Semantic Theory Week 4 – Typed Lambda Calculus

Noortje Venhuizen

Universität des Saarlandes

Summer 2016

Type Theory — Syntax

<u>For every type τ </u>, the set of well-formed expressions WE_{τ} is defined as follows:

- (i) $CON_{\tau} \subseteq WE_{\tau}$ and $VAR_{\tau} \subseteq WE_{\tau}$;
- (ii) If $\alpha \in WE_{\langle \sigma, \tau \rangle}$, and $\beta \in WE_{\sigma}$, then $\alpha(\beta) \in WE_{\tau}$; (function application)

(iii) If A, B are in WE_t, then $\neg A$, (A \land B), (A \lor B), (A \rightarrow B), (A \leftrightarrow B) are in WE_t;

- (iv) If A is in WEt and x is a variable of arbitrary type, then ∀xA and ∃xA are in WEt;
- (v) If α , β are well-formed expressions of the same type, then $\alpha = \beta \in WE_t$;

(vi) Nothing else is a well-formed formula.

Function application

(ii) If $\alpha \in WE_{\langle \sigma, \tau \rangle}$, and $\beta \in WE_{\sigma}$, then $\alpha(\beta) \in WE_{\tau}$

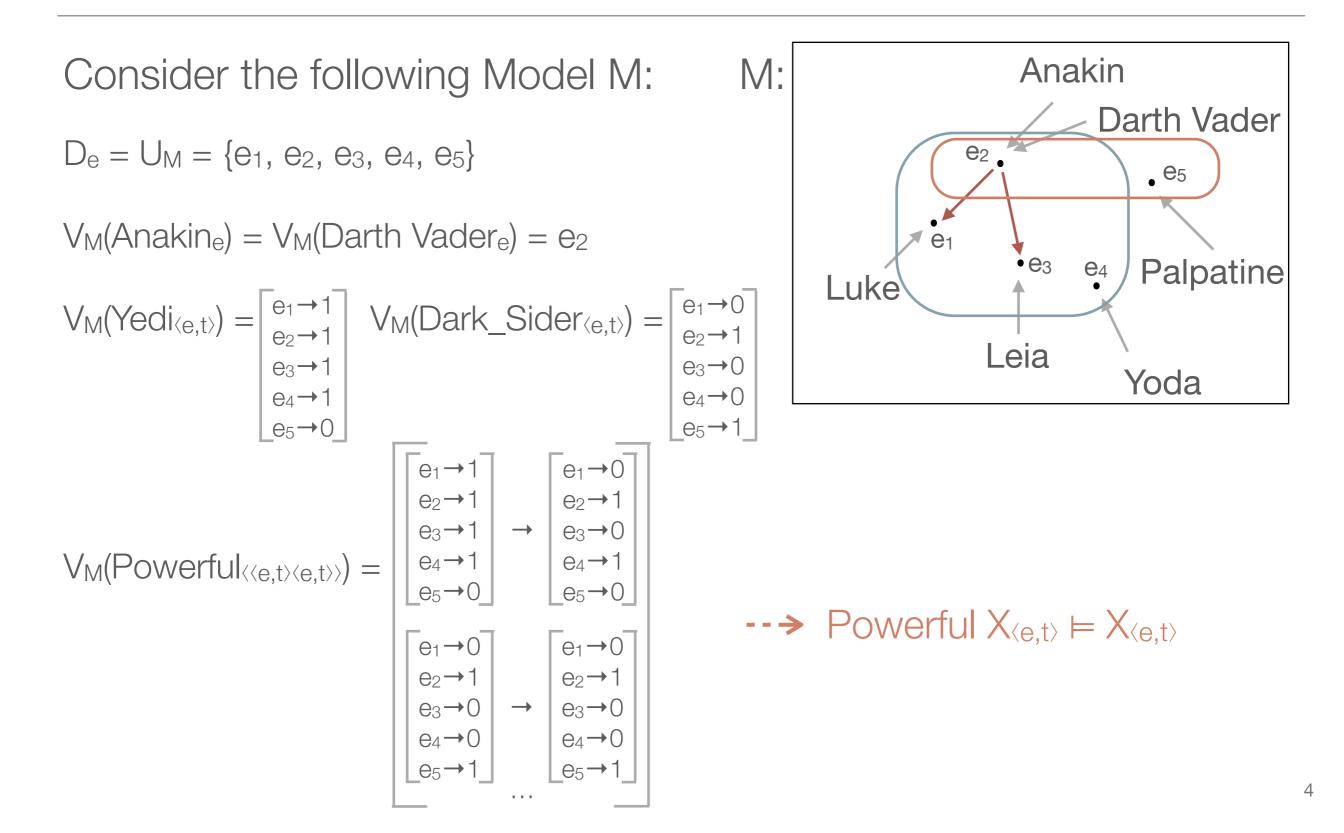
"John is a talented piano player"

piano_player :: $\langle e, t \rangle$ talented :: $\langle \langle e, t \rangle, \langle e, t \rangle \rangle$

john :: e talented(piano_player) :: <e, t>

talented(piano_player)(john) :: t

Type Theory — Model



Type Theory — Interpretation

Interpretation with respect to a model structure $M = \langle U, V \rangle$ and a variable assignment g:

- $\llbracket \alpha \rrbracket^{M,g}$ = V(α) if α is a constant $\llbracket \alpha \rrbracket^{M,g}$ = g(α) if α is a variable
- $\llbracket \alpha(\beta) \rrbracket^{M,g} = \llbracket \alpha \rrbracket^{M,g} (\llbracket \beta \rrbracket^{M,g})$

• $\llbracket \neg \varphi \rrbracket^{M,g} = 1$ iff $\llbracket \varphi \rrbracket^{M,g} = 0$ $\llbracket \varphi \land \psi \rrbracket^{M,g} = 1$ iff $\llbracket \varphi \rrbracket^{M,g} = 1$ and $\llbracket \psi \rrbracket^{M,g} = 1$ $\llbracket \varphi \lor \psi \rrbracket^{M,g} = 1$ iff $\llbracket \varphi \rrbracket^{M,g} = 1$ or $\llbracket \psi \rrbracket^{M,g} = 1$

- $\llbracket \alpha = \beta \rrbracket^{M,g} = 1$ iff $\llbracket \alpha \rrbracket^{M,g} = \llbracket \beta \rrbracket^{M,g}$
- For any variable v of type σ : $\llbracket \exists v \varphi \rrbracket^{M,g} = 1$ iff there is a $d \in D_{\sigma}$ such that $\llbracket \varphi \rrbracket^{M,g[v/d]} = 1$ $\llbracket \forall v \varphi \rrbracket^{M,g} = 1$ iff for all $d \in D_{\sigma} : \llbracket \varphi \rrbracket^{M,g[v/d]} = 1$

Compositionality

The principle of compositionality: "The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined" (Partee et al., 1993)

Compositional semantics construction:

- compute meaning representations for sub-expressions
- combine them to obtain a meaning representation for a complex expression.

Problematic case: "Not smoking $\langle e,t \rangle$ is healthy $\langle \langle e,t \rangle,t \rangle$ "

Lambda abstraction

 λ -abstraction is an operation that takes an expression and "opens" specific argument positions.

Syntactic definition:

If a is in WE_T, and x is in VAR_{σ} then $\lambda x(\alpha)$ is in WE_(σ, τ)

- The scope of the λ -operator is the smallest WE to its right. Wider scope must be indicated by brackets.
- We often use the "dot notation" $\lambda x.\phi$ indicating that the λ -operator takes widest possible scope (over ϕ).

Interpretation of Lambda-expressions

If $\alpha \in WE_{\tau}$ and $v \in VAR_{\sigma}$, then $[\lambda v \alpha]^{M,g}$ is that function $f : D_{\sigma} \rightarrow D_{\tau}$ such that for all $a \in D_{\sigma}$, $f(a) = [[\alpha]^{M,g[v/a]}$

If the λ -expression is applied to some argument, we can simplify the interpretation:

• $[\lambda v \alpha]^{M,g}(x) = [\alpha]^{M,g[v/x]}$

Example: "Bill is a non-smoker"

```
[\![\lambda x(\neg S(x))(b')]\!]^{M,g}=1
```

- $\text{iff } \llbracket \lambda x(\neg S(x)) \rrbracket^{M,g}(\llbracket b' \rrbracket^{M,g}) = 1$
- iff $[\neg S(x)]^{M,g[x/[b']^{M,g]}} = 1$

```
iff \, \llbracket S(x) \rrbracket^{M,g[x/\llbracket b' \rrbracket^{M,g}]} = 0
```

```
\inf \llbracket S \rrbracket^{M,g[x/\llbracket b' \rrbracket^{M,g}]}(\llbracket x \rrbracket^{M,g[x/\llbracket b' \rrbracket^{M,g}]}) = 0
```

 $\text{iff } V_M(S)(V_M(b')) = 0$

β-Reduction

 $\llbracket \lambda v(\alpha)(\beta) \rrbracket^{M,g} = \llbracket \alpha \rrbracket^{M,g[v/\llbracket \beta \rrbracket^{M,g}]}$

 \Rightarrow all (free) occurrences of the λ -variable in α get the interpretation of β as value.

This operation is called β -reduction

- $\lambda v(\alpha)(\beta) \Leftrightarrow [\beta/v]\alpha$
- $[\beta/\nu]\alpha$ is the result of replacing all free occurrences of ν in α with β .

Achtung: The equivalence is not unconditionally valid!

Variable capturing

Q: Are $\lambda v(\alpha)(\beta)$ and $[\beta/v]\alpha$ always equivalent?

- $\lambda x(drive'(x) \land drink'(x))(j') \Leftrightarrow drive'(j') \land drink'(j')$
- $\lambda x(drive'(x) \land drink'(x))(y) \Leftrightarrow drive'(y) \land drink'(y)$
- $\lambda x(\forall y \text{ know'}(x)(y))(j') \Leftrightarrow \forall y \text{ know}(j')(y)$
- NOT: $\lambda x(\forall y \text{ know'}(x)(y))(y) \Leftrightarrow \forall y \text{ know}(y)(y)$

Let v, v' be variables of the same type, and let α be any well-formed expression.

• v is free for v' in a iff no free occurrence of v' in a is in the scope of a quantifier or a λ -operator that binds v.

Conversion rules

- β -conversion: $\lambda v(\alpha)(\beta) \Leftrightarrow [\beta/v]\alpha$ (if all free variables in β are free for v in α)
- a-conversion: $\lambda va \Leftrightarrow \lambda w[w/v]a$ (if w is free for v in a)
- n-conversion: $\lambda v(\alpha(v)) \Leftrightarrow \alpha$

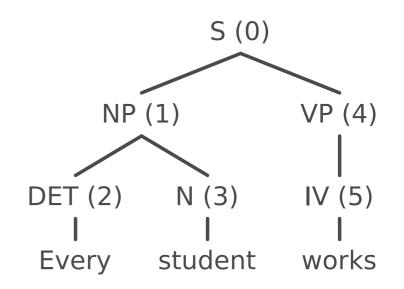
β-Reduction Example

Every student works.

- (2) $\lambda P \lambda Q \forall x (P(x) \rightarrow Q(x)) : \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle$
- (3) student' : $\langle e, t \rangle$
- (1) $\lambda P \lambda Q \forall x (P(x) \rightarrow Q(x)) (student')$ $\Rightarrow^{\beta} \lambda Q \forall x (student'(x) \rightarrow Q(x)) : \langle \langle e, t \rangle, t \rangle$

(4)/(5) work' : $\langle e, t \rangle$

(0) $\lambda Q \forall x(student'(x) \rightarrow Q(x))(work')$ $\Rightarrow^{\beta} \forall x(student'(x) \rightarrow work'(x)) : t$



Background reading material

- Gamut: Logic, Language, and Meaning Vol II
 - Chapter 4 (minus 4.3)