Exercises are due on: Tuesday, May 2, 10 AM (before class)

Semantic Theory 2017: Exercise sheet 1

Exercise 1

Translate the following sentences into first-order predicate logic. You can freely introduce predicates, but try to retain as much of the structure as possible. Also provide the key to the translation.
a. Jon Snow knows nothing.
b. A dire wolf is not a pet.
c. Every Lannister pays his debt.
d. Fire-breathing dragons only obey Khaleesi.
e. If one family rules the throne, all other families will fight for it.
f. Although Jaime lost a hand, he wins every fight unless he loses his other hand.

Exercise 2

Consider the following model $M_{1}=\left\langle U_{1}, V_{1}\right\rangle$, with $U_{1}=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$. The interpretation function V_{1} is defined as follows:

- $V_{1}(j)=e_{1}$
- $V_{1}(m)=e_{4}$
- $V_{1}(b)=e_{6}$
- $V_{1}(A)=\left\{e_{2}, e_{3}\right\}$
- $V_{1}(B)=\left\{e_{2}, e_{4}, e_{5}\right\}$
- $V_{1}(C)=\left\{e_{2}, e_{4}, e_{5}, e_{6}\right\}$

- $V_{1}(R)=\left\{\left\langle e_{2}, e_{3}\right\rangle,\left\langle e_{3}, e_{2}\right\rangle\left\langle e_{4}, e_{1}\right\rangle,\left\langle e_{4}, e_{2}\right\rangle,\left\langle e_{5}, e_{6}\right\rangle\right\}$

Let the assignment function g_{1} be defined as follows:
$g_{1}(x)=e_{4}, g_{1}\left(x^{\prime}\right)=e_{2}, g_{1}\left(x^{\prime \prime}\right)=e_{3}$ and for all other variables $x^{\prime *}: g_{1}\left(x^{\prime *}\right)=$ e_{5}.
2.1 Evaluate the following formulas in model M_{1}, with respect to assignment function g_{1}, showing the crucial steps.
a. $\llbracket R\left(x^{\prime}, x^{\prime \prime}\right) \wedge R\left(x^{\prime \prime \prime}, b\right) \rrbracket^{M_{1}, g_{1}}=$?
b. $\llbracket \exists x^{\prime \prime}\left(A\left(x^{\prime \prime}\right) \rightarrow R\left(x^{\prime \prime}, j\right)\right) \rrbracket^{M_{1}, g_{1}}=$?
c. $\llbracket \forall x^{\prime} \exists x^{\prime \prime \prime}\left(R\left(x^{\prime \prime \prime}, x^{\prime}\right) \vee R\left(x^{\prime}, x^{\prime \prime \prime}\right)\right) \rrbracket^{M_{1}, g_{1}}=$?
d. $\llbracket \forall x\left(B(x) \rightarrow\left(A(x) \vee \neg \exists x^{\prime \prime}\left(R\left(x^{\prime \prime}, x\right)\right)\right)\right) \rrbracket^{M_{1}, g_{1}}=$?
2.2 Provide the full definition of a model M_{2} and assignment function g_{2} that satisfy the following formulas (NB: c_{1} and c_{2} are constants):

- $R\left(x, x^{\prime}\right)$
- $\forall x\left(A(x) \vee \exists x^{\prime}\left(R\left(x, x^{\prime}\right)\right)\right)$
- $\neg \exists x\left(R\left(x, c_{1}\right)\right)$
- $\exists x^{\prime \prime}\left(A\left(x^{\prime \prime}\right) \wedge \neg \exists x^{\prime}\left(A\left(x^{\prime}\right) \wedge R\left(x^{\prime}, x^{\prime \prime}\right)\right)\right)$
- $\forall x^{\prime}\left(B\left(x^{\prime}\right) \rightarrow\left(A\left(x^{\prime}\right) \vee R\left(x^{\prime}, c_{2}\right)\right)\right)$
2.3 (Bonus) Can you think of a sensible (or: funny) interpretation for the predicates A, B and R, and the constants c_{1} and c_{2} in your model of the previous exercise? Given this interpretation, what is the natural language translation of the formulas given in exercise 2.2?

