Semantic Theory
 Week 4 - Typed Lambda Calculus

Noortje Venhuizen

Universität des Saarlandes

Summer 2016

Type Theory - Syntax

For every type τ, the set of well-formed expressions WE_{T} is defined as follows:
(i) $\mathrm{CON}_{T} \subseteq W E_{T}$ and $V A R_{T} \subseteq W E_{T}$;
(ii) If $a \in W E_{(\sigma, \tau}$, and $\beta \in W E_{\sigma}$, then $a(\beta) \in W E_{\tau}$; (function application)
(iii) If A, B are in $W E_{t}$, then $\neg A,(A \wedge B)$, $(A \vee B),(A \rightarrow B),(A \leftrightarrow B)$ are in $W E_{t}$;
(iv) If A is in WE_{t} and x is a variable of arbitrary type, then $\forall x A$ and $\exists x A$ are in WEt;
(v) If α, β are well-formed expressions of the same type, then $\alpha=\beta \in \mathrm{WE}_{\mathrm{t}}$;
(vi) Nothing else is a well-formed formula.

Function application

(ii) If $a \in W E_{\langle\sigma, \tau\rangle}$, and $\beta \in W E_{\sigma}$, then $a(\beta) \in W E_{\tau}$
"John is a talented piano player"

$$
\text { piano_player :: }\langle\mathrm{e}, \mathrm{t}\rangle \quad \text { talented }::\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle
$$

john :: e talented(piano_player) :: 〈e, t〉
talented(piano_player)(john) :: t

Type Theory - Model

Consider the following Model M :
$D_{e}=U_{M}=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$
$\mathrm{V}_{\mathrm{M}}\left(\right.$ Anakin $\left._{e}\right)=\mathrm{V}_{\mathrm{M}}\left(\right.$ Darth $\left.^{\text {Vader }}\right)=\mathrm{e}_{2}$
$V_{M}($ Yedi $\langle e, t\rangle)=\left[\begin{array}{l}e_{1} \rightarrow 1 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 1 \\ e_{4} \rightarrow 1 \\ e_{5} \rightarrow 0\end{array}\right] \quad V_{M}($ Dark_Sider $\langle e, t\rangle)=\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 1\end{array}\right]$

$V_{M}($ POWerful $\langle\langle e, t\rangle\langle e, t\rangle\rangle)=\left[\begin{array}{l}{\left[\begin{array}{l}e_{1} \rightarrow 1 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 1 \\ e_{4} \rightarrow 1 \\ e_{5} \rightarrow 0\end{array}\right] \rightarrow\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 1 \\ e_{5} \rightarrow 0\end{array}\right]} \\ {\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 1\end{array}\right] \rightarrow\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 1\end{array}\right]}\end{array}\right]$
\rightarrow Powerful $X_{(e, t)} \vDash X_{(e, t\rangle}$

Type Theory - Interpretation

Interpretation with respect to a model structure $\mathrm{M}=\langle\mathrm{U}, \mathrm{V}\rangle$ and a variable assignment g:

- $\llbracket a \rrbracket^{\mathrm{M}, \mathrm{g}} \quad=\mathrm{V}(\mathrm{a})$ if a is a constant
$\llbracket a \rrbracket^{\mathrm{M}, g} \quad=g(a) \quad$ if a is a variable
- $\llbracket a(\beta) \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket a \rrbracket^{\mathrm{M}, 9}\left(\llbracket \beta \rrbracket^{\mathrm{M}, g}\right)$
- $\llbracket \neg \phi \rrbracket^{\mathrm{M}, \mathrm{g}} \quad=1$ iff $\llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=0$
$\llbracket \phi \wedge \psi \rrbracket^{\mathrm{M}, \mathrm{g}} \quad=1 \quad$ iff $\llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ and $\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
$\llbracket \phi \vee \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1 \quad$ iff $\llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ or $\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
- $\llbracket \alpha=\beta \rrbracket^{\mathrm{M}, \mathrm{g}} \quad=1 \quad$ iff $\llbracket \alpha \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \beta \rrbracket^{\mathrm{M}, \mathrm{g}}$
- For any variable v of type o:
$\llbracket \exists V \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=1 \quad$ iff there is a $\mathrm{d} \in \mathrm{D}_{\sigma}$ such that $\llbracket \not \subset \rrbracket^{\mathrm{M}, g[/ / d]}=1$
$\llbracket \forall \vee \phi \rrbracket^{\mathbb{M}, g} \quad=1 \quad$ iff for all $d \in D_{\sigma}: \llbracket \phi \rrbracket^{M, g[/ / d]}=1$

Compositionality

The principle of compositionality: "The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined" (Partee et al.,1993)

Compositional semantics construction:

- compute meaning representations for sub-expressions
- combine them to obtain a meaning representation for a complex expression.

Problematic case: "Not smoking $e_{e, t\rangle}$ is healthy $\langle(e, t, t$,$\rangle "$

Lambda abstraction

λ-abstraction is an operation that takes an expression and "opens" specific argument positions.

Syntactic definition:

If a is in $W E_{\tau}$, and x is in $\operatorname{VAR}_{\sigma}$ then $\lambda x(a)$ is in $W E_{(\sigma, \tau\rangle}$

- The scope of the λ-operator is the smallest WE to its right. Wider scope must be indicated by brackets.
- We often use the "dot notation" $\lambda \times . \phi$ indicating that the λ-operator takes widest possible scope (over ϕ).

Interpretation of Lambda-expressions

If $a \in W E_{\tau}$ and $v \in V_{A R}$, then $\llbracket \lambda v a \rrbracket^{M, g}$ is that function $f: D_{\sigma} \rightarrow D_{\tau}$ such that for all $a \in D_{0}, f(a)=\left[a \rrbracket^{M, g[v / a]}\right.$

If the λ-expression is applied to some argument, we can simplify the interpretation:

- $\llbracket \lambda v a \rrbracket^{M, g}(x)=\llbracket a \rrbracket^{M, g[/ / / x]}$

Example: "Bill is a non-smoker"
$\llbracket \lambda x(\neg S(x))\left(b^{\prime}\right) \rrbracket^{M, g}=1$
iff $\llbracket \lambda x(\neg S(x)) \rrbracket^{M, g\left(\llbracket b ’ \rrbracket^{M, g}\right)=1}$
iff $\llbracket \neg S(x) \rrbracket^{M, g\left[x /\left[\llbracket b^{\prime} \mathbb{M}^{M, g]}\right.\right.}=1$
iff $\llbracket S(X) \rrbracket^{M, g\left[x /\left[b^{\prime}\right]^{M, g]}\right.}=0$
iff $\llbracket S \rrbracket^{M, g\left[x / \llbracket b^{\prime} \rrbracket^{M}, g\right]}\left(\llbracket \times \rrbracket^{M, g\left[X / \llbracket b^{\prime} \rrbracket^{M, g]}\right)}=0\right.$
iff $\mathrm{V}_{\mathrm{M}}(\mathrm{S})\left(\mathrm{V}_{\mathrm{M}}\left(\mathrm{b}^{\prime}\right)\right)=0$

β-Reduction

$\llbracket \lambda v(\alpha)(\beta) \rrbracket^{\mathbb{M}, g}=\llbracket \alpha \rrbracket^{\mathrm{M}, g\left[/ \mathrm{V} /\left[\beta \rrbracket^{\mathrm{M}, \mathrm{g}}\right]\right.}$
\Rightarrow all (free) occurrences of the λ-variable in a get the interpretation of β as value.

This operation is called β-reduction

- $\lambda v(a)(\beta) \Leftrightarrow[\beta / v] a$
- $[\beta / v] a$ is the result of replacing all free occurrences of v in a with β.

Achtung: The equivalence is not unconditionally valid!

Variable capturing

Q: Are $\lambda v(\alpha)(\beta)$ and $[\beta / v] a$ always equivalent?

- $\lambda x\left(\operatorname{drive}^{\prime}(x) \wedge \operatorname{drink}^{\prime}(x)\right)\left(j^{\prime}\right) \Leftrightarrow \operatorname{drive}^{\prime}\left(j^{\prime}\right) \wedge \operatorname{drink}^{\prime}\left(j^{\prime}\right)$
- $\lambda x\left(\operatorname{drive}^{\prime}(x) \wedge \operatorname{drink}^{\prime}(x)\right)(y) \Leftrightarrow \operatorname{drive}^{\prime}(y) \wedge \operatorname{drink}^{\prime}(y)$
- $\lambda x\left(\forall y\right.$ know $\left.{ }^{\prime}(x)(y)\right)\left(j^{\prime}\right) \Leftrightarrow \forall y \operatorname{know}\left(j^{\prime}\right)(y)$
- NOT: $\lambda x\left(\forall y\right.$ know $\left.{ }^{\prime}(x)(y)\right)(y) \Leftrightarrow \forall y \operatorname{know}(y)(y)$

Let v , v^{\prime} be variables of the same type, and let a be any well-formed expression.

- v is free for v^{\prime} in a iff no free occurrence of v^{\prime} in a is in the scope of a quantifier or a λ-operator that binds v.

Conversion rules

- β-conversion: $\lambda v(a)(\beta) \Leftrightarrow[\beta / v] a$
(if all free variables in β are free for vin a)
- a-conversion: $\quad \lambda v a \Leftrightarrow \lambda w[w / v] a$
(if w is free for v in a)
- η-conversion: $\quad \lambda v(a(v)) \Leftrightarrow a$

β-Reduction Example

Every student works.
(2) $\lambda P \lambda Q \forall x(P(x) \rightarrow Q(x)):\langle\langle e, t\rangle,\langle\langle e, t\rangle, t\rangle$
(3) student' : $\langle\mathrm{e}, \mathrm{t}\rangle$
(1) $\lambda P \lambda Q \forall x(P(x) \rightarrow Q(x))($ student') $\Rightarrow^{\beta} \lambda Q \forall x($ student' $(x) \rightarrow Q(x)):\langle\langle e, t\rangle, t\rangle$

(4)/(5) work' : 〈e, t〉
(0) $\lambda Q \forall x($ student' $(x) \rightarrow Q(x))\left(\right.$ work' $\left.^{\prime}\right)$
$\Rightarrow^{\beta} \forall x\left(\right.$ student' $(x) \rightarrow$ work' $\left.^{\prime}(x)\right): t$

Background reading material

- Gamut: Logic, Language, and Meaning Vol II
- Chapter 4 (minus 4.3)

