Semantic Theory Week 3 – Type Theory

Noortje Venhuizen

Universität des Saarlandes

Summer 2016

First-order logic

First-order logic talks about:

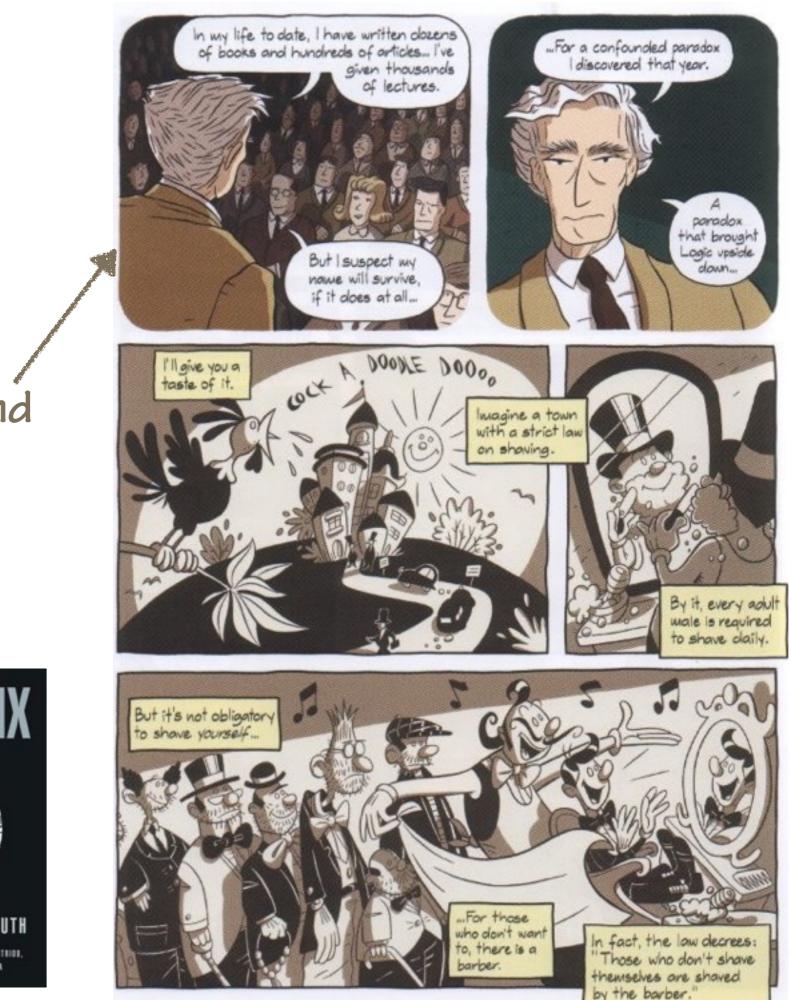
- Individual objects
- Properties of and relations between individual objects
- Generalization across individual objects (quantification)

Limitations of first-order logic

FOL is not expressive enough to capture all meanings that can be expressed by basic natural language expressions:

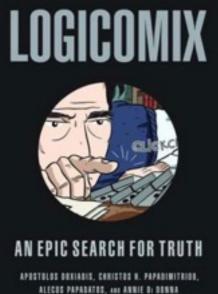
Jumbo is a <u>small</u> elephant.	(Predicate modifiers)
Blond is a <u>hair color.</u>	(Second-order predicates)
<u>Yesterday</u> , it rained.	(Non-logical sentence operators)
Bill and John have <u>the same</u> hair color.	(Higher-order quantification)

What logical system can we use to capture this diversity?



Q: Does the barber shave himself?

Bertrand Russell



Russell's paradox

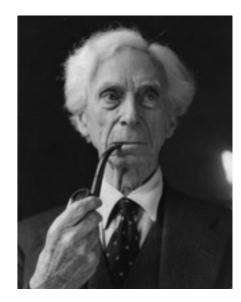
What if we extend the FOL interpretation of predicates, and interpret higherorder predicates as sets of sets of properties?

For every predicate P, we can define a set $\{x \mid P(x)\}$ containing all and only those entities for which P holds.

Then we can define a set S = {X | $X \notin X$ } representing the set of all sets that are not members of itself.

Q: does S belong to itself?

... we need a more restricted way of talking about properties and relations between properties!



Type Theory

Basic types:

- **e** the type of individual terms ("entities")
- t the type of formulas ("truth-values")

Complex types:

If σ, τ are types, then ⟨σ, τ⟩ is a type
(representing a functor expression that takes a σ type expression as argument and returns a type τ expression; sometimes written as: (σ→ τ).

Types & Function Application

Types of first-order expressions:

- Individual constants (Luke, Saarbrücken) : e
- One-place predicates (sleep, walk): (e, t)
- Two-place predicates (read, admire): <e, <e, t>>
- Three-place predicates (give, introduce): $\langle e, \langle e, d \rangle \rangle$

Function application: Combining a functor of complex type with an appropriate argument, resulting in an expression of a less complex type: $\langle \alpha, \beta \rangle(\alpha) \mapsto \beta$

- sleep'(john') :: $\langle e, t \rangle (e) \Longrightarrow t$
- admire'(john') :: $\langle e, \langle e, t \rangle \rangle (e) \Longrightarrow \langle e, t \rangle$

More examples of types

Types of higher-order expressions:

- Predicate modifiers (expensive, poor): <<e, t>, <e, t>>
- Second-order predicates (hair colour): ((e, t), t)
- Sentence operators (yesterday, possibly, unfortunately): <t, t>
- Degree particles (very, too): $\langle\langle\langle e, t \rangle, \langle e, t \rangle\rangle, \langle\langle e, t \rangle, \langle e, t \rangle\rangle\rangle$

Tip: If σ , τ are basic types, $\langle \sigma, \tau \rangle$ can be abbreviated as $\sigma\tau$. Thus, the type of predicate modifiers and second-order predicates can be more conveniently written as $\langle et, et \rangle$ and $\langle et, t \rangle$, respectively.

Non-logical constants:

• For every type τ a (possibly empty) set of non-logical constants CON_{τ} (pairwise disjoint)

Variables:

• For every type τ an infinite set of variables VAR_{τ} (pairwise disjoint)

Logical symbols: \forall , \exists , \neg , \land , \lor , \rightarrow , \leftrightarrow , =

Brackets: (,)

Type Theory — Syntax

<u>For every type τ </u>, the set of well-formed expressions WE_{τ} is defined as follows:

- (i) $CON_{\tau} \subseteq WE_{\tau}$ and $VAR_{\tau} \subseteq WE_{\tau}$;
- (ii) If $\alpha \in WE_{\langle \sigma, \tau \rangle}$, and $\beta \in WE_{\sigma}$, then $\alpha(\beta) \in WE_{\tau}$; (function application)

(iii) If A, B are in WE_t, then $\neg A$, (A \land B), (A \lor B), (A \rightarrow B), (A \leftrightarrow B) are in WE_t;

- (iv) If A is in WEt and x is a variable of arbitrary type, then ∀xA and ∃xA are in WEt;
- (v) If α , β are well-formed expressions of the same type, then $\alpha = \beta \in WE_t$;

(vi) Nothing else is a well-formed formula.

Function application

(ii) If $\alpha \in WE_{\langle \sigma, \tau \rangle}$, and $\beta \in WE_{\sigma}$, then $\alpha(\beta) \in WE_{\tau}$

"John is a talented piano player"

piano_player :: $\langle e, t \rangle$ talented :: $\langle \langle e, t \rangle, \langle e, t \rangle \rangle$

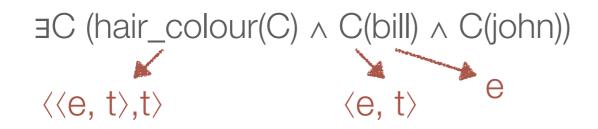
john :: e talented(piano_player) :: <e, t>

talented(piano_player)(john) :: t

Higher-order predicates

Higher-order quantification:

• Bill has the same hair colour as John



Higher-order equality:

- For p, q \in CON_t, "p=q" expresses material equivalence: "p \leftrightarrow q".
- For F, G \in CON_(e, t), "F=G" expresses co-extensionality: " $\forall x(Fx \leftrightarrow Gx)$ "
- For any formula ϕ of type *t*, $\phi = (x=x)$ is a representation of " ϕ is true".

Type Theory — Semantics [1]

Let **U** be a non-empty set of entities.

The domain of possible denotations D_{τ} for every type τ is given by:

- $D_e = U$
- $D_t = \{0, 1\}$
- $D_{\langle \sigma, \tau \rangle}$ is the set of all functions from D_{σ} to D_{τ}

Expressions of type σ denote elements of D_{σ}

Characteristic functions

Many natural language expressions have a type $\langle \sigma, t \rangle$

Expressions with type $\langle \sigma, t \rangle$ are functions mapping elements of type σ to truth values: {0,1}

Such functions with a range of $\{0,1\}$ are called characteristic functions, because they uniquely specify a subset of their domain D_{σ}

The characteristic function of set M in a domain U is the function $F_M: U \rightarrow \{0,1\}$ such that for all $a \in U$, $F_M(a) = 1$ iff $a \in M$.

NB: For first-order predicates, the FOL representation (using sets) and the type-theoretic representation (using characteristic functions) are equivalent.

Interpretation with characteristic functions: example

For $M = \langle U, V \rangle$, let U consist of the persons John, Bill, Mary, Paul, and Sally. For selected types, we have the following sets of possible denotations:

• $D_t = \{0, 1\}$

•
$$D_e = U = \{j, b, m, p, s\}$$

$$\begin{bmatrix} j \rightarrow 1 \\ b \rightarrow 0 \end{bmatrix} \begin{bmatrix} j \rightarrow 1 \\ b \rightarrow 1 \end{bmatrix} \begin{bmatrix} j \rightarrow 0 \\ b \rightarrow 1 \end{bmatrix}$$

$$D_{\langle e,t\rangle} = \left\{ \begin{vmatrix} b \rightarrow 0 \\ m \rightarrow 1 \\ p \rightarrow 0 \\ s \rightarrow 1 \end{vmatrix}, \begin{vmatrix} b \rightarrow 1 \\ m \rightarrow 0 \\ p \rightarrow 1 \\ s \rightarrow 1 \end{vmatrix}, \begin{vmatrix} b \rightarrow 1 \\ m \rightarrow 0 \\ p \rightarrow 1 \\ s \rightarrow 1 \end{vmatrix}, \begin{vmatrix} b \rightarrow 1 \\ m \rightarrow 1 \\ p \rightarrow 0 \\ s \rightarrow 0 \end{vmatrix}, \dots \right\}$$

Alternative set notation: $D_{(e,t)} = \{\{j,m,s\},\{j,b,p,s\},\{b,m\},...\}$

Type Theory — Semantics [2]

A model structure for a type theoretic language is a tuple $\mathbf{M} = \langle \mathbf{U}, \mathbf{V} \rangle$ such that:

- **U** is a non-empty domain of individuals
- V is an interpretation function, which assigns to every $\alpha \in CON_{\tau}$ an element of D_{τ} (where τ is an arbitrary type)

The variable assignment function g assigns to every typed variable $v \in VAR_{\tau}$ an element of D_{τ}

Type Theory — Interpretation

Interpretation with respect to a model structure $M = \langle U, V \rangle$ and a variable assignment g:

- $\llbracket \alpha \rrbracket^{M,g}$ = V(α) if α is a constant $\llbracket \alpha \rrbracket^{M,g}$ = g(α) if α is a variable
- $\llbracket \alpha(\beta) \rrbracket^{\mathsf{M},\mathsf{g}} = \llbracket \alpha \rrbracket^{\mathsf{M},\mathsf{g}}(\llbracket \beta \rrbracket^{\mathsf{M},\mathsf{g}})$

. . .

• $\llbracket \neg \varphi \rrbracket^{M,g} = 1$ iff $\llbracket \varphi \rrbracket^{M,g} = 0$ $\llbracket \varphi \land \psi \rrbracket^{M,g} = 1$ iff $\llbracket \varphi \rrbracket^{M,g} = 1$ and $\llbracket \psi \rrbracket^{M,g} = 1$ $\llbracket \varphi \lor \psi \rrbracket^{M,g} = 1$ iff $\llbracket \varphi \rrbracket^{M,g} = 1$ or $\llbracket \psi \rrbracket^{M,g} = 1$

- $\llbracket \alpha = \beta \rrbracket^{M,g} = 1$ iff $\llbracket \alpha \rrbracket^{M,g} = \llbracket \beta \rrbracket^{M,g}$
- For any variable v of type σ : $\llbracket \exists v \varphi \rrbracket^{M,g} = 1$ iff there is a $d \in D_{\sigma}$ such that $\llbracket \varphi \rrbracket^{M,g[v/d]} = 1$ $\llbracket \forall v \varphi \rrbracket^{M,g} = 1$ iff for all $d \in D_{\sigma} : \llbracket \varphi \rrbracket^{M,g[v/d]} = 1$

Interpretation: Example

John is a talented piano player

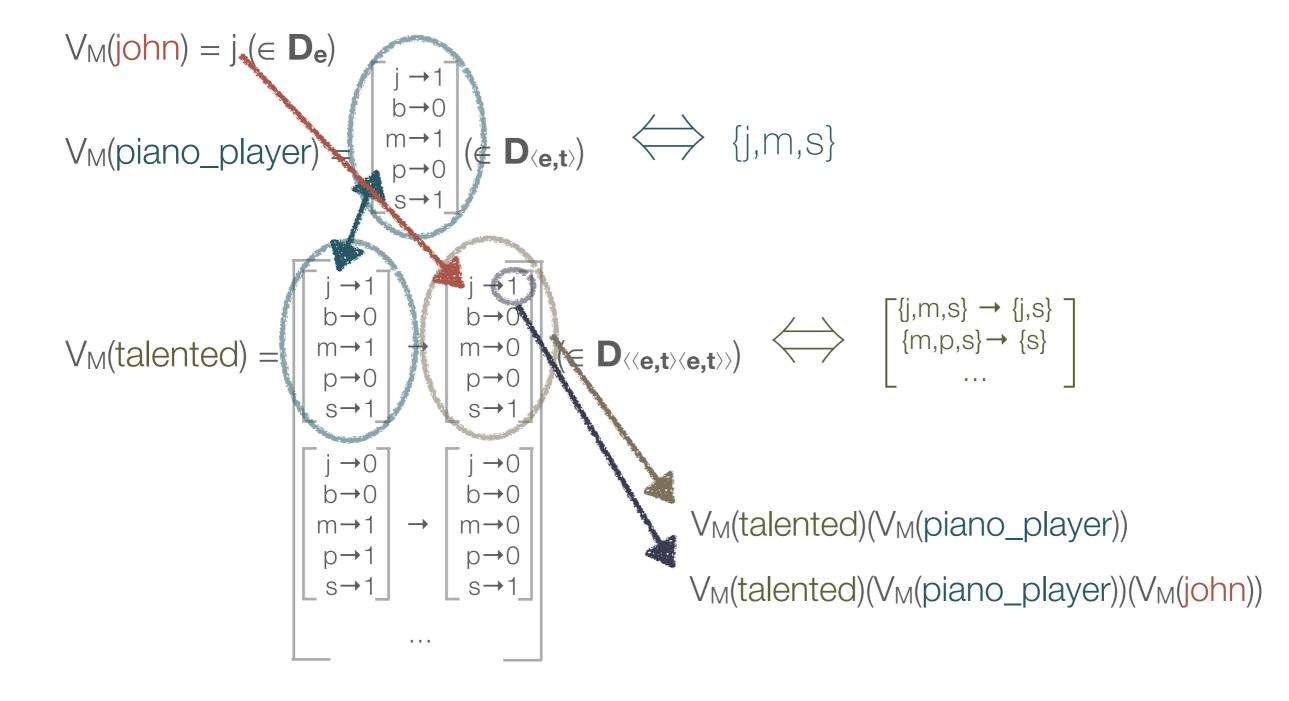
	piano_player :: <e, t=""></e,>	talented:: $\langle\langle e, t \rangle, \langle e, t \rangle \rangle$
john :: e	talented(piano_player) :: <e, t=""></e,>	
	talented(piano player)(ic	ohn) :: t

[talented(piano_player)(john)]^{M,g}

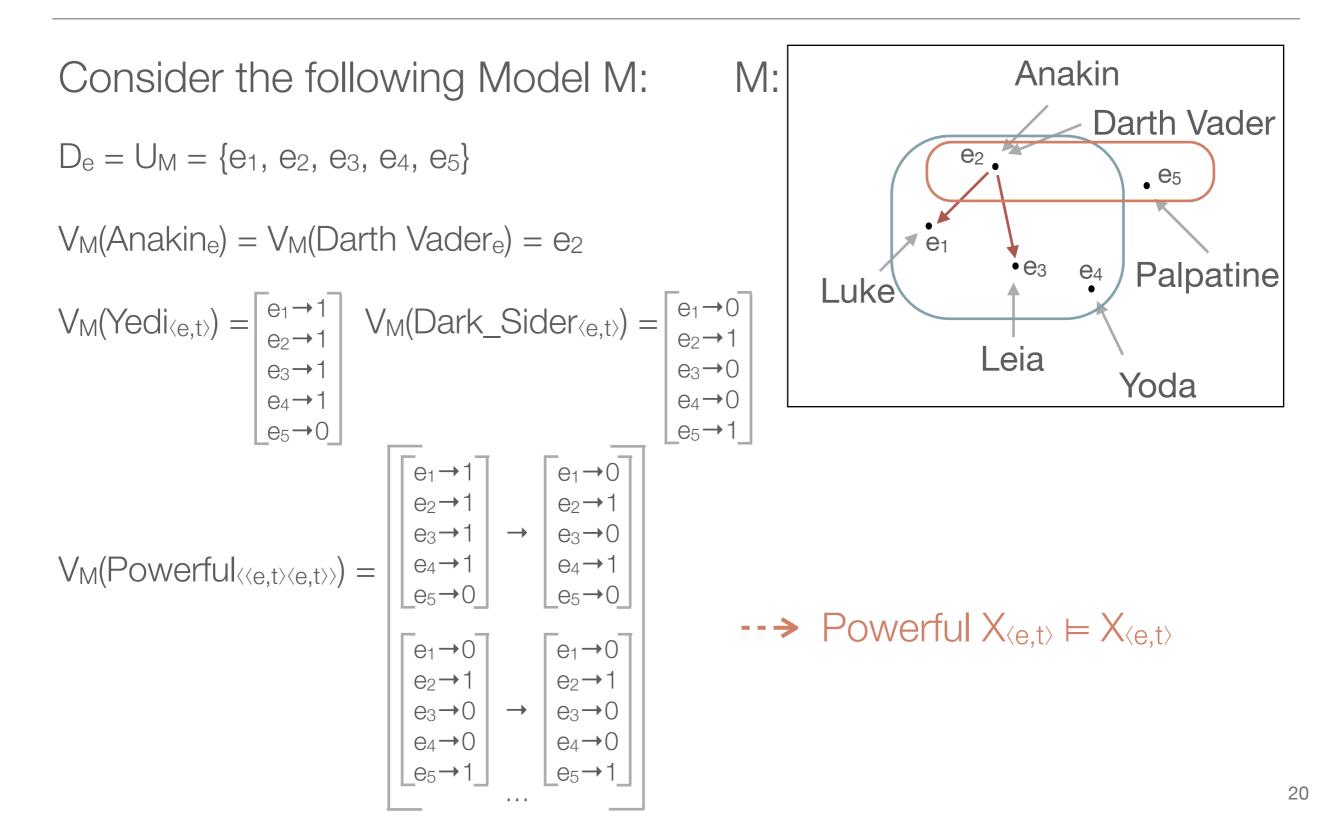
- = [[talented(piano_player)]]^{M,g} ([[john]]^{M,g})
- $= [talented]^{M,g}([piano_player]^{M,g})([john]^{M,g})$
- $= V_M$ (talented)(V_M(piano_player))(V_M(john))

Interpretation: Example (cont.)

[John is a talented piano player]]^{M,g} = V_M (talented)(V_M (piano_player))(V_M (john))



Defining the right model



Adjective classes & Meaning postulates

Some valid inferences in natural language:

- Bill is a poor piano player \models Bill is a piano player
- Bill is a blond piano player \models Bill is blond
- Bill is a former professor \models Bill isn't a professor

These entailments do not hold in type theory. Why?

Meaning postulates: restrictions on models which constrain the possible meaning of certain words

Adjective classes & Meaning postulates (cont.)

Restrictive or Subsective adjectives ("poor")

- [[poor N]] ⊆ [[N]]
- Meaning postulate: $\forall G \forall x (poor(G)(x) \rightarrow G(x))$

Intersective adjectives ("blond")

- $\llbracket blond N \rrbracket = \llbracket blond \rrbracket \cap \llbracket N \rrbracket$
- Meaning postlate: $\forall G \forall x (blond(G)(x) \rightarrow (blond^*(x) \land G(x)))$
- NB: blond $\in WE_{\langle\langle e, t \rangle, \langle e, t \rangle\rangle} \neq blond^* \in WE_{\langle e, t \rangle}$

Privative adjectives ("former")

- \llbracket former N $\rrbracket \cap \llbracket$ N $\rrbracket = \varnothing$
- Meaning postlate: $\forall G \forall x (former(G)(x) \rightarrow \neg G(x))$

Background reading material

- Gamut: Logic, Language, and Meaning Vol II
 - Chapter 4 (minus 4.3)