Semantic Theory: Discourse Semantics II

Summer 2012
M.Pinkal/ S. Thater

An example

- A professor owns a book. He reads it.

Semantic Theory, SS 2012 © M. Pinkal, S. Thater

An example

- A professor owns a book. He reads it.

```
x y z u
professor(x)
book(y)
own(x, y)
z = x
u=y
read(z, u)
```


DRT: Denotational Interpretation

- Let
- U_{D} a set of discourse referents,
- $\mathrm{K}=\left\langle\mathrm{U}_{\mathrm{K}}, \mathrm{C}_{\mathrm{K}}\right\rangle$ a DRS with $\mathrm{U}_{\mathrm{K}} \subseteq \mathrm{U}_{\mathrm{D}}$,
- $\mathrm{M}=\left\langle\mathrm{U}_{\mathrm{M}}, \mathrm{V}_{\mathrm{M}}\right\rangle$ a FOL model structure appropriate for K .
- An embedding of K into M is a partial function f from U_{D} to U_{M} such that $U_{K} \subseteq \operatorname{Dom}(f)$.

Example Computation

Let K be the example DRS from above:
$K=<\{x, y, z, u\}$,
$\{\operatorname{professor}(\mathrm{x}), \operatorname{book}(\mathrm{y}), \operatorname{own}(\mathrm{x}, \mathrm{y}), \operatorname{read}(\mathrm{z}, \mathrm{u}), \mathrm{z}=\mathrm{x}, \mathrm{u}=\mathrm{y}\}>$
$\mathrm{f} \mid={ }_{\mathrm{M}} \mathrm{K}$
iff:
$\mathrm{f}(\mathrm{x}) \in \mathrm{V}_{\mathrm{M}}($ professor $) \wedge \mathrm{f}(\mathrm{y}) \in \mathrm{V}_{\mathrm{M}}($ book $) \wedge\langle\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y})\rangle \in \mathrm{V}_{\mathrm{M}}(\mathrm{own}) \wedge$ $\langle f(z), f(u)\rangle \in V_{M}(r e a d) \wedge f(z)=f(x) \wedge f(u)=f(y)$

Verifying embedding

- An embedding f of K in M verifies K in M :
$f I={ }_{M} K$ iff f verifies every condition $\alpha \in C_{K}$.
- f verifies condition α in $M\left(f \mid={ }_{M} \alpha\right)$:
(i) $f \mid={ }_{M} R\left(x_{1}, \ldots, x_{n}\right) \quad$ iff $\quad\left\langle f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\rangle \in V_{M}(R)$
(ii) $f \mid{ }_{=M} x=a \quad$ iff $\quad f(x)=V_{M}(a)$
(iii) $f \mid={ }_{M} x=y \quad$ iff $\quad f(x)=f(y)$

Truth

- Let K be a closed DRS and M be an appropriate model structure for K .
- K is true in M iff there is a verifying embedding f of K in M such that $\operatorname{Dom}(\mathrm{f})=\mathrm{U}_{\mathrm{K}}$

Translation of DRSes to FOL

- $\operatorname{DRS} K=\left\langle\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\},\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}\right\}\right\rangle$

$x_{1} \ldots x_{n}$
$c_{1} \ldots c_{n}$

is truth-conditionally equivalent to the following FOL formula:
$\exists x_{1} \ldots \exists x_{n}\left[c_{1} \wedge \ldots \wedge c_{k}\right]$

Indefinite NPs, Conditionals, and Anaphora

- If a student works, she will be successful.
(1) $\exists x[\operatorname{student}(x) \wedge$ work $(x)] \rightarrow$ successful (x)
(2) $\exists x[$ student $(x) \wedge$ work $(x) \rightarrow$ successful $(x)]$
(3) $\forall x$ [student $(x) \wedge \operatorname{work}(x) \rightarrow \operatorname{successful}(x)]$
(1) is not closed
(2) has wrong truth conditions (much too weak)
(3) is correct, but how can it be derived compositionally?
- This is called the donkey sentence problem, after the classical example by P.T. Geach (1967): If a farmer owns a donkey, he beats it.

Indefinite NPs and conditionals

- If a student works, the professor is happy.
(1) $\exists x[\operatorname{student}(x) \wedge$ work $(x)] \rightarrow$ happy_prof
(2) $\forall x[$ student $(x) \wedge$ work $(x) \rightarrow$ happy_prof]
- Formulas (1) and (2) are logically equivalent:
$\exists x A \rightarrow B \Leftrightarrow \forall x[A \rightarrow B]$
given that x doesn't occur free in B.

Indefinite NPs and Discourse Structure

- A car is parked in front of Peter's garage. Peter needs to get to the office quickly. He doesn't know who owns the car. He calls the police, and it is towed away.
- Suppose a car is parked in front of Peter's garage. Peter needs to get to the office quickly. He doesn't know who owns the car. Then he will call the police, and it will be towed away.
- Let a and b be two positive integers. Let b further be even. Then the product of a and b is even too.

DRS for conditionals: An example

- If a professor owns a book, he reads it.

	\Rightarrow	
a professor owns a book		he reads it

DRS for conditionals: An example

- If a professor owns a book, he reads it.

DRS for conditionals: An example

- If a professor owns a book, he reads it.

xy	
professor(x$)$ $\operatorname{book}(\mathrm{y})$ owns(x, y)	
zv	
reads(z, v) $z=x$ $v=y$	

DRS (1 st Extension)

- A discourse representation structure (DRS) K is a pair $\left\langle\mathrm{U}_{\mathrm{k}}, \mathrm{C}_{\mathrm{k}}\right\rangle$, where
- U_{k} is a set of discourse referents
- C_{k} is a set of conditions
- (Irreducible) conditions:
- $R\left(u_{1}, \ldots, u_{n}\right) \quad R n$-place relation, $u_{i} \in U_{k}$
- $u=v \quad u, v \in U_{k}$
- $u=a$
$u \in U_{K}$, a is a proper name
- $\mathrm{K}_{1} \Rightarrow \mathrm{~K}_{2}$
K_{1} and K_{2} DRSes
- Reducible conditions: as before

DRS Construction Rule for Conditionals

- Triggering configuration:
- α is a reducible condition in DRS K of the form [s if [s β] (then) [s γ]]
- Action:
- Remove α from C_{K}.
- Add $\mathrm{K}_{1} \Rightarrow \mathrm{~K}_{2}$ to C_{K}, where
- $K_{1}=\langle\varnothing,\{\beta\}\rangle$ and
- $\mathrm{K}_{2}=\langle\varnothing,\{\gamma\}\rangle$
- Remark: $\mathrm{K}_{1} \Rightarrow \mathrm{~K}_{2}$ is called a duplex condition; K_{1} the "antecedent DRS" and K_{2} the "consequent DRS".

Verifying embeddings (1st extension, preliminary)

- An embedding f of K into M verifies K in M :
$\mathrm{f}={ }_{\mathrm{M}} \mathrm{K}$ iff f verifies every condition $\alpha \in \mathrm{C}_{\mathrm{K}}$.
- f verifies condition α in $M\left(f \mid={ }_{M} \alpha\right)$:
(i) $f \mid={ }_{M} R\left(x_{1}, \ldots, x_{n}\right) \quad$ iff $\quad\left\langle f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\rangle \in V_{M}(R)$
(ii) $f \mid={ }_{M} x=a \quad$ iff $\quad f(x)=V_{M}(a)$
(iii) $f \mid=_{M} x=y$ iff $f(x)=f(y)$
(iv) $\mathrm{f} \mid={ }_{\mathrm{M}} \mathrm{K}_{1} \Rightarrow \mathrm{~K}_{2}$ iff
for all $g \supseteq_{\mathrm{K}_{1}} \mathrm{f}$ s.t. $\mathrm{g} \mid{ }_{=\mathrm{M}} \mathrm{K}_{1}$, we have $\mathrm{g} \mid{ }_{=\mathrm{M}} \mathrm{K}_{2}$
- We write $g \supseteq_{\cup} f$ for $" g \supseteq$ fand $\operatorname{Dom}(g)=\operatorname{Dom}(f) \cup U "$

Recap: DRT Embeddings

- Let
- U_{D} a set of discourse referents,
- $K=\left\langle U_{K}, C_{K}\right\rangle$ a DRS with $U_{K} \subseteq U_{D}$,
- $\mathrm{M}=\left\langle\mathrm{U}_{\mathrm{M}}, \mathrm{V}_{\mathrm{M}}\right\rangle$ an FOL model structure appropriate for K .
- An embedding of K into M is a (partial) function f from U_{D} to U_{M} such that $U_{K} \subseteq \operatorname{Dom}(f)$.

The definition seems to work ...

- If a professor owns a book, he reads it.

KO:	K1: x y professor(x) book(y) owns(x, y)	\Rightarrow	K2:
			z V
			reads(z, v) $z=x$ $v=y$
$\begin{aligned} & \mathrm{f} \mid={ }_{\mathrm{M}} \mathrm{~K}_{1} \Rightarrow \mathrm{~K}_{2} \text { iff } \\ & \quad \text { for all } \mathrm{g} \supseteq \mathrm{l} \end{aligned}$			K_{1}, we have

... but it doesn't really!
A slightly more complex example:

- Mary knows a professor.

If he owns a book, he gives it to a student.

Semantic Theory, SS 2012 © M. Pinkal, S. Thater

DRS construction rule for universal

 NPs- Triggering configuration:
- α is a reducible condition in DRS K; α contains a subtree [s $\left.\left[{ }_{N P} \beta\right]\left[{ }_{\mathrm{VP}} \gamma\right]\right]$ or $\left[{ }_{\mathrm{VP}}[\mathrm{v} \gamma]\left[{ }_{\mathrm{NP}} \beta\right]\right]$
- β = every δ
- Action:
- Remove α from C_{K}.
- Add $\mathrm{K}_{1} \Rightarrow \mathrm{~K}_{2}$ to C_{K}, where
- $\mathrm{K}_{1}=\langle\{\mathrm{x}\},\{\delta(\mathrm{x})\}\rangle$ and
- $\mathrm{K}_{2}=\left\langle\varnothing,\left\{\alpha^{\prime}\right\}\right\rangle$
- obtain α ' from α by replacing β by x

Example

- A professor doesn't own a book.

Semantic Theory, SS 2012 © M. Pinkal, S. Thater
25

Example

- A professor doesn't own a book.

Example

- A professor doesn't own a book.

Semantic Theory, SS 2012 © M. Pinkal, S. Thater
26

Example

- A professor doesn't own a book.

x
professor (x)
\negbook(y) owns(x, y)

Example: A second reading

- A professor doesn't own a book.

Semantic Theory, SS 2012 © M. Pinkal, S. Thater
30

DRS construction rule for clausal disjunction

- Triggering configuration:
- α is a reducible condition in DRS K of the form [s [s β] or [s $\gamma]$]
- Action:
- Remove α from C_{K}.
- Add $\mathrm{K}_{1} \vee \mathrm{~K}_{2}$ to C_{K}, where
- $\mathrm{K}_{1}=\langle\varnothing,\{\beta\}\rangle$ and
- $\mathrm{K}_{2}=\langle\varnothing,\{\gamma\}\rangle$

An example

- A student reads a book, or a professor reads a paper.

Semantic Theory, SS 2012 © M. Pinkal, S. Thater

Verifying embeddings

- f verifies condition α in $\mathrm{M}\left(\mathrm{f} \mid={ }_{\mathrm{M}} \alpha\right)$:
(i) $f \mid={ }_{M} R\left(x_{1}, \ldots, x_{n}\right) \quad$ iff $\quad\left\langle f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\rangle \in V_{M}(R)$
(ii) $f \mid={ }_{M} x=a \quad$ iff $f(x)=V_{M}(a)$
(iii) $f \mid={ }_{M} x=y$
iff $f(x)=f(y)$
(iv) $\mathrm{f} \mid={ }_{\mathrm{M}} \mathrm{K}_{1} \Rightarrow \mathrm{~K}_{2}$
iff for all $\mathrm{g} \supseteq_{\mathrm{U}_{K_{1}}}$ fs.t. $\mathrm{g} \mid={ }_{\mathrm{M}} \mathrm{K}_{1}$
there is a $\mathrm{h}{ }^{\mathrm{K}_{1}}{ }_{\mathrm{U}_{K_{2}}} \mathrm{~g}$ s.t. $\mathrm{h} \mid={ }_{\mathrm{M}} \mathrm{K}_{2}$
(v) $\left.\mathrm{fl}={ }_{\mathrm{M}}\right\urcorner \mathrm{K}_{1}$
iff there is no $\mathrm{g}{ }^{\mathrm{K}_{2}}{ }_{\mathrm{U}_{\mathrm{K}}}$ fs.t. $\mathrm{g} \mid={ }_{\mathrm{M}} \mathrm{K}_{1}$
(vi) $\mathrm{fl}={ }_{M} \mathrm{~K}_{1} \vee \mathrm{~K}_{2} \quad$ iff \quad there is a $\mathrm{g}_{1} \supseteq \bigcup_{K_{1}}$ f.t. $\mathrm{g}_{1} \mid={ }_{M} K_{1}$

$$
\text { or there is a } \mathrm{g}_{2} \supseteq{ }_{\mathrm{U}_{\mathrm{K}}}{ }^{\prime} \text { 'f.t. } \mathrm{g}_{2} \mid==_{\mathrm{M}} \mathrm{~K}_{2}
$$

DRS (2nd Extension)

- A discourse representation structure (DRS) K is a pair $\left\langle\mathrm{U}_{\mathrm{K}}, \mathrm{C}_{\mathrm{K}}\right\rangle$, where
- U_{K} is a set of discourse referents
- C_{K} is a set of conditions
- (Irreducible) conditions:
- $R\left(u_{1}, \ldots, u_{n}\right) \quad R$ n-place relation, $u_{i} \in U_{K}$
- $u=v \quad u, v \in U_{k}$
- $u=a \quad u \in U_{K}$, a is a proper name
- $\mathrm{K}_{1} \Rightarrow \mathrm{~K}_{2} \quad \mathrm{~K}_{1}$ and K_{2} DRSs
- $\mathrm{K}_{1} \vee \mathrm{~K}_{2} \quad \mathrm{~K}_{1}$ und K_{2} DRSs
- $\neg \mathrm{K}_{1} \quad \mathrm{~K}_{1}$ DRS

Semantic Theory, SS 2012 © M. Pinkal, S. Thater

Translation from DRT to FOL

- DRSs
$\mathrm{T}\left(\left\langle\left\{u_{1}, \ldots, \mathrm{u}_{n}\right\},\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{n}\right\}\right\rangle\right)=\exists \mathrm{u}_{1} . . . \exists \mathrm{u}_{n}\left[\mathrm{~T}\left(\mathrm{c}_{1}\right) \wedge \ldots \wedge \mathrm{T}\left(\mathrm{c}_{n}\right)\right]$
- Conditions:
$\mathrm{T}(\mathrm{c}) \quad=\mathrm{c}$ for atomic conditions c
$T\left(\neg K_{1}\right)=\neg T\left(K_{1}\right)$
$T\left(K_{1} \vee K_{2}\right)=T\left(K_{1}\right) \vee T\left(K_{2}\right)$
$\mathrm{T}\left(\mathrm{K}_{1} \Rightarrow \mathrm{~K}_{2}\right) \quad=\forall \mathrm{u}_{1} \ldots \forall \mathrm{u}_{\mathrm{n}}\left[\left(\mathrm{T}\left(\mathrm{c}_{1}\right) \wedge \ldots \wedge \mathrm{T}\left(\mathrm{c}_{\mathrm{n}}\right)\right) \rightarrow \mathrm{T}\left(\mathrm{K}_{2}\right)\right]$,
for $\mathrm{K}_{1}=\left\langle\left\{\mathrm{u}_{1}, \ldots, \mathrm{u}_{n}\right\},\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{n}\right\}\right\rangle$
- For every closed DRS K and every appropriate model M, K is true in M iff $T(K)$ is true in M.

Anaphora and accessibility

- Mary knows a professor. If she owns a book, he reads it. It fascinates him.

Accessible discourse referents

- Cases of non-accessibility:
- If a professor owns a book, he reads it. It has 300 pages.
- It is not the case that a professor owns a book. He reads it.
- Every professor owns a book. He reads it.
- If every professor owns a book, he reads it.
- Peter owns a book, or Mary reads it.
- Peter reads a book, or Mary reads a newpaper article. It is interesting.

Anaphora and accessibility

- Mary knows a professor. If she owns a book, he reads it. ?It fascinates him.

Accessible discourse referents

- The following discourse referents are accessible for a condition:
- DRs in the same local DRS
- DRs in a superordinate DRS
- DRs on the top level of an antecedent DRS, if the condition occurs in the consequent DRS.

Subordination

- A DRS K_{1} is an immediate sub-DRS of a DRS $\mathrm{K}=\left\langle\mathrm{U}_{\mathrm{K}}, \mathrm{C}_{\mathrm{K}}\right\rangle$ iff C_{K} contains a condition of the form $\neg \mathrm{K}_{1}, \mathrm{~K}_{1} \Rightarrow \mathrm{~K}_{2}, \mathrm{~K}_{2} \Rightarrow \mathrm{~K}_{1}, \mathrm{~K}_{1} \vee \mathrm{~K}_{2}$ or $\mathrm{K}_{2} \vee \mathrm{~K}_{1}$.
- K_{1} is a sub-DRS of $\mathrm{K}\left(\right.$ notation: $\left.\mathrm{K}_{1} \leq \mathrm{K}\right)$ iff
(i) $\mathrm{K}_{1}=\mathrm{K}$ or
(ii) K_{1} is an immediate sub-DRS of K or
(iii) there is a DRS K_{2} s.t. $\mathrm{K}_{2} \leq \mathrm{K}_{1}$ and K_{1} is an immediate sub-DRS of K.
(i.e. reflexive, transitive closure)
- K_{1} is a proper sub-DRS of K iff $\mathrm{K}_{1} \leq \mathrm{K}$ and $\mathrm{K}_{1} \neq \mathrm{K}$.

Revised DRS Construction rule for Pronouns

- Triggering Configuration:

- Let K* be the main DRS that contains K
- α a reducible condition in DRS K, containing [s [NP β] [vp $\gamma]$] or [$\left.{ }_{\mathrm{VP}}[\mathrm{V} \gamma]\left[{ }_{\mathrm{NP}} \beta\right]\right]$ as substructure
- β a personal pronoun.

- Action:

- Add a new DR x to U_{K}.
- Replace β in α by .
- Select an appropriate DR y that is accessible from α in K^{*}, and add $\mathrm{x}=\mathrm{y}$ to C_{K}.
- Let $\mathrm{K}, \mathrm{K}_{1}, \mathrm{~K}_{2}$ be DRSes s.t. $\mathrm{K}_{1}, \mathrm{~K}_{2} \leq \mathrm{K}, \mathrm{x} \in \mathrm{U}_{\mathrm{K}_{1}}$, $\gamma \in \mathrm{C}_{\mathrm{K}_{2}}$
- x is accessible from γ in K iff
(i) $\mathrm{K}_{2} \leq \mathrm{K}_{1}$ or
(ii) there are $\mathrm{K}_{3}, \mathrm{~K}_{4} \leq \mathrm{K}$ s.t. $\mathrm{K}_{1} \Rightarrow \mathrm{~K}_{3} \in \mathrm{C}_{\mathrm{K}_{4}}$ and $\mathrm{K}_{2} \leq \mathrm{K}_{3}$

DRS Construction Rule for Proper Names

- Triggering Configuration:
- Let K^{*} be the main DRS that containing K
- α a reducible condition in DRS K, containing [s [NP β] [vp $\left.\gamma]]^{\text {or }}\left[{ }_{\mathrm{vp}}[\mathrm{v} \gamma]{ }_{[\mathrm{NP}} \beta\right]\right]$ as substructure.
- β a proper name
- Action:
- Add a new DR x to $\mathrm{U}_{\mathrm{K}^{+}}$.
- Replace β in α by x.
- $\operatorname{Add} \mathrm{x}=\beta$ to $\mathrm{C}_{\mathrm{K}^{+}}$.

Is accessibility a truth-conditional property?

- There is a book that John doesn't own.

He wants to buy it.

- John does not own every book.
?He wants to buy it.
- One of the ten balls is not in the bag. It must be under the sofa.
- ? Nine of the ten balls are in the bag.

It must be under the sofa.

Wait a minute ...

- Why can't we just marry type theoretic semantics with DRT?
- Use λ-abstraction and reduction a we did before, but:
- Assume that the target representations which we want to arrive at are not First-Order Logic formulas, but DRSes.
- The result is called λ-DRT.

DRT is non-compositional

- DRT is non-compositional on truth conditions: The different discourse-semantic status of the text pairs is not predictable through the (identical) truth conditions of its component sentences.
- Since structural information which cannot be reduced to truth conditions is required to compute the semantic value of texts, DRT is called a representational theory of meaning.

λ-DRSes

- every student $\Rightarrow \lambda \mathrm{G}$

alternative notation: $\lambda \mathrm{G}[\varnothing \mid[\mathrm{z} \mid$ student $(z)] \Rightarrow \mathrm{G}(\mathrm{z})]$
- works $\Rightarrow \lambda \times[\varnothing \mid \operatorname{work}(\mathrm{x})]$

An expression consists of a lambda prefix and a (partially instantiated) DRS.

λ-DRT: β-reduction

- every student works
$\Rightarrow \lambda \mathrm{G}[\varnothing \mid[\mathrm{z} \mid$ student $(\mathrm{z})] \Rightarrow \mathrm{G}(\mathrm{z})]](\lambda \mathrm{x} .[\varnothing \mid \operatorname{work}(\mathrm{x})])$
$\Leftrightarrow[\varnothing \mid[z \mid \operatorname{student}(z)] \Rightarrow \lambda x .[\varnothing \mid \operatorname{work}(x)](z)]$
$\Leftrightarrow[\varnothing \mid[z \mid \operatorname{student}(z)] \Rightarrow[\varnothing \mid \operatorname{work}(z)]]$

Merge: An example

- a student $\quad \Rightarrow \lambda \mathrm{G}([\mathrm{z} \mid$ student $(\mathrm{z})] ; \mathrm{G}(\mathrm{z}))$
- works $\quad \Rightarrow \lambda \times[\varnothing \mid$ work $(x)]$
- A student works
$\Rightarrow \lambda G([z \mid \operatorname{student}(z)] ; G(z))(\lambda x .[\varnothing \mid$ work $(x)])$
$\Leftrightarrow[z \mid \operatorname{student}(z)] ; \lambda x .[\varnothing \mid \operatorname{work}(x)](z)$
$\Leftrightarrow[z \mid$ student $(z)] ;[\varnothing \mid$ work(z)]
$\Leftrightarrow[z \mid$ student (z), work $(z)]$

(Naïve) Merge

- The "merge" operation on DRSs combines two DRSs (conditions and universes).
- Let $\mathrm{K}_{1}=\left[\mathrm{U}_{1} \mid \mathrm{C}_{1}\right]$ and $\mathrm{K}_{2}=\left[\mathrm{U}_{2} \mid \mathrm{C}_{2}\right]$. Then: $\mathrm{K}_{1} ; \mathrm{K}_{2} \Rightarrow\left[\mathrm{U}_{1} \cup \mathrm{U}_{2} \mid \mathrm{C}_{1} \cup \mathrm{C}_{2}\right]$

λ-DRT and Merge: An example

- A student works. She is successful.
- Compositional analysis:
- $\lambda \mathrm{K} \lambda \mathrm{K}^{\prime}\left(\mathrm{K} ; \mathrm{K}^{\prime}\right)([\mathrm{z} \mid$ student (z), work(z)])([|successful (z)])
$\Leftrightarrow \lambda K^{\prime}\left(\left[z \mid\right.\right.$ student(z), work(z)]; $\left.K^{\prime}\right)([\mid$ successful(z)])
$\Leftrightarrow[\mathrm{z} \mid$ student(z), work(z)];[|successful(z)]
$\Leftrightarrow[z \mid$ student (z), work(z), successful(z)]

Merge again

- The "merge" operation on DRSs combines two DRSs (conditions and universes).
- Let $\mathrm{K}_{1}=\left[\mathrm{U}_{1} \mid \mathrm{C}_{1}\right]$ and $\mathrm{K}_{2}=\left[\mathrm{U}_{2} \mid \mathrm{C}_{2}\right]$.

Then: $\mathrm{K}_{1} ; \mathrm{K}_{2} \Rightarrow\left[\mathrm{U}_{1} \cup \mathrm{U}_{2} \mid \mathrm{C}_{1} \cup \mathrm{C}_{2}\right]$
under the assumption that no discourse referent $\mathrm{u} \in \mathrm{U}_{2}$ occurs free in a condition $\gamma \in \mathrm{C}_{1}$.

Events and event anaphora in DRT

-The gardener killed the baron. It happened at midnight.

e, g, b	
gardener(g) baron(b) kill(e,g,b)	e, g, b,e' gardener(g) baron(b) kill(e,g,b) midnight(m) time(e'm) $e^{\prime}=e$

Variable capturing

$\lambda K^{\prime}\left([z \mid \operatorname{student}(\mathrm{z})\right.$, work $\left.(\mathrm{z})] ; \mathrm{K}^{\prime}\right)([\mid \operatorname{successful}(\mathrm{z})])$
$\Leftrightarrow[\mathrm{z} \mid \operatorname{student}(\mathrm{z})$, work(z)];[|successful(z)]
$\Leftrightarrow[\mathrm{z} \mid \operatorname{student}(\mathrm{z})$, work(z), $\operatorname{successful(z)]}$

- Via the interaction of β-reduction and DRSbinding, discourse referents are captured.
- But the β-reduced DRS must still be equivalent to the original DRS!
- This means that we somehow have to encode the potential for capturing discourse referents into the denotation of a λ-DRS. Possible, but tricky.

Tense in DRT

$$
\begin{aligned}
& \mathrm{j}, \mathrm{e}, \mathrm{p}, \mathrm{e}^{\prime} \\
& \text { leave(e,j) } \\
& \mathrm{e}<\mathrm{e}_{\mathrm{u}} \\
& \text { arrive }\left(\mathrm{e}^{\prime}, \mathrm{p}\right) \\
& \mathrm{e}^{\prime}<\mathrm{e}
\end{aligned}
$$

I didn't turn off the stove
-Simple past is anaphoric!

John left. \begin{tabular}{l}
j, e, \boldsymbol{r}

leave(e,j)

e $<e_{u}$
$e \circ r$

\hline
\end{tabular}

