, m, p, s\}$
- $D_{<e, t\rangle}=\left\{\left[\begin{array}{c}j \rightarrow 1 \\ b b \rightarrow 0 \\ m \rightarrow 1 \\ p \rightarrow 0 \\ s \rightarrow 1\end{array}\right],\left[\begin{array}{c}j \rightarrow 1 \\ b \rightarrow 1 \\ m \rightarrow 0 \\ p \rightarrow 1 \\ s \rightarrow 1\end{array}\right],\left[\begin{array}{c}j \rightarrow 0 \\ b \rightarrow 1 \\ b \rightarrow 1 \\ m \rightarrow 0 \\ p \rightarrow 0 \\ s \rightarrow 0\end{array}\right], \ldots\right\}$

Alternative set notation: $D_{<e, t>}=\{\{j, m, s\},\{j, b, p, s\},\{b, m\}, \ldots\}$

Type Theory - Semantics [2]

A model structure for a type theoretic language is a tuple $\mathbf{M}=\langle\mathbf{U}, \mathbf{V}\rangle$ such that:

- \mathbf{U} is a non-empty domain of individuals
- \mathbf{V} is an interpretation function, which assigns to every $\mathbf{a} \in \mathbf{C O N}_{\boldsymbol{\tau}}$ an element of $\mathbf{D}_{\boldsymbol{\tau}}$ (where $\mathbf{\tau}$ is an arbitrary type)

The variable assignment function g assigns to every typed variable $\mathbf{v} \in \mathbf{V A R}_{\boldsymbol{\tau}}$ an element of $\mathbf{D}_{\boldsymbol{\tau}}$

Type Theory - Interpretation

Given a model structure $\mathrm{M}=\langle\mathrm{U}, \mathrm{V}\rangle$ and a variable assignment g :

$$
\begin{array}{ll}
\llbracket a \rrbracket^{\mathrm{M}, g} & =V(a) \quad \text { if } a \text { is a constant } \\
& =g(a) \quad \text { if } a \text { is a variable } \\
\llbracket a(\beta) \rrbracket^{\mathrm{M}, g} & =\llbracket a \rrbracket^{\mathrm{M}, \mathrm{~g}}\left(\llbracket \beta \rrbracket^{\mathrm{M}, g}\right) \\
\llbracket a=\beta \rrbracket^{\mathrm{M}, g} & =1 \text { iff } \llbracket a \rrbracket^{\mathrm{M}, g}=\llbracket \beta \rrbracket^{\mathrm{M}, g} \\
\llbracket \neg \phi \rrbracket^{\mathrm{M}, g} & =1 \text { iff } \llbracket \phi \rrbracket^{\mathrm{M}, g}=0 \\
\llbracket \phi \wedge \psi \rrbracket^{\mathrm{M}, g} & =1 \text { iff } \llbracket \phi \rrbracket^{\mathrm{M}, g}=1 \text { and } \llbracket \psi \rrbracket^{\mathrm{M}, g}=1 \\
\llbracket \phi \vee \psi \rrbracket^{\mathrm{M}, g} & =1 \text { iff } \llbracket \phi \rrbracket^{\mathrm{M}, g}=1 \text { or } \llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{~g}}=1
\end{array}
$$

For any variable v of type σ :

$\llbracket \exists V \phi \rrbracket^{\mathrm{M}, \mathrm{g}}$	$=1 \mathrm{iff}$
$\llbracket \forall V \phi \rrbracket^{\mathrm{M}, \mathrm{g}}$	$=1 \mathrm{iff} \quad$ for all $d \in \mathrm{D}_{\sigma}: \llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}[\mathrm{l} / \mathrm{d}]}=1$

Interpretation: Example

John is a talented piano player

$$
\text { piano_player :: }\langle\mathrm{e}, \mathrm{t}\rangle \quad \text { talented: : }\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle
$$

john :: e talented(piano_player) :: 〈e, t \rangle
talented(piano_player)(john) :: t

【talented(piano_player)(john) $\rrbracket^{M, g}$
$=\llbracket$ talented(piano_player) $\rrbracket^{\mathrm{M}, \mathrm{g}}\left(\llbracket j \mathrm{john} \rrbracket^{\mathrm{M}, \mathrm{g}}\right)$
$=\llbracket$ talented $\rrbracket^{\mathrm{M}, \mathrm{g}}\left(\llbracket\right.$ piano_player $\left.\rrbracket^{\mathrm{M}, 9}\right)\left(\llbracket \mathrm{j}\right.$ ohn $\left.\rrbracket^{\mathrm{M}, \mathrm{g}}\right)$
$=\mathrm{V}_{M}($ talented $)\left(\mathrm{V}_{M}(\right.$ piano_player $)\left(\mathrm{V}_{M}(\right.$ john $\left.)\right)$

Interpretation: Example (cont.)

【John is a talented piano player $\rrbracket^{\mathrm{M}, \mathrm{g}}=\mathrm{V}_{M}($ talented $)\left(\mathrm{V}_{M}(\right.$ piano_player $)\left(\mathrm{V}_{\mathrm{M}}(j o h n)\right)$

Defining the right model

Consider the following Model M:
$D_{e}=U_{M}=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$
$V_{M}\left(\right.$ Anakin $\left._{e}\right)=V_{M}\left(\right.$ Darth Vader $\left._{e}\right)=e_{2}$
$V_{M}\left(\right.$ Jedi $\left.\left._{\langle e, t\rangle}\right\rangle\right)=\left[\begin{array}{l}e_{1} \rightarrow 1 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 1 \\ e_{4} \rightarrow 1 \\ e_{5} \rightarrow 0\end{array}\right] V_{M}\left(\right.$ Dark_Sider $\langle\langle, t\rangle)=\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 1\end{array}\right]$

$V_{M}($ Powerful $\langle\langle e, t\rangle\langle e, t\rangle\rangle)=\left[\begin{array}{l}{\left[\begin{array}{l}e_{1} \rightarrow 1 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 1 \\ e_{4} \rightarrow 1 \\ e_{5} \rightarrow 0\end{array}\right]}\end{array} \rightarrow+\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 1 \\ e_{5} \rightarrow 0\end{array}\right]$.

Adjective classes \& Meaning postulates

Some valid inferences in natural language:

- Bill is a poor piano player \vDash Bill is a piano player
- Bill is a blond piano player \vDash Bill is blond
- Bill is a former professor \vDash Bill isn't a professor

These entailments do not hold in type theory. Why?

Meaning postulates: restrictions on models which constrain the possible meaning of certain words

Adjective classes \& Meaning postulates (cont.)

Restrictive or Subsective adjectives ("poor")

- \mathbb{L} poor $N \rrbracket \subseteq \mathbb{I} \mathbb{N}$
- Meaning postulate: $\forall G \forall x(\operatorname{poor}(G)(x) \rightarrow G(x))$

Intersective adjectives ("blond")

- \mathbb{L} blond $\mathrm{N} \rrbracket=\llbracket$ blond $\mathbb{\rrbracket} \cap \mathbb{N} \rrbracket$
- Meaning postlate: $\forall G \forall x\left(b l o n d(G)(x) \rightarrow\left(b l o n d^{*}(x) \wedge G(x)\right)\right.$
- NB: blond $\in \mathrm{WE}_{\langle\langle e, t\rangle,\langle e, t\rangle\rangle} \neq$ blond $^{\star} \in \mathrm{WE}_{\langle e, \mathrm{t}\rangle}$

Privative adjectives ("former")

- \llbracket former $N \rrbracket \cap \llbracket N \rrbracket=\varnothing$
- Meaning postlate: $\forall G \forall x(f o r m e r(G)(x) \rightarrow \neg G(x))$

