Semantic Theory week 9 – DRT: Syntax and Accessibility

Noortje Venhuizen

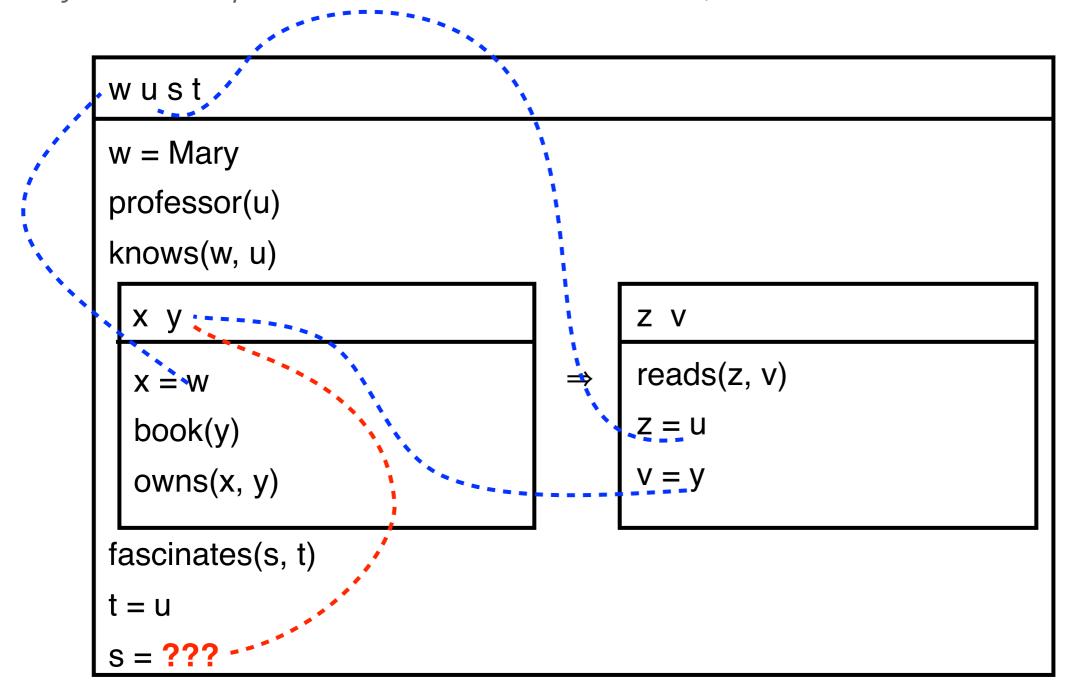
Universität des Saarlandes

Summer 2016

DRS Syntax

A discourse representation structure (DRS) K is a pair $\langle U_K, C_K \rangle$, where:

- U_K ⊆ U_D and U_D is a set of discourse referents, and
- Ck is a set of well-formed DRS conditions


Well-formed DRS conditions:

•	$R(u_1, \ldots, u_n)$	where:	R is an	n-place	relation,	$U_i \in $	U_D
---	-----------------------	--------	---------	---------	-----------	------------	-------

- u = V $u, v \in U_D$
- u = a $u \in U_D$, a is a constant
- $\neg K_1$ K_1 is a DRS
- $K_1 \Rightarrow K_2$ K_1 and K_2 are DRSs
- $K_1 \vee K_2$ K_1 and K_2 are DRSs

Anaphora and accessibility

Mary knows a professor. If she owns a book, he reads it.? It fascinates him.

Non-accessible discourse referents

Cases of non-accessibility:

- (1) If a professor owns a book, he reads it. It has 300 pages.
- (2) It is not the case that a professor owns a book. He reads it.
- (3) Every professor owns a book. He reads it.
- (4) If every professor owns a book, he reads it.
- (5) Peter owns a book, or Mary reads it.
- (6) Peter reads a book, or Mary reads a newpaper article. It is interesting.

Accessible discourse referents

The following discourse referents are accessible for a condition:

- DRs in the same local DRS
- DRs in a superordinate DRS
- DRs in the universe of an antecedent DRS, if the condition occurs in the consequent DRS.

We need a formal notion of DRS subordination

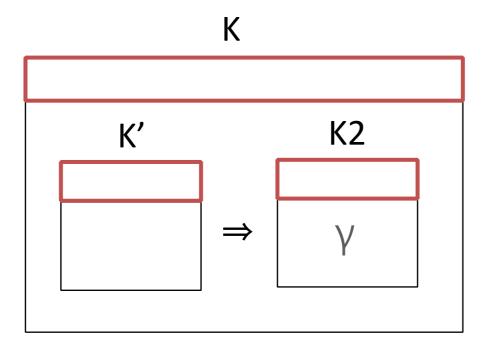
Subordination

A DRS K_1 is an immediate sub-DRS of a DRS $K = \langle U_K, C_K \rangle$ iff C_K contains a condition of the form

• $\neg K_1$, $K_1 \Rightarrow K_2$, $K_2 \Rightarrow K_1$, $K_1 \lor K_2$ or $K_2 \lor K_1$.

 K_1 is a sub-DRS of K (notation: $K_1 \le K$) iff

- $K_1 = K$, or
- K₁ is an immediate sub-DRS of K, or
- there is a DRS K_2 such that $K_1 \le K_2$ and K_2 is an immediate sub-DRS of K_2 (i.e. reflexive, transitive closure)


 K_1 is a proper sub-DRS of K iff $K_1 \le K$ and $K_1 \ne K$.

Accessibility

Let K, K₁, K₂ be DRSs such that K₁, K₂ \leq K, x \in U_{K1}, $\gamma \in$ C_{K2}

x is accessible from γ in K iff

- $K_2 \leq K_1$ or
- there are K_3 , $K_4 \le K$ such that $K_1 \Rightarrow K_3 \in C_{K4}$ and $K_2 \le K_3$

Free and bound variables in DRT

A DRS variable x, introduced in DRS K_1 , is bound in global DRS K iff there exists a DRS $K_i \le K$, such that:

- (i) $K_i \leq K_j$;
- (ii) $x \in U(K_i)$.

Properness: A DRS is *proper* iff it does not contain any free variables

Purity: A DRS is *pure* iff it does not contain any *otiose declarations* of variables

 $x \in U(K_1)$ and $x \in U(K_2)$ and $K_1 \le K_2$

Playing in the sandbox

PDRT-SANDBOX is a Haskell library that implements Discourse Representation Theory (and its extension Projective Discourse Representation Theory)

http://hbrouwer.github.io/pdrt-sandbox/

- Define your own DRSs, using the internal syntax or the set-theoretic notation
- Show the DRSs in different output formats (boxes, linear boxes, set-theoretic, internal syntax)
- Composition of DRSs (more on that next week)
- Translate DRSs to FOL formulas
- ... and more!

DRS Syntax in PDRT-SANDBOX

```
DRS: DRS [...] [...] referents conditions

Referents: DRSRef "x", DRSRef "Mary"
```

Conditions:

```
Relation: Rel (DRSRel "man") [DRSRef "x"]

Identity: Rel (DRSRel "=") [DRSRef "x",DRSRef "y"]

Negation: Neg (DRS [...] [...])

Implication: Imp (DRS [...] [...]) (DRS [...] [...])

Disjunction: Or (DRS [...] [...]) (DRS [...] [...])
```

Properties: isPure(DRS [...] [...]), isProper(DRS [...] [...])

This week's take-home assignment:

Download and install PDRT-SANDBOX

http://hbrouwer.github.io/pdrt-sandbox/

· Get familiar with the software by trying out the DRS tutorial

https://github.com/hbrouwer/pdrt-sandbox/blob/master/tutorials/ DRSTutorial.hs

(you can skip the part about "Combining DRSs" for now)

 Playing in the sandbox: create your own DRSs, and see what else you can do with it.

Literature

- Discourse Representation Theory: Hans Kamp (1981), Irene Heim (1980)
- Reading: Hans Kamp and Uwe Reyle: From Discourse to Logic, Kluwer: Dordrecht 1993.