Semantic Theory Lecture 14: More Topics in Semantic Theory

Manfred Pinkal FR 4.7 Computational Linguistics and Phonetics

Summer 2014

DRS: 2nd Extension

A discourse representation structure (DRS) K is a pair

- (U_{K}, C_{K}) , where
- U_{κ} is a set of discourse referents
- C_K is a set of conditions

(Irreducible) conditions:

- **R**(u₁, ..., u_n) **R** n-place relation, $u_i \in U_K$
- u = v $u, v \in U_K$
- u = a $u \in U_K$, a is a proper name
- $K_1 \Rightarrow K_2$ $K_1 \text{ and } K_2 \text{ DRSs}$
- $\blacksquare \neg K_1 \qquad \qquad K_1 \text{ DRS}$

Verifying Embedding: 2nd Extension

An embedding f of K into M verifies K in M: $f \models_M K$

iff f verifies every condition $\alpha \in C_{K}$.

f verifies condition α in M (f $\models_M \alpha$):

(i) $f \models_M R(x_1, ..., x_n) \text{ iff } \langle f(x_1), ..., f(x_n) \rangle \in V_M(R)$

(ii)
$$f \mid_{=_M} x = a$$
 iff $f(x) = V_M(a)$

(iii)
$$f \mid_{=_M} x = y$$
 iff $f(x) = f(y)$

- (iv) $f \models M K1 \Rightarrow K2$ iff for all $g \supseteq_{U_{K1}} f$ such that $g \models_M K_1$, there is a $h \supseteq_{U_{K2}} g$ such that $h \models_M K_2$
- (v) $\mathbf{f} \models_{\mathbf{M}} \mathbf{K_1 v K_2}$ iff there is a $g_1 \supseteq_{UK1} \mathbf{f}$ such that $g_1 \models_{\mathbf{M}} \mathbf{K_1}$ or there is a $g_2 \supseteq_{UK2} \mathbf{f}$ such that $g_2 \models_{\mathbf{M}} \mathbf{K_2}$

(vi) $\mathbf{f} \models_{\mathbf{M}} \neg \mathbf{K}_{1}$ iff there is no $g \supseteq_{UK1} \mathbf{f}$ such that $g \models_{\mathbf{M}} \mathbf{K}_{1}$

Translation from DRT to FOL

Translation function T is recursively defined on DRS structure:

- Translation of DRSes:
 - $T((\{u_1, ..., u_n\}, \{c_1, ..., c_n\})) = \exists u_1 ... \exists u_n[T(c_1) \land ... \land T(c_n)]$
- Translation of conditions:
 - T(c) = c , for atomic conditions c
 - $T(\neg K_1) = \neg T(K_1)$
 - $T(K_1 v K_2) = T(K_1) v T(K_2)$
 - $T(K_1 \Rightarrow K_2) = \forall u_1 \dots \forall u_n [(T(c_1) \land \dots \land T(c_n)) \rightarrow T(K_2)],$ for $K_1 = \langle \{u_1, \dots, u_n\}, \{c_1, \dots, c_n\} \rangle$
- For every closed DRS K and every appropriate model M:
 K is true in M iff T(K) is true in M.

Accessibility of Discourse Referents

Mary knows a professor. If she owns a book, he reads it. It fascinates him.

Inaccesible Discourse Referents: Examples

- (1) If a professor owns a book, he reads it. It has 300 pages.
- (2) It is not the case that a professor owns a book. He reads it.
- (3) Every professor owns a book. He reads it.
- (4) If every professor owns a book, he reads it.
- (5) Peter owns a book, or Mary reads it.
- (6) Peter reads a book, or Mary reads a newspaper article. It is interesting.

Accesible Discourse Referents

- Discourse referents are accessible for anaphoric reference, if they are located
 - in the same local DRS
 - in a super-ordinate DRS
 - on the top level of an antecedent DRS of a duplex condition, if the pronoun occurs in the consequent DRS.

Formal Definition of Accessibility

• A DRS K_1 is a sub-DRS of a DRS K: $K_1 \leq K$

iff K₁ occurs in one of the conditions of K.

- Let K, K₁, K₂ be DRSs such that K₁, K₂ \leq K, x \in U_{K1}, $\gamma \in$ C_{K2}. x is **accessible** from γ in K iff
 - $K_2 \leq K_1$ or
 - there are K_3 , $K_4 \leq K$ such that $K_1 \Rightarrow K_3 \in C_{K4}$ and $K_2 \leq K_3$

Revised Construction Rule for Pronouns

Triggering Configuration:

- Let K* be the main DRS that contains K
- α a reducible condition in DRS K, containing [s [NP β] [VP γ]] or [VP [V γ] [NP β]] as substructure
- \blacksquare β a personal pronoun.

Action:

- Add a new DR x to U_{K} .
- Replace β in α by x.
- Select an appropriate DR y that is accessible from α in K*, and add x = y to CK.

Revised Construction Rule for Proper Names

Triggering Configuration:

- Let K* be the main DRS that containing K
- α a reducible condition in DRS K, containing [s [NP β] [VP γ]] or [VP [V γ] [NP β]] as substructure.
- β a proper name

Action:

- Add a new DR x to U_{K^*} .
- Replace β in α by x.
- Add $x = \beta$ to C_{K^*} .

Accessibility and Truth-Conditional Semantics

(1) There is a book that John doesn't own. He wants to buy it.

(2) John does not own every book. ?He wants to buy it.

(3) One of the ten balls is not in the bag. It must be under the sofa.

(4) Nine of the ten balls are in the bag. ? It must be under the sofa.

A Representational Theory of Meaning

- The different discourse-semantic status of the alternative sentence pairs is not predictable through the (identical) truth conditions of its component sentences.
- This means: Natural language is not compositional on truth conditions. Discourse structure plays an essential and independent role.
- DRT describes the impact of structural information on text interpretation. It is therefore called a representational theory of meaning.

Events and Tense in DRT

Mary kicked Bill.

х, у, е	
x = Mary y = Bill kick(e, x, y) $e < e_u$	

Event Anaphora

Mary kicked Bill. John has seen it.

```
x, y, e, z, e', e''
x = Mary
y = Bill
kick(e, x, y)
e < e_u
z = John
see (e', z, e'')
e'' = e
e' < e_u
```

Simple past is anaphoric

Mary kicked Bill. He cried.

x, y, e, z, e' x = Mary y = Bill kick(e, x, y) $e < e_u$ z = y cry (e', z) $e' < e_u$ e' > e

DRT and **Plurals**

 Bill and Mary presented a paper. X, x, y, z, e x = Billy = Mary $X = x \otimes y$ paper(z) present(e, X, y) $e < e_u$

Plural Anaphora

 Bill and Mary presented a paper. They got an A. X, x, y, z, e, Y, e' x = Billy = Mary $X = x \otimes y$ paper(z) present(e, X, y) $e < e_u$ Y = Xget-an-A(e', Y) $e' < e_{11}$ e' > e

Plural Anaphora

The students presented a paper. Three of them got an A.

```
X, y, e, Y, Z, e'
students(X)
paper(y)
present(e, X, y)
e < e_{II}
Y = X
Z \triangleleft_i Y
card(Y) = 3
get-an-A(e', Y)
e' < e_{11}
e' > e
```

Combining DRT and Type Theory

- Use λ-abstraction and reduction as we did before, but:
- Assume that the target representations which we want to arrive at are not First-Order Logic formulas, but DRSs.
- The result is called **λ-DRT**.

Lambda-DRSes

- An expression consists of a lambda prefix and a partially instantiated DRS.
- every student $\Rightarrow \lambda G$

z
student(z)
$$\Rightarrow$$
 G(x)

- Alternative notation:
 - $\lambda G [\emptyset | [z | student(z)] \Rightarrow G(z)]$
- works $\Rightarrow \lambda x [\emptyset | work(x)]$

λ -DRT: β -reduction

Every student works

- $\Rightarrow \lambda G[\emptyset | [z | student(z)] \Rightarrow G(z)]](\lambda x [\emptyset | work(x)])$
- $\Leftrightarrow [\emptyset | [z | student(z)] \Rightarrow (\lambda x [\emptyset | work(x)])(z)]$
- \Leftrightarrow [\emptyset | [z | student(z)] \Rightarrow [\emptyset | work(z)]]

Merge

- The "merge" operation on DRSs combines two DRSs (sets of conditions and discourse referents, respectively).
- Let $K_1 = [U_1 | C_1]$ and $K_2 = [U_2 | C_2]$.
- Merge: K_1 ; $K_2 \Rightarrow [U_1 \cup U_2 | C_1 \cup C_2]$
 - given that no discourse referent $u \in U_2$ occurs free in a condition $\gamma \in C_1$.

An Example

A student works. She is successful.

- *a student* $\Rightarrow \lambda G ([z | student(z)]; G(z))$
- works $\Rightarrow \lambda x [\emptyset | work(x)]$
- A student works
 - $\Rightarrow \lambda G ([z | student(z)]; G(z))(\lambda x[\emptyset | work(x)])$
 - \Leftrightarrow [z | student(z)]; λx [\emptyset | work(x)](z)
 - \Leftrightarrow [z | student(z)]; [\emptyset | work(z)]
 - \Leftrightarrow [z | student(z), work(z)]

An Example

A student works. She is successful.

- AK λ K'(K;K')([z | student(z), work(z)])([y |y=z, successful(z)])
- $\Leftrightarrow \lambda K'([z | student(z), work(z)]; K')([y | y=z, successful(z)])$
- \Leftrightarrow [z | student(z), work(z)]; [y |y=z, successful(z)]
- \Leftrightarrow [z, y | student(z), work(z), y=z, successful(z)]

Caution: Variable Capturing!

- λK'([z | student(z), work(z)]; K')([|successful(z)])
 ⇔ [z | student(z), work(z)]; [|successful(z)]
 ⇔ [z | student(z), work(z), successful(z)]
- Via the interaction of β-reduction and DRS-binding, discourse referents are captured.
- We somehow have to encode the potential for capturing discourse referents into the denotation of a λ-DRS. Possible, but tricky.

Presupposition

- The sun is shining
- The king of France is bald
- The student is working
- Definite NPs refer to familiar reference objects, i.e., to reference objects that are available in the context of utterance.
- The descriptive part of a definite noun phrase enables the addressee of an utterance to identify the referent intended by the speaker.
- Strictly speaking, the description does not semantically contribute to the proposition, which the speaker claims to be true (the assertion).
- However, for the utterance to be true (and to make sense at all), there must be a (salient) referent available that satisfies the description. This requirement is called a presupposition.

Presupposition

- The sun is shining
- P: There is a sun / A: It is shining
- The student is working
- P: There is a student / A: He/she is working
- Assertion and presupposition are different layers of meaning information that behave different in several respects.

Projection vs. Composition

- Bill read the paper
- P: There is a paper / A: Bill read it
- Bill didn't read the paper
- P: There is a paper / A: Bill didn't read it

Compare with:

- Bill read a paper
- Bill didn't read a paper
- Presupposition survives negation

Projection vs. Composition

- Presuppositions also survive embedding under other operators:
- Bill will probably read the paper.
- Mary believes that Bill read the paper.
- Bill must read the paper, or he will fail the exam.
- The assertion of a complex sentence is computed by function application.
- The presuppositions are "projected": The presuppositions of a complex sentence are the set of presuppositions of its parts.

Entailment Properties: Presupposition Cancellation

- Did you read the paper I gave you?
- No, I haven't read the paper you gave me
- Actually, you didn't give me any paper.
- Bill's children must be happy to have him as father
- ... if Bill has any children.
- Presuppositions can be cancelled by explicitly denying or questioning their truth.

The king of Samoa is visiting

- **The movie I saw yesterday night** was interesting.
- If a presupposition is not is not satisfied in the context of utterance, it may be "accommodated" by the addressee.
- In this way, presuppositions can make a proper contribution to utterance meaning.

Preupposition in DRT

- Two-step DRS Construction:
- Build Proto-DRSes containing unresolved representations of definite NPs ("α-conditions").
- Resolve the α -conditions to obtain (standard) DRSes.
- Example: A student works. she is successful.

ху
student(x)
work(x)
y = x
successful(y)

Presupposition in DRT: Accommodation

x y x = Bill movie(y) see(x, y) interesting(y)

More "Presupposition Triggers"

Factive verbs:

- Mary regrets that John is married.
- P: John is married/ A: Mary regrets it
- Aspectual verbs:
 - John has stopped smoking
 - P: John used to smoke / A: John stopped doing it
- It-clefts:
 - It was John who ate the cake
 - P: Somebody ate the cake / A: John did it.
- Sentence particles (*only, even*):
 - Only John found a solution
 - P: John found a solution/ A: Nobody else did.

Information Structure

- Who ate the cake?
- Bill a⇔te the cake.
- What did Bill eat?
- Bill ate the cake
- Utterances of a sentence in general can be partitioned into a presupposed part (the "background"), and an asserted part (the "focus").
- This focus-background articulation establishes (part of) the information structure of an utterance, which is orthogonal to the syntactic structure.

Literature

- Tense and temporal anaphora in DRT:
 - H. Kamp and U. Reyle, From Discourse to Logic, 1993
- Plurals in DRT:
 - H. Kamp and U. Reyle, From Discourse to Logic, 1993
- Lambda-DRT:
 - J. Bos et al, A compositional DRS-based formalism for NLP-applications. IWCS 1994
- Groningen Meaning Bank: A large text corpus annotated with DRT representations: gmb.let.rug.nl/
- Presuppositions:
 - S. Levinson, Pragmatics, CUP 1983
- Presuppositions in DRT:
 - R. van der Sandt: Presupposition Projection as Anaphora Resolution