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Every student reads a book 
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Problem: Nested noun phrases 

■  Every researcher of a company works  
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Storage, Preliminary Version 

■  Storage: ⟨Q, Δ⟩ ⇒S ⟨λP.P(xi), Δ ∪ {[Q]i}⟩ 
■  if A is an noun phrase with a semantic value ⟨Q, Δ⟩, then select 

a new index i∈N and add ⟨λP.P(xi), Δ ∪ {[Q]i}⟩ as a semantic 
value for A. 
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■  (8) ⟨λF(F(x1)), {[λG∃x(comp(x) ∧ G(x))]1}⟩ 

■  (4) ⟨λx(res(x) ∧ of(x1)(x)), {[…]1}⟩ 

■  (2) ⟨λG∀y((res(y) ∧ of(x1)(y)) → G(y)), {[…]1}⟩ 

■    ⇒S ⟨λF(F(x2)),{[λG∀y((res(y) ∧ of(x1)(y)) → G(y))]2, […]1}⟩ 

■  (1) ⟨work(x2), {[…]2, […]1}⟩ 

Nested noun phrases 
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Retrieval, Preliminary Version 

■  Retrieval: ⟨α, Δ ∪ {[Q]i}⟩ ⇒R ⟨Q(λxi α), Δ⟩ 
■  if A is any sentence with semantic value ⟨α, Δ⟩, and [Q]i ∈ Δ,  

then ⟨Q(λxi α), Δ-{[Q]i }⟩ can be added as a semantic value for 
A. 
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Nested noun phrases 

■  ⟨work(x2), {[Q2 = λG∀y((res(y) ∧ of(x1)(y)) → G(y))]2,  

       [Q1 = λG∃x(comp(x) ∧ G(x))]1}⟩ 

■  ⇒R ⟨Q1(λx1.work(x2)), {[Q2]2}⟩ 

■   ⇔β ⟨∃x(comp(x) ∧ work(x2)), {[Q2]2}⟩   

■  ⇒R ⟨Q2(λx2.∃x(comp(x) ∧ work(x2))), ∅⟩ 

■  ⇔β ⟨∀y((res(y) ∧ of(x1)(y)) → ∃x(comp(x) ∧ work(y))), ∅⟩ 

■  Variable x1 occurs free. 
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Cooper Storage, Revised 

■  Storage: ⟨Q, Δ⟩ ⇒S ⟨λP.P(xi), {⟨Q, Δ⟩i}⟩ 
■  If A is a noun phrase whose semantic value is ⟨Q, Δ⟩, i∈N a 

new index, then ⟨λP.P(xi), {⟨Q, Δ⟩i}) can be added as a 
semantic value for A. 

■  Retrieval: ⟨α, Δ ∪ {⟨Q, Γ⟩i}⟩ ⇒ ⟨Q(λxi α), Δ ∪ Γ⟩ 
■  If A is a sentence with semantic value ⟨α, Δ⟩, {⟨Q, Γ⟩i}∈ Δ, 

then ⟨Q(λxi.α), Δ\{⟨Q, Γ⟩i} ∪ Γ⟩ can be added as a semantic 
value for A. 

■  Note:  Deeper embedded quantifiers are not 
accessible for retrieval. 
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Every reasearcher of a … 
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Every reasearcher of a … 

■  (8)  ⟨a-company’, ∅⟩ 

  ⇒S ⟨λF.F(x1), {⟨a-company', ∅⟩1}⟩ 

■  (4) ⟨λy(res’(y) ∧ of’(x1)(y)), {⟨a-company', ∅⟩1}⟩ 

■  (2) ⟨λG∀z((res’(z) ∧ of’(x1)(z)) → G(z)), {⟨a-company', ∅⟩1}⟩ 

  ⇒S ⟨λF.F(x2), {⟨every-researcher-of-x1’, {⟨a-company', ∅⟩1}⟩2}⟩ 

■  (9) ⟨work’, ∅⟩ 

■  (1) ⟨work(x2), {⟨every-researcher-of-x1’, {⟨a-company', ∅⟩1}⟩2}⟩ 
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Every reasearcher of a … 
■  ⟨work(x2), {⟨every-researcher-of-x1’, {⟨a-company', ∅⟩1}⟩2}⟩ 

 ⇒R ⟨every-researcher-of-x1’(λx2.work(x2)), {⟨a-company', ∅⟩1}⟩ 

 ⇔β  ⟨∀z((res’(z) ∧ of’(x1)(z)) → work’(z)), {⟨a-company', ∅⟩1}⟩ 

 ⇒R ⟨a-company' (λx1.∀z((res’(z) ∧ of’(x1)(z)) → work’(z))), ∅⟩ 

■  ⇔β ⟨∃x(comp’(x) ∧ ∀z((res’(z) ∧ of’(x)(z)) → work’(z))), ∅⟩ 
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Every researcher of a … 

■  ⟨work(x2), {⟨λG∀z(…), {⟨λG∃x(…), ∅⟩1}⟩2}⟩ 

■  ⇒*R ∃x(comp(x) ∧ ∀z((res(z) ∧ of(x)(z)) → work(z))) 

■  No other reading can be derived via retrieval! 
■  But how do we derive the “direct scope” reading? 
■  Answer: don’t store, apply quantifiers “in situ”. 
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Some restrictions on scope 

■  Some inhabitant of every midwestern city participated 
■  two readings: (a) direct scope and (b) every ⊲ some 

■  Someone who inhabits every midwestern city participated  
■  only the direct scope reading available 

■  You will inherit a fortune if every man dies 
■  “every man” cannot take scope over complete sentence 

■  Finite clauses can create “scope islands” 
■  Quantifiers must take scope within such clauses 



Intensionality 

■  Bill expects to pass 

■  It is possible that Bill will pass 

■  Yesterday, it rained 

■  In general, sentence operators (type <t,t>) need meaning 
representations as arguments that are richer than first-
order denotations. We distinguish for a sentence 

■  its extension: the truth value 

■  its intension: called the “proposition”  

■  Functor expression requiring intensions as semantic 
arguments are called “intensional“. 
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Intensionality 

■  John is a poor bagpiper 

■  John is a poor speaker of Gaelic 

In the case of predicates, 

■  extensions are sets of entities 

■  intensions are called “properties” 

■  John seeks a unicorn 

■  John seeks an even prime number greater 2. 
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Possible-World Semantics 

■  A model structure for a type theoretic language consists 
of a pair M = ⟨U, W, V⟩, where   
■  U is a non-empty domain of individuals 
■  W is a non-empty set of possible worlds, disjoint from U 
■  V is an interpretation function, which assigns to every α ∈ 

CONτ an element of Dτ. 

■  The domain of possible denotations for every type τ: 
Dτ is given by: 
■  De = U 
■  Dt = {0, 1}W 
■  D⟨σ, τ⟩ is the set of all functions from Dσ to Dτ 
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Adding Time 

■  A model structure for a type theoretic language consists 
of a pair M = ⟨U, W, T, <, V⟩, where   
■  U, W and T are non-empty, pairwise disjoint sets of individuals, 

possible worlds, and time points, respectively 
■  < ⊆ T×T is a strict ordering relation 
■  V is an interpretation function, which assigns to every α ∈ 

CONτ an element of Dτ. 

■  The domain of possible denotations for every type τ: 
Dτ is given by: 
■  De = U 
■  Dt = {0, 1}W×T 
■  D⟨σ, τ⟩ is the set of all functions from Dσ to Dτ 
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