
Semantic Theory
Lecture 9: Quantifier Storage/

Intensionality

Manfred Pinkal
FR 4.7 Computational Linguistics and Phonetics

Summer 2014

2

Every student reads a book

3

Problem: Nested noun phrases

■  Every researcher of a company works

4

Storage, Preliminary Version

■  Storage: ⟨Q, Δ⟩ ⇒S ⟨λP.P(xi), Δ ∪ {[Q]i}⟩
■  if A is an noun phrase with a semantic value ⟨Q, Δ⟩, then select

a new index i∈N and add ⟨λP.P(xi), Δ ∪ {[Q]i}⟩ as a semantic
value for A.

5

■  (8) ⟨λF(F(x1)), {[λG∃x(comp(x) ∧ G(x))]1}⟩

■  (4) ⟨λx(res(x) ∧ of(x1)(x)), {[…]1}⟩

■  (2) ⟨λG∀y((res(y) ∧ of(x1)(y)) → G(y)), {[…]1}⟩

■  ⇒S ⟨λF(F(x2)),{[λG∀y((res(y) ∧ of(x1)(y)) → G(y))]2, […]1}⟩

■  (1) ⟨work(x2), {[…]2, […]1}⟩

Nested noun phrases

6

Retrieval, Preliminary Version

■  Retrieval: ⟨α, Δ ∪ {[Q]i}⟩ ⇒R ⟨Q(λxi α), Δ⟩
■  if A is any sentence with semantic value ⟨α, Δ⟩, and [Q]i ∈ Δ,

then ⟨Q(λxi α), Δ-{[Q]i }⟩ can be added as a semantic value for
A.

7

Nested noun phrases

■  ⟨work(x2), {[Q2 = λG∀y((res(y) ∧ of(x1)(y)) → G(y))]2,

 [Q1 = λG∃x(comp(x) ∧ G(x))]1}⟩

■  ⇒R ⟨Q1(λx1.work(x2)), {[Q2]2}⟩

■  ⇔β ⟨∃x(comp(x) ∧ work(x2)), {[Q2]2}⟩

■  ⇒R ⟨Q2(λx2.∃x(comp(x) ∧ work(x2))), ∅⟩

■  ⇔β ⟨∀y((res(y) ∧ of(x1)(y)) → ∃x(comp(x) ∧ work(y))), ∅⟩

■  Variable x1 occurs free.

8

Cooper Storage, Revised

■  Storage: ⟨Q, Δ⟩ ⇒S ⟨λP.P(xi), {⟨Q, Δ⟩i}⟩
■  If A is a noun phrase whose semantic value is ⟨Q, Δ⟩, i∈N a

new index, then ⟨λP.P(xi), {⟨Q, Δ⟩i}) can be added as a
semantic value for A.

■  Retrieval: ⟨α, Δ ∪ {⟨Q, Γ⟩i}⟩ ⇒ ⟨Q(λxi α), Δ ∪ Γ⟩
■  If A is a sentence with semantic value ⟨α, Δ⟩, {⟨Q, Γ⟩i}∈ Δ,

then ⟨Q(λxi.α), Δ\{⟨Q, Γ⟩i} ∪ Γ⟩ can be added as a semantic
value for A.

■  Note: Deeper embedded quantifiers are not
accessible for retrieval.

9

Every reasearcher of a …

10

Every reasearcher of a …

■  (8) ⟨a-company’, ∅⟩

 ⇒S ⟨λF.F(x1), {⟨a-company', ∅⟩1}⟩

■  (4) ⟨λy(res’(y) ∧ of’(x1)(y)), {⟨a-company', ∅⟩1}⟩

■  (2) ⟨λG∀z((res’(z) ∧ of’(x1)(z)) → G(z)), {⟨a-company', ∅⟩1}⟩

 ⇒S ⟨λF.F(x2), {⟨every-researcher-of-x1’, {⟨a-company', ∅⟩1}⟩2}⟩

■  (9) ⟨work’, ∅⟩

■  (1) ⟨work(x2), {⟨every-researcher-of-x1’, {⟨a-company', ∅⟩1}⟩2}⟩

11

Every reasearcher of a …
■  ⟨work(x2), {⟨every-researcher-of-x1’, {⟨a-company', ∅⟩1}⟩2}⟩

 ⇒R ⟨every-researcher-of-x1’(λx2.work(x2)), {⟨a-company', ∅⟩1}⟩

 ⇔β ⟨∀z((res’(z) ∧ of’(x1)(z)) → work’(z)), {⟨a-company', ∅⟩1}⟩

 ⇒R ⟨a-company' (λx1.∀z((res’(z) ∧ of’(x1)(z)) → work’(z))), ∅⟩

■  ⇔β ⟨∃x(comp’(x) ∧ ∀z((res’(z) ∧ of’(x)(z)) → work’(z))), ∅⟩

12

Every researcher of a …

■  ⟨work(x2), {⟨λG∀z(…), {⟨λG∃x(…), ∅⟩1}⟩2}⟩

■  ⇒*R ∃x(comp(x) ∧ ∀z((res(z) ∧ of(x)(z)) → work(z)))

■  No other reading can be derived via retrieval!
■  But how do we derive the “direct scope” reading?
■  Answer: don’t store, apply quantifiers “in situ”.

13

Some restrictions on scope

■  Some inhabitant of every midwestern city participated
■  two readings: (a) direct scope and (b) every ⊲ some

■  Someone who inhabits every midwestern city participated
■  only the direct scope reading available

■  You will inherit a fortune if every man dies
■  “every man” cannot take scope over complete sentence

■  Finite clauses can create “scope islands”
■  Quantifiers must take scope within such clauses

Intensionality

■  Bill expects to pass

■  It is possible that Bill will pass

■  Yesterday, it rained

■  In general, sentence operators (type <t,t>) need meaning
representations as arguments that are richer than first-
order denotations. We distinguish for a sentence

■  its extension: the truth value

■  its intension: called the “proposition”

■  Functor expression requiring intensions as semantic
arguments are called “intensional“.

14

Intensionality

■  John is a poor bagpiper

■  John is a poor speaker of Gaelic

In the case of predicates,

■  extensions are sets of entities

■  intensions are called “properties”

■  John seeks a unicorn

■  John seeks an even prime number greater 2.
15

Possible-World Semantics

■  A model structure for a type theoretic language consists
of a pair M = ⟨U, W, V⟩, where
■  U is a non-empty domain of individuals
■  W is a non-empty set of possible worlds, disjoint from U
■  V is an interpretation function, which assigns to every α ∈

CONτ an element of Dτ.

■  The domain of possible denotations for every type τ:
Dτ is given by:
■  De = U
■  Dt = {0, 1}W
■  D⟨σ, τ⟩ is the set of all functions from Dσ to Dτ

16

Adding Time

■  A model structure for a type theoretic language consists
of a pair M = ⟨U, W, T, <, V⟩, where
■  U, W and T are non-empty, pairwise disjoint sets of individuals,

possible worlds, and time points, respectively
■  < ⊆ T×T is a strict ordering relation
■  V is an interpretation function, which assigns to every α ∈

CONτ an element of Dτ.

■  The domain of possible denotations for every type τ:
Dτ is given by:
■  De = U
■  Dt = {0, 1}W×T
■  D⟨σ, τ⟩ is the set of all functions from Dσ to Dτ

17

