Semantic Theory Lecture 9: Quantifier Storage/ Intensionality

Manfred Pinkal
FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Every student reads a book

Problem: Nested noun phrases

- Every researcher of a company works

Storage, Preliminary Version

- Storage: $\langle\mathrm{Q}, \Delta\rangle \Rightarrow \mathrm{s}\left\langle\lambda \mathrm{P} . \mathrm{P}\left(\mathbf{x}_{\mathbf{i}}\right), \Delta \cup\left\{[\mathrm{Q}]_{\mathbf{i}}\right\}\right\rangle$
- if A is an noun phrase with a semantic value $\langle\mathrm{Q}, \Delta\rangle$, then select a new index $i \in N$ and add $\left\langle\lambda P . P\left(x_{i}\right), \Delta u\{[Q] i\}\right.$) as a semantic value for A.

Nested noun phrases

- (8) $\left\langle\lambda F\left(F\left(x_{1}\right)\right),\left\{[\lambda G \exists x(\operatorname{comp}(x) \wedge G(x))]_{1}\right\}\right\rangle$
- (4) $\left\langle\lambda x\left(\operatorname{res}(x) \wedge\right.\right.$ of $\left.\left.\left(\mathbf{x}_{1}\right)(x)\right),\left\{[. . .]_{1}\right\}\right\rangle$
- (2) $\left\langle\lambda G \forall y\left(\left(\operatorname{res}(y) \wedge o f\left(x_{1}\right)(y)\right) \rightarrow G(y)\right),\left\{[. . .]_{1}\right\}\right\rangle$
- $\Rightarrow s\left(\lambda F\left(F\left(x_{2}\right)\right),\left\{\left[\lambda G \forall y\left(\left(r e s(y) \wedge o f\left(x_{1}\right)(y)\right) \rightarrow G(y)\right)\right]_{2},[\ldots]_{1}\right\}\right)$
- (1) $\left\langle\right.$ work $\left.\left(\mathbf{x}_{2}\right),\left\{[\ldots]_{2},[. .]_{1}\right\}\right\rangle$

Retrieval, Preliminary Version

- Retrieval: $\left\langle\alpha, \Delta \cup\left\{[Q]_{i}\right\}\right\rangle \Rightarrow R\left\langle Q\left(\lambda x_{i} \alpha\right), \Delta\right\rangle$
- if A is any sentence with semantic value $\langle\alpha, \Delta\rangle$, and $[Q]_{i} \in \Delta$, then $\left\langle Q\left(\lambda x_{i} \alpha\right), \Delta-\left\{[Q]_{i}\right\}\right\rangle$ can be added as a semantic value for A.

Nested noun phrases

- $\left\langle\right.$ work $\left(x_{2}\right),\left\{\left[Q_{2}=\lambda G \forall y\left(\left(\operatorname{res}(y) \wedge \operatorname{of}\left(x_{1}\right)(y)\right) \rightarrow G(y)\right)\right]_{2}\right.$,
$\left.\left.\left[Q_{1}=\lambda G \exists x(\operatorname{comp}(x) \wedge G(x))\right]_{1}\right\}\right\rangle$
■ $\Rightarrow \mathrm{R}\left\langle\mathrm{Q}_{1}\left(\lambda \mathrm{x}_{1} . \operatorname{work}\left(\mathrm{x}_{2}\right)\right),\left\{\left[\mathrm{Q}_{2}\right]_{2}\right\}\right\rangle$
$\Leftrightarrow_{\beta}\left\langle\exists x\left(\operatorname{comp}(x) \wedge \operatorname{work}\left(x_{2}\right)\right),\left\{\left[Q_{2}\right]_{2}\right\}\right\rangle$
■ $\Rightarrow \mathrm{R}\left\langle\mathrm{Q}_{2}\left(\lambda \mathrm{x}_{2} . \exists \mathrm{x}\left(\operatorname{comp}(\mathrm{x}) \wedge \operatorname{work}\left(\mathrm{x}_{2}\right)\right)\right), \varnothing\right\rangle$
■ $\Leftrightarrow \beta\left\langle\forall y\left(\left(\operatorname{res}(y) \wedge\right.\right.\right.$ of($\left.\left.\mathbf{x}_{1}\right)(\mathrm{y})\right) \rightarrow \exists x(\operatorname{comp}(x) \wedge$ work(y))), $\varnothing\rangle$
- Variable x_{1} occurs free.

Cooper Storage, Revised

- Storage: $\langle\mathrm{Q}, \Delta\rangle \Rightarrow \mathrm{s}\left\langle\lambda \mathrm{P} . \mathrm{P}\left(\mathbf{x}_{\mathbf{i}}\right),\left\{\langle\mathrm{Q}, \Delta\rangle_{\mathrm{i}}\right\}\right\rangle$
- If A is a noun phrase whose semantic value is $\langle Q, \Delta\rangle, i \in N$ a new index, then $\left(\lambda P . P\left(x_{i}\right),\left\{\langle Q, \Delta\rangle_{i}\right\}\right)$ can be added as a semantic value for A.

■ Retrieval: $\left\langle\alpha, \Delta \cup\left\{\langle Q, \Gamma\rangle_{i}\right\}\right\rangle \Rightarrow\left\langle Q\left(\lambda x_{i} \alpha\right), \Delta \cup \Gamma\right\rangle$

- If A is a sentence with semantic value $\langle\alpha, \Delta\rangle,\left\{\langle Q, \Gamma\rangle_{i}\right\} \in \Delta$, then $\left\langle Q\left(\lambda x_{i} . \alpha\right), \Delta \backslash\left\{\langle Q, \Gamma\rangle_{i}\right\} \cup \Gamma\right\rangle$ can be added as a semantic value for A.
- Note: Deeper embedded quantifiers are not accessible for retrieval.

Every reasearcher of a ...

Every reasearcher of a

- (8) $\left\langle a-c o m p a n y{ }^{\prime}, \varnothing\right\rangle$
$\Rightarrow s\left\{\lambda F . F\left(x_{1}\right),\left\{\langle a-c o m p a n y ', \varnothing\rangle_{1}\right\}\right\rangle$

- (2) $\left\langle\lambda G \forall z\left(\left(\right.\right.\right.$ res $^{\prime}(z) \wedge$ of $\left.\left.\left.\left(x_{1}\right)(z)\right) \rightarrow G(z)\right),\left\{\langle a-c o m p a n y ', ~ \varnothing\rangle_{1}\right\}\right\rangle$
$\Rightarrow s\left\{\lambda F . F\left(x_{2}\right),\left\{\left\langle\text { every-researcher-of- }{ }_{1}{ }^{\prime},\left\{\langle a-c o m p a n y ', ~ \varnothing\rangle_{1}\right\}\right\rangle_{2}\right\}\right\rangle$
- (9) $\left\langle\right.$ work' $\left.^{\prime}, \varnothing\right\rangle$
- (1) $\left\{\right.$ work $\left.\left(x_{2}\right),\left\{\left\langle\text { every-researcher-of- } x_{1}^{\prime},\left\{\{a-c o m p a n y ', ~ \varnothing\rangle_{1}\right\}\right\rangle_{2}\right\}\right\rangle$

Every reasearcher of a

- (work(x_{2}), $\left.\left\{\left\langle\text { every-researcher-of- }{ }_{1}{ }^{\prime},\left\{\langle a-c o m p a n y ', ~ \varnothing\rangle_{1}\right\}\right\rangle_{2}\right\}\right\rangle$
\Rightarrow_{R} (every-researcher-of- $x_{1}{ }^{\prime}\left(\lambda x_{2}\right.$. work $\left.\left(x_{2}\right)\right),\left\{\langle a-c o m p a n y ', ~ \varnothing\rangle_{1}\right\}$)
$\Leftrightarrow \beta$ ($\forall z\left(\left(\right.\right.$ res $^{\prime}(z) \wedge$ of $\left.^{\prime}\left(x_{1}\right)(z)\right) \rightarrow$ work' $\left.\left.^{\prime}(z)\right),\left\{\langle a-c o m p a n y ', ~ \varnothing\rangle_{1}\right\}\right\rangle$
$\Rightarrow_{R}\left\{a-c o m p a n y '\left(\lambda x_{1} . \forall z\left(\left(\right.\right.\right.\right.$ res $\left.^{\prime}(z) \wedge \mathrm{of}^{\prime}\left(\mathrm{x}_{1}\right)(\mathrm{z})\right) \rightarrow$ work' $\left.\left.\left.^{\prime}(\mathrm{z})\right)\right), \varnothing\right\rangle$
- $\Leftrightarrow_{\beta}\left\langle\exists x\left(\operatorname{comp}^{\prime}(x) \wedge \forall z\left(\left(\operatorname{res}^{\prime}(z) \wedge\right.\right.\right.\right.$ of $\left.^{\prime}(x)(z)\right) \rightarrow$ work' $\left.\left.\left.^{\prime}(z)\right)\right), \varnothing\right\rangle$

Every researcher of a ...

- $\left\langle\right.$ work $\left.\left(x_{2}\right),\left\{\left\langle\lambda G \forall z(\ldots),\left\{\langle\lambda G \exists x(\ldots), \varnothing\rangle_{1}\right\}\right\rangle_{2}\right\}\right\rangle$
$■ \Rightarrow{ }^{*} \exists \mathrm{x}(\operatorname{comp}(\mathrm{x}) \wedge \forall \mathrm{z}((\operatorname{res}(\mathrm{z}) \wedge \mathrm{of}(\mathrm{x})(\mathrm{z})) \rightarrow \operatorname{work}(\mathrm{z})))$

■ No other reading can be derived via retrieval!

- But how do we derive the "direct scope" reading?
- Answer: don't store, apply quantifiers "in situ".

Some restrictions on scope

- Some inhabitant of every midwestern city participated
- two readings: (a) direct scope and (b) every \triangleleft some
- Someone who inhabits every midwestern city participated
- only the direct scope reading available

■ You will inherit a fortune if every man dies

- "every man" cannot take scope over complete sentence
- Finite clauses can create "scope islands"
- Quantifiers must take scope within such clauses

Intensionality

- Bill expects to pass
- It is possible that Bill will pass
- Yesterday, it rained
- In general, sentence operators (type <t,t>) need meaning representations as arguments that are richer than firstorder denotations. We distinguish for a sentence
- its extension: the truth value

■ its intension: called the "proposition"

- Functor expression requiring intensions as semantic arguments are called "intensional".

Intensionality

- John is a poor bagpiper
- John is a poor speaker of Gaelic

In the case of predicates,

- extensions are sets of entities
- intensions are called "properties"

■ John seeks a unicorn

- John seeks an even prime number greater 2.

Possible-World Semantics

- A model structure for a type theoretic language consists of a pair $M=\langle U, W, V\rangle$, where
- U is a non-empty domain of individuals
- W is a non-empty set of possible worlds, disjoint from U
- V is an interpretation function, which assigns to every $\alpha \in$ CON_{τ} an element of D_{T}.
- The domain of possible denotations for every type τ :
D_{τ} is given by:
- $D_{e}=U$
- $D_{t}=\{0,1\}^{\mathbf{w}}$
- $D_{(\sigma, \tau)}$ is the set of all functions from D_{σ} to D_{τ}

Adding Time

- A model structure for a type theoretic language consists of a pair $\mathrm{M}=\langle\mathrm{U}, \mathbf{W}, \mathbf{T},<, \mathrm{V}\rangle$, where
- U, W and T are non-empty, pairwise disjoint sets of individuals, possible worlds, and time points, respectively
- $<\subseteq T \times T$ is a strict ordering relation
- V is an interpretation function, which assigns to every $\alpha \in$ $C O N_{\tau}$ an element of D_{τ}.
- The domain of possible denotations for every type τ :
D_{τ} is given by:
- $\mathrm{De}_{\mathrm{e}}=\mathrm{U}$
- $D_{t}=\{\mathbf{0}, \mathbf{1}\}^{\mathbf{W} \times T}$
- $D_{(\sigma, \tau)}$ is the set of all functions from D_{σ} to D_{τ}

