Semantic Theory Lecture 9: Quantifier Storage/ Intensionality

Manfred Pinkal FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Every student reads a book

Problem: Nested noun phrases

Every researcher of a company works

Storage, Preliminary Version

Storage: $(Q, \Delta) \Rightarrow_S (\lambda P.P(\mathbf{x}_i), \Delta \cup \{[Q]_i\})$

if A is an noun phrase with a semantic value (Q, Δ) , then select a new index i \in N and add $(\lambda P.P(x_i), \Delta \cup \{[Q]_i\})$ as a semantic value for A.

Nested noun phrases

- (8) (λF(F(x₁)), {[λG∃x(comp(x) ∧ G(x))]₁})
- (4) $(\lambda x(res(x) \land of(x_1)(x)), \{[...]_1\})$
- (2) $\langle \lambda G \forall y((res(y) \land of(\mathbf{x_1})(y)) \rightarrow G(y)), \{[...]_1\} \rangle$
- $\Rightarrow_{S}(\lambda F(F(\mathbf{x_{2}})), \{[\lambda G \forall y((res(y) \land of(\mathbf{x_{1}})(y)) \rightarrow G(y))]_{2}, [...]_{1}\})$
- (1) (work(x₂), {[...]₂, [...]₁})

Retrieval, Preliminary Version

Retrieval: $\langle \alpha, \Delta \cup \{ [Q]_i \} \rangle \Rightarrow_R \langle Q(\lambda x_i \alpha), \Delta \rangle$

if A is any sentence with semantic value $\langle \alpha, \Delta \rangle$, and $[Q]_i \in \Delta$, then $\langle Q(\lambda x_i \alpha), \Delta - \{[Q]_i \}\rangle$ can be added as a semantic value for A.

Nested noun phrases

- $\operatorname{work}(x_2), \{ [Q_2 = \lambda G \forall y((\operatorname{res}(y) \land \operatorname{of}(x_1)(y)) \rightarrow G(y))]_2, \\ [Q_1 = \lambda G \exists x(\operatorname{comp}(x) \land G(x))]_1 \}$
- $\Rightarrow_{\mathsf{R}} \langle Q_1(\lambda x_1.work(x_2)), \{ [Q_2]_2 \} \rangle$
- ⇔_β (∃x(comp(x) ∧ work(x₂)), {[Q₂]₂})
- ⇒_R (Q₂(λ x₂.∃x(comp(x) ∧ work(x₂))), Ø)
- $\Leftrightarrow_{\beta} \langle \forall y((res(y) \land of(\mathbf{x_1})(y)) \rightarrow \exists x(comp(x) \land work(y))), \emptyset \rangle$

Variable x1 occurs free.

Cooper Storage, Revised

- **Storage:** $(Q, \Delta) \Rightarrow_{S} \langle \lambda P.P(\mathbf{x}_{i}), \{ (Q, \Delta)_{i} \} \rangle$
 - If A is a noun phrase whose semantic value is (Q, Δ), i∈N a new index, then (λP.P(x_i), {(Q, Δ)_i}) can be added as a semantic value for A.
- **Retrieval:** $(\alpha, \Delta \cup \{(Q, \Gamma)_i\}) \Rightarrow \langle Q(\lambda x_i \alpha), \Delta \cup \Gamma \rangle$
 - If A is a sentence with semantic value ⟨α, Δ⟩, {⟨Q, Γ⟩_i}∈ Δ, then ⟨Q(λx_i.α), Δ\{⟨Q, Γ⟩_i} ∪ Γ⟩ can be added as a semantic value for A.

Note: Deeper embedded quantifiers are not accessible for retrieval.

Every reasearcher of a ...

Every reasearcher of a ...

(1) (work(x₂), {(every-researcher-of-x₁', {(a-company', \emptyset)₁})₂})

Every reasearcher of a ...

- (work(x₂), {(every-researcher-of-x₁', {(a-company', \emptyset)₁})₂})
 - $\Rightarrow_{R} \langle every-researcher-of-x_{1}'(\lambda x_{2}.work(x_{2})), \{\langle a-company', \emptyset \rangle_{1}\} \rangle$
 - $\Leftrightarrow_{\beta} \langle \forall z((res'(z) \land of'(x_1)(z)) \rightarrow work'(z)), \{ \langle a\text{-company'}, \emptyset \rangle_1 \} \rangle$
 - \Rightarrow_R (a-company' (λx_1 . $\forall z$ ((res'(z) \land of'(x_1)(z)) \rightarrow work'(z))), \emptyset)
- $\Leftrightarrow_{\beta} (\exists x(comp'(x) \land \forall z((res'(z) \land of'(x)(z)) \rightarrow work'(z))), \emptyset)$

Every researcher of a ...

• $(\text{work}(x_2), \{\langle \lambda G \forall z(...), \{\langle \lambda G \exists x(...), \emptyset \rangle_1 \} \rangle_2 \}$

■ $\Rightarrow^*_R \exists x(comp(x) \land \forall z((res(z) \land of(x)(z)) \rightarrow work(z)))$

- No other reading can be derived via retrieval!
 - But how do we derive the "direct scope" reading?
 - Answer: don't store, apply quantifiers "in situ".

Some restrictions on scope

- Some inhabitant of every midwestern city participated
 - two readings: (a) direct scope and (b) every \triangleleft some
- Someone who inhabits every midwestern city participated
 - only the direct scope reading available
- You will inherit a fortune if every man dies
 - "every man" cannot take scope over complete sentence

Finite clauses can create "scope islands"

Quantifiers must take scope within such clauses

Intensionality

- Bill expects to pass
- It is possible that Bill will pass
- Yesterday, it rained
- In general, sentence operators (type <t,t>) need meaning representations as arguments that are richer than firstorder denotations. We distinguish for a sentence
- its extension: the truth value
- its intension: called the "proposition"
- Functor expression requiring intensions as semantic arguments are called "intensional".

Intensionality

- John is a poor bagpiper
- John is a poor speaker of Gaelic

In the case of predicates,

- extensions are sets of entities
- intensions are called "properties"

John seeks a unicorn

John seeks an even prime number greater 2.

Possible-World Semantics

- A model structure for a type theoretic language consists of a pair M = (U, W, V), where
 - U is a non-empty domain of individuals
 - W is a non-empty set of possible worlds, disjoint from U
 - V is an interpretation function, which assigns to every $\alpha \in CON_{\tau}$ an element of D_{τ} .
- The domain of possible denotations for every type τ:
 D_τ is given by:
 - $\square D_e = U$
 - Dt = $\{0, 1\}^{W}$
 - **D** $_{\sigma, \tau}$ is the set of all functions from D_{σ} to D_{τ}

Adding Time

- A model structure for a type theoretic language consists of a pair M = (U, W, T, <, V), where</p>
 - U, W and T are non-empty, pairwise disjoint sets of individuals, possible worlds, and time points, respectively
 - $< \subseteq T \times T$ is a strict ordering relation
 - V is an interpretation function, which assigns to every $\alpha \in CON_{\tau}$ an element of D_{τ} .
- The domain of possible denotations for every type τ:
 D_τ is given by:
 - $\square D_e = U$
 - **D**_t = $\{0, 1\}^{W \times T}$
 - **D** (σ, τ) is the set of all functions from D_{σ} to D_{τ}