Semantic Theory Lecture 2 - Predicate Logic

Noortje Venhuizen

Universität des Saarlandes

Summer 2016

Information about this course

Contact information:

- Course website: http://noortjejoost.github.io/teaching/ST16/index.html
- My email: noortjev@coli.uni-saarland.de

Recommended literature:

- Gamut: Logic, Language, and Meaning, Vol. 2, University of Chicago Press, 1991
- Kamp and Reyle: From Discourse to Logic, Kluwer, 1993

Final exam:

- Exam date to be confirmed

Part I:
 Sentence semantics

Sentence meaning

Truth-conditional semantics:

to know the meaning of a (declarative) sentence is to know what the world would have to be like for the sentence to be true:

Sentence meaning = truth-conditions

Indirect interpretation:

1. Translate sentences into logical formulas:

Every student works $\mapsto \forall x$ (student' $(x) \rightarrow$ work' $\left.^{\prime}(x)\right)$
2. Interpret these formulas in a logical model:
$\llbracket \forall x\left(\right.$ student' $(x) \rightarrow$ work' $\left.^{\prime}(x)\right) \rrbracket^{M, g}=1$ iff $V_{M}($ student' $) \subseteq V_{M}\left(\right.$ work' $\left.^{\prime}\right)$

Step 1: Translation

Limits of propositional logic: propositions with internal structure
Every man is mortal.
Socrates is a man.
Therefore, Socrates is mortal.

Solution: first-order predicate logic

predicates are expressions
that contain arguments
(that can be quantified over)

Predicate Logic: Vocabulary

Non-logical expressions:
Individual constants: CON
n-place relation constants: PRED ${ }^{n}$, for all $n \geq 0$
Infinite set of individual variables: VAR

Logical connectives: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow, \forall, \exists$

Brackets: (,)

Predicate Logic: Syntax

Terms: TERM = VAR $\cup C O N$

Atomic formulas:

- $R\left(t_{1}, \ldots, t_{n}\right) \quad$ for $R \in \operatorname{PRED}^{n}$ and $t_{1}, \ldots, t_{n} \in \operatorname{TERM}$
- $t_{1}=t_{2}$ for $t_{1}, t_{2} \in$ TERM

Well-formed formula (WFF):

1. All atomic formulas are WFFs;
2. If ϕ and ψ are WFFs, then $\neg \phi,(\phi \wedge \psi),(\phi \vee \psi),(\phi \rightarrow \psi),(\phi \leftrightarrow \psi)$ are WFFs;
3. If $x \in V A R$, and Φ is a WFF, then $\forall x \phi$ and $\exists x \Phi$ are WFFs;
4. Nothing else is a WFF.

Variable binding

- Given a quantified formula $\forall \times \varnothing$ (or $\exists \times \phi$), we say that ϕ (and every part of ϕ) is in the scope of the quantifier $\forall x$ (or $\exists x$);
- A variable x is bound in formula ψ if x occurs in the scope of $\forall x$ or $\exists x$ in ψ;
- If a variable is not bound in formula ψ, it occurs free in ψ;
- A closed formula is a formula without free variables.

Formalizing Natural Language

1. Bill loves Mary.
2. Bill reads an interesting book.
3. Every student reads a book.
4. Bill passed every exam.
5. Not every student answered every question.
6. Only Mary answered every question.
7. Mary is annoyed when someone is noisy.
8. Although nobody makes noise, Mary is annoyed.

Step 2: Interpretation

Logical models are simplified representations of the state of affairs in the world

John is a student : for any M , \llbracket student'(john) $\rrbracket^{\mathrm{M}}=1$ iff $\mathrm{V}_{\mathrm{M}}(\mathrm{john}) \in \mathrm{V}_{\mathrm{M}}\left(\right.$ student $\left.{ }^{\prime}\right)$
$\mathrm{V}_{\mathrm{M} 1}($ john $) \in \mathrm{V}_{\mathrm{M} 1}\left(\right.$ student') therefore: \llbracket student'(john) $\rrbracket^{\mathrm{M} 1}=1$
$\mathrm{V}_{\mathrm{M} 2}(j o \mathrm{hn}) \notin \mathrm{V}_{\mathrm{M} 2}\left(\right.$ student') therefore: \llbracket student'(john) $\rrbracket^{\mathrm{M} 2}=0$

A formal description of a model

Model $\mathrm{M}=\left\langle\mathrm{U}_{\mathrm{M}}, \mathrm{V}_{\mathrm{M}}\right\rangle$, with:

- U_{M} is the universe of M and
- V_{M} is an interpretation function
$U_{M}=\{e 1, e 2, e 3, e 4, e 5\}$ universe
$\mathrm{V}_{\mathrm{M}}($ john $)=\mathrm{e} 1$

constants

$V_{M}($ bill $)=e 5$
$\mathrm{V}_{\mathrm{M}}($ student $)=\{\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 4\}$
$V_{\mathrm{M}}($ drink_coffee $)=\{\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3, \mathrm{e} 4\}$
$\mathrm{V}_{\mathrm{M}}($ love $)=\{\langle\mathrm{e} 1, \mathrm{e} 2\rangle,\langle\mathrm{e} 2, \mathrm{e} 1\rangle,\langle\mathrm{e} 4, \mathrm{e} 5\rangle\}$

1-place predicates
2-place predicates

Interpretation in the model

V_{M} is an interpretation function assigning individuals $\left(\epsilon U_{M}\right)$ to individual constants and n-ary relations over U_{M} to n-place predicate symbols:

- $\mathrm{V}_{\mathrm{M}}(\mathrm{c}) \in \mathrm{U}_{\mathrm{M}} \quad$ if c is an individual constant
- $\mathrm{V}_{\mathrm{M}}(\mathrm{P}) \subseteq \mathrm{U}_{\mathrm{M}}{ }^{n} \quad$ if P is an n-place predicate symbol
- $\mathrm{V}_{\mathrm{M}}(\mathrm{P}) \in\{0,1\} \quad$ if P is an 0 -place predicate symbol

Variables and quantifiers

How to interpret the following sentence in our model M :

- Someone is sad $\mapsto \exists x\left(\operatorname{sad}^{\prime}(x)\right)$ Intuition:
- find an entity in the universe for which
 the statement holds: $\mathrm{V}_{\mathrm{M}}\left(\right.$ sad' $\left.^{\prime}\right)=\mathrm{e}_{4}$
- replace x by e_{4} in order to make $\exists x\left(\operatorname{sad}^{\prime}(x)\right)$ true

More formally:

- Interpret sentence relative to assignment function g: i.e., $\llbracket \exists x\left(\operatorname{sad}^{\prime}(x)\right) \rrbracket^{M, g}$, such that $g(x)=e_{4}$; this can be generalised to any g^{\prime} as follows: $g^{\prime}\left[x / e_{4}\right](x)=e_{4}$

Assignment functions

An assignment function g assigns values to all variables

- $\mathrm{g}:: \mathrm{VAR} \rightarrow \mathrm{U}_{\mathrm{M}}$
- We write $g[x / d]$ for the assignment function g ' that assigns d to x and assigns the same values as g to all other variables.

	x	y	z	u	\ldots
g	e_{1}	e_{2}	e_{3}	e_{4}	\ldots
$g\left[y / e_{1}\right]$	e_{1}	e_{1}	e_{3}	e_{4}	\ldots
$g\left[x / e_{1}\right]$	e_{1}	e_{2}	e_{3}	e_{4}	\ldots
$g[y / g(z)]$	e_{1}	e_{3}	e_{3}	e_{4}	\ldots
$g\left[y / e_{1}\right]\left[u / e_{1}\right]$	e_{1}	e_{1}	e_{3}	e_{1}	\ldots
$g\left[y / e_{1}\right]\left[y / e_{2}\right]$	e_{1}	e_{2}	e_{3}	e_{4}	\ldots

Interpretation of terms

Interpretation of terms with respect to a model M and a variable assignment g :

$$
\begin{gathered}
\llbracket a \rrbracket^{M, g}=\quad V_{M}(a) \quad \text { if } a \text { is an individual constant } \\
g(a) \quad \text { if } a \text { is a variable }
\end{gathered}
$$

Interpretation of formulas

Interpretation of formulas with respect to a model M and variable assignment g :
$\cdot \llbracket R\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{M, g}=1 \quad$ iff $\quad\left\langle\llbracket t_{1} \rrbracket^{M, g}, \ldots, \llbracket t_{n} \rrbracket^{M, g}\right\rangle \in V_{M}(R)$

- $\llbracket \mathrm{t}_{1}=\mathrm{t}_{2} \rrbracket^{\mathrm{M}, \mathrm{g}}=1 \quad$ iff $\quad \llbracket \mathrm{t}_{1} \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \mathrm{t}_{2} \rrbracket^{\mathrm{M}, \mathrm{g}}$
- $\llbracket \neg \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=1 \quad$ iff $\llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=0$
- $\llbracket \phi \wedge \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
iff
- $\llbracket \phi \vee \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
iff $\llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ or $\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
- $\llbracket \phi \rightarrow \psi \rrbracket^{M, g}=1$
iff $\llbracket \phi \rrbracket^{M, g}=0$ or $\llbracket \psi \rrbracket^{M, g}=1$
- $\llbracket \phi \leftrightarrow \psi \rrbracket^{M, g}=1$
iff $\llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}$
- $\llbracket \exists x \not \rrbracket^{M, g}=1$
iff \quad there is a $d \in U_{M}$ such that $\llbracket \phi \rrbracket^{M, g[x / d]}=1$
- $\llbracket \forall X \phi \rrbracket^{M, g}=1$
iff \quad for all $d \in U_{M}, \llbracket \phi \rrbracket^{M, g[x / d]}=1$

Truth, Validity and Entailment

A formula ϕ is true in a model M iff:
$\llbracket \phi \rrbracket^{M, g}=1$ for every variable assignment g
A formula ϕ is valid $(\models \phi)$ iff:
ϕ is true in all models

A formula ϕ is satisfiable iff:
there is at least one model M such that ϕ is true in model M
A set of formulas Γ is (simultaneously) satisfiable iff: there is a model M such that every formula in Γ is true in M ("M satisfies Г," or "M is a model of Г")
Γ entails a formula $\phi(\Gamma \vDash \phi)$ iff:
ϕ is true in every model structure that satisfies Γ

Logical Equivalence

Formula ϕ is logically equivalent to formula $\psi(\phi \Leftrightarrow \psi)$, iff:
$\cdot \llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}$ for all models M and variable assignments g .

For all closed formulas ϕ and ψ, the following assertions are equivalent:

1. $\phi \Leftrightarrow \psi \quad$ (logical equivalence)
2. $\phi \vDash \psi$ and $\psi \vDash \phi \quad$ (mutual entailment)
3. $\vDash \phi \leftrightarrow \psi \quad$ (validity of "material equivalence")

Logical Equivalence Theorems: Propositions

1) $\neg \neg \Phi \Leftrightarrow \Phi$
2) $\phi \wedge \psi \Leftrightarrow \psi \wedge \phi$
3) $\phi \vee \psi \Leftrightarrow \psi \vee \phi$
4) $\phi \wedge(\psi \vee X) \Leftrightarrow(\phi \wedge \psi) \vee(\phi \wedge X)$
5) $\quad \phi \vee(\psi \wedge \chi) \Leftrightarrow(\phi \vee \psi) \wedge(\phi \vee X)$
6) $\quad \neg(\phi \wedge \psi) \Leftrightarrow \neg \phi \vee \neg \psi$
7) $\quad \neg(\phi \vee \psi) \Leftrightarrow \neg \phi \wedge \neg \psi$
8) $\phi \rightarrow \neg \psi \Leftrightarrow \psi \rightarrow \neg \phi$
9) $\quad \phi \rightarrow \psi \Leftrightarrow \neg \phi \vee \psi$
10) $\neg(\phi \rightarrow \psi) \Leftrightarrow \Phi \wedge \neg \psi$

Double negation
Commutativity of \wedge, \vee

Distributivity of \wedge and \vee
de Morgan's Laws

Law of Contraposition

Logical Equivalence Theorems: Quantifiers

11) $\neg \forall \mathrm{x} \phi \Leftrightarrow \exists \mathrm{x} \neg \Phi$
12) $\neg \exists x \emptyset \Leftrightarrow \forall x \neg \phi$
13) $\forall x(\phi \wedge \Psi) \Leftrightarrow \forall x \phi \wedge \forall x \Psi$
14) $\exists x(\phi \vee \Psi) \Leftrightarrow \exists x \varnothing \vee \exists x \Psi$
15) $\forall x \forall y \phi \Leftrightarrow \forall y \forall x \phi$
16) $\exists х \exists у \varnothing \Leftrightarrow \exists у \exists х Ф$
17) $\exists x \forall y \varnothing \Rightarrow \forall y \exists x \varnothing$

Quantifier negation

Quantifier distribution

Quantifier Swap
... but not vice versa!

Logical Equivalence Theorems: Quantifiers (cont.)

The following equivalences are valid theorems of FOL, provided that x does not occur free in ϕ :

Here, $\phi[x / y]$ is the result of replacing all free occurrences of y in ϕ with x
18) $\exists y \varnothing \Leftrightarrow \exists x Ф[x / y]$
19) $\forall y \phi \Leftrightarrow \exists x \phi[x / y]$
20) $\phi \wedge \forall x \Psi \Leftrightarrow \forall x(\phi \wedge \Psi)$
21) $\phi \wedge \exists x \Psi \Leftrightarrow \exists x(\phi \wedge \Psi)$
22) $\Phi \vee \forall x \Psi \Leftrightarrow \forall x(\Phi \vee \Psi)$
23) $\phi \vee \exists x \Psi \Leftrightarrow \exists x(\phi \vee \Psi)$
24) $\phi \rightarrow \forall x \Psi \Leftrightarrow \forall x(\phi \rightarrow \Psi)$
25) $\phi \rightarrow \exists \mathrm{x} \Psi \Leftrightarrow \exists \mathrm{x}(\phi \rightarrow \Psi)$
26) $\exists x \Psi \rightarrow \phi \Leftrightarrow \forall x(\Psi \rightarrow \phi)$
27) $\forall x \Psi \rightarrow \phi \Leftrightarrow \exists x(\Psi \rightarrow \phi)$

Equivalence Transformations

(1) $\neg \exists x \forall y(P y \rightarrow R x y) \quad$ "Nobody masters every problem"
(2) $\forall x \exists y(P y \wedge \neg R x y) \quad$ "Everybody fails to master some problem"

We show the equivalence of (1) and (2) as follows:

$$
\begin{aligned}
\neg \exists x \forall y(P y \rightarrow R x y) & \Leftrightarrow \forall x \neg \forall y(P y \rightarrow R x y) & (\neg \exists x \phi \Leftrightarrow \forall x \neg \phi) \\
& \Leftrightarrow \forall x \exists y \neg(P y \rightarrow R x y) & (\neg \forall x \phi \Leftrightarrow \exists x \neg \phi) \\
& \Leftrightarrow \forall x \exists y(P y \wedge \neg R x y) & (\neg(\phi \rightarrow \psi) \Leftrightarrow \phi \wedge \neg \psi)
\end{aligned}
$$

Background reading material

- Gamut: Logic, Language, and Meaning Vol I/II - Chapter 2
- For a more basic introduction, see: http://www.logicinaction.org - Chapter 4

