
Semantic Theory
Week 4 – Typed Lambda Calculus

Noortje Venhuizen

Universität des Saarlandes

Summer 2016

1

Type Theory — Syntax

For every type τ, the set of well-formed expressions WEτ is defined as follows:

(i) CONτ ⊆ WEτ and VARτ ⊆ WEτ;

(ii) If α ∈ WE⟨σ, τ⟩, and β ∈ WEσ, then α(β) ∈ WEτ;		  
(function application)

(iii) If A, B are in WEt, then ¬A, (A ∧ B), (A ∨ B), (A → B), (A ↔ B) are in WEt;

(iv) If A is in WEt and x is a variable of arbitrary type, then ∀xA and ∃xA are
in WEt;

(v) If α, β are well-formed expressions of the same type, then α = β ∈ WEt;

(vi) Nothing else is a well-formed formula.

2

(ii) If α ∈ WE⟨σ,τ⟩, and β ∈ WEσ, then α(β) ∈ WEτ

“John is a talented piano player”

	 	 	 	 	 	

Function application

3

	 	 	 piano_player		 	 	 talented  
 
john	 	 	 	 	 talented(piano_player)

	 	 talented(piano_player)(john)

:: ⟨e, t⟩ :: ⟨⟨e, t⟩, ⟨e, t⟩⟩

 :: e :: ⟨e, t⟩

:: t

Type Theory — Model

De = UM = {e1, e2, e3, e4, e5}

VM(Anakine) = VM(Darth Vadere) = e2

VM(Yedi⟨e,t⟩) = 	 	 VM(Dark_Sider⟨e,t⟩) =

4

Luke

Anakin

Leia

Palpatine

Yoda

 M:
Darth Vader

e1

e2

e3 e4

e5

e1→1 
e2→1 
e3→1 
e4→1 
e5→0

e1→0 
e2→1 
e3→0 
e4→0 
e5→1

…

Powerful X⟨e,t⟩ ⊨ X⟨e,t⟩

e1→1 
e2→1 
e3→1 
e4→1 
e5→0

e1→0 
e2→1 
e3→0 
e4→0 
e5→1

e1→0 
e2→1 
e3→0 
e4→0 
e5→1

→

→

e1→0 
e2→1 
e3→0 
e4→1 
e5→0

VM(Powerful⟨⟨e,t⟩⟨e,t⟩⟩) =

Consider the following Model M:

Type Theory — Interpretation

Interpretation with respect to a model structure M = ⟨U, V⟩ and a variable
assignment g:
• ⟦α⟧M,g 	 	 = V(α)	 if α is a constant 

⟦α⟧M,g 	 	 = g(α)	 if α is a variable
• ⟦α(β)⟧M,g 		 = ⟦α⟧M,g(⟦β⟧M,g)
• ⟦¬φ⟧M,g 	 	 = 1 	 iff 	 ⟦φ⟧M,g = 0 

⟦φ ∧ ψ⟧M,g 	 = 1 	 iff 	 ⟦φ⟧M,g = 1 and ⟦ψ⟧M,g = 1 
⟦φ ∨ ψ⟧M,g 	 = 1 	 iff 	 ⟦φ⟧M,g = 1 or ⟦ψ⟧M,g = 1 
…

• ⟦α = β⟧M,g 	 = 1 	 iff 	 ⟦α⟧M,g = ⟦β⟧M,g
• For any variable v of type σ: 

⟦∃vφ⟧M,g 		 = 1 	 iff 	 there is a d ∈ Dσ such that ⟦φ⟧M,g[v/d] = 1 
⟦∀vφ⟧M,g	 	 = 1 	 iff 	 for all d ∈ Dσ : ⟦φ⟧M,g[v/d] = 1

5

Compositionality

The principle of compositionality: “The meaning of a complex expression is a
function of the meanings of its parts and of the syntactic rules by which they are
combined” (Partee et al.,1993)

Compositional semantics construction:

• compute meaning representations for sub-expressions

• combine them to obtain a meaning representation for a complex expression.

6

!

Problematic case: “Not smoking⟨e,t⟩ is healthy⟨⟨e,t⟩,t⟩”

Lambda abstraction

λ-abstraction is an operation that takes an expression and “opens”
specific argument positions.

7

If α is in WEτ, and x is in VARσ then λx(α) is in WE⟨σ, τ⟩

Syntactic definition:

• The scope of the λ-operator is the smallest WE to its right. Wider scope must be
indicated by brackets.

• We often use the “dot notation” λx.φ indicating that the λ-operator takes widest
possible scope (over φ).

Interpretation of Lambda-expressions

If the λ-expression is applied to some argument, we can simplify the interpretation:

• ⟦λvα⟧M,g(x) = ⟦α⟧M,g[v/x]

8

Example: “Bill is a non-smoker”

⟦λx(¬S(x))(b’)⟧M,g = 1

iff ⟦λx(¬S(x))⟧M,g(⟦b’⟧M,g) = 1

iff ⟦¬S(x)⟧M,g[x/⟦b’⟧M,g] = 1

iff ⟦S(x)⟧M,g[x/⟦b’⟧M,g] = 0

iff ⟦S⟧M,g[x/⟦b’⟧M,g](⟦x⟧M,g[x/⟦b’⟧M,g]) = 0

iff VM(S)(VM(b’)) = 0

If α ∈ WEτ and v ∈ VARσ, then ⟦λvα⟧M,g is that function f : Dσ → Dτ
such that for all a ∈ Dσ, f(a) = ⟦α⟧M,g[v/a]

β-Reduction

⟦λv(α)(β)⟧M,g = ⟦α⟧M,g[v/⟦β⟧M,g]

⇒ all (free) occurrences of the λ-variable in α get the interpretation of β as value.

This operation is called β-reduction

• λv(α)(β) ⇔ [β/v]α

• [β/v]α is the result of replacing all free occurrences of v in α with β.

9

Achtung: The equivalence is not unconditionally valid!

Variable capturing

Q: Are λv(α)(β) and [β/v]α always equivalent?

• λx(drive’(x) ∧ drink’(x))(j’) ⇔ drive’(j’) ∧ drink’(j’)

• λx(drive’(x) ∧ drink’(x))(y) ⇔ drive’(y) ∧ drink’(y)

• λx(∀y know’(x)(y))(j’) ⇔ ∀y know(j’)(y)

• NOT: λx(∀y know’(x)(y))(y) ⇔ ∀y know(y)(y)

10

Let v, v’ be variables of the same type, and let α be any well-formed expression.

• v is free for v’ in α iff no free occurrence of v’ in α is in the scope of a quantifier or
a λ-operator that binds v.

Conversion rules

• β-conversion: 		 λv(α)(β) ⇔ [β/v]α  
(if all free variables in β are free for v in α)

• α-conversion: 		 λvα ⇔ λw[w/v]α  
(if w is free for v in α)

• η-conversion: 		 λv(α(v)) ⇔ α

11

Every student works.

(2) 	 λPλQ∀x(P(x) → Q(x)) : ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩

(3) 	 student’ : ⟨e, t⟩

(1) 	 λPλQ∀x(P(x) → Q(x))(student’)  
	 ⇒β λQ∀x(student’(x) → Q(x)) : ⟨⟨e, t⟩, t⟩

(4)/(5) work’ : ⟨e, t⟩

(0) 	 λQ∀x(student’(x) → Q(x))(work’) 
	 ⇒β ∀x(student’(x) → work’(x)) : t

β-Reduction Example

12

NP (1)

S (0)

VP (4)

IV (5)DET (2)

worksEvery

N (3)

student

Background reading material

• Gamut: Logic, Language, and Meaning Vol II  
— Chapter 4 (minus 4.3)

13

