Semantic Theory, SS 2012 © M. Pinkal, S. Thater

Semantic Theory, SS 2012 ©

3

Semantic Theory, SS 2012 C M. Pinkal, S. Thater

4

Semantic Theory: Discourse Semantics I

Summer 2012

M.Pinkal/ S. Thater

- Some natural-language expressions, like *I, you, here, this,* vary their meaning with context.
- Model contexts as vectors: sequences of semantically relevant context data with fixed arity.
- Model meanings as functions from contexts to denotations - more specifically, as functions from specific context components to denotations.

Semantic Theory, SS 2012 © M. Pinkal, S. Thater

A simple context theory

2

An Example

- Context c = $\langle a, b, l, t, r \rangle$
 - *a* speaker
 - b addressee
 - / utterance location
 - t utterance time
 - r referred object
- [[/]]^{M,g,c} = utt(c) = *a* [[*you*]]^{M,g,c} = adr(c) = *b*
- $[[here]]^{M,g,c} = loc(c) = I$
- - $[[now]]^{M,g,c} = time(c) = t$
- $[[this]]^{M,g,c} = ref(c) = r$

Type-theoretic context semantics

- Model structure: $M = \langle U, C, V \rangle$
 - U model universe
 - C context set
 - V value asignment function that assigns non-logical constants functions from contexts to denotations of appropriate type.
- Interpretation:
 - $[[\alpha]]^{M,h,c} = V(\alpha)(c)$, if α non-logical constant,
 - $[[\alpha]]^{M,h,c} = h(\alpha)$, if α Variable,
 - $[[\alpha(\beta_1, ..., \beta_n)]]^{M,h,c} = [[\alpha]]^{M,h,c}([[\beta_1]]^{M,h,c}, ..., [[\beta_n]]^{M,h,c})$
 - etc.

Interpretation: An example

 $I \text{ am reading this book} \Rightarrow \text{read'(this-book')(I')}$ $[[\text{read'(this-book')(I')}]^{M,h,c} =$ $[[\text{read'}]]^{M,h,c}([[\text{this-book'}]]^{M,h,c})([[I']]^{M,h,c}) =$ V(read')(ref(c))(utt(c))

Context-invariant expressions are constant functions: V(read')(c) = V(read')(c') [= V(read')] for all c, c' \in C

- Deictic expressions depend on the physical utterance situation:
 - I, you, now, here, this
- Anaphoric expressions refer to linguistic context/ previous discourse:
 he, she, it, then
- But there is more ...

Semantic Theory, SS 2012 © M. Pinkal, S. Thater

6

More context-dependent expressions

Semantic Theory, SS 2012 C M. Pinkal, S. Thater

5

- Semantic context dependence is a pervasive property of natural language:
 - Every student must be familiar with the basic properties of FOL
 - It is hot and sunny everywhere.
 - John always is late.
 - Bill has bought an expensive car.
 - Another one, please!
 - The student is working.

Semantic Theory, SS 2012 © M. Pinkal, S. Thater

7

Definite NPs: Type-theoretic analysis

 Standard type-theoretic representation of definite article:

> $the \Rightarrow \lambda F \lambda G \exists y (\forall x (F(x) \leftrightarrow x=y) \land G(y))$ $the sun \Rightarrow \lambda G \exists y (\forall x (sun'(x) \leftrightarrow x=y) \land G(y))$ $the sun is shining \Rightarrow$ $\exists y (\forall x (sun'(x) \leftrightarrow x=y) \land shine'(y))$ $the student is working \Rightarrow$ $\exists y (\forall x (student'(x) \leftrightarrow x=y) \land work'(y)) ?$

Definite NPs pick an appropriate object from context.

Context-dependence of definite NPs

- Definite NPs pick an appropriate object from context.
 The student is working
- Utterances typically contain several noun phrases referring to different objects:

The student is reading the book in the library

• Noun phrases may refer to different objects of the same type, in one utterance situation:

the book

the blue book

the blue book about discourse semantics

Semantic Theory, SS 2012 C M. Pinkal, S. Thater

The interaction of definite and indefinite NPs

9

- Natural-language meaning and context interact in two ways:
 - Context determines the utterance meaning.
 - The semantics of the utterance changes the context.
- The "context change potential" is part of the meaning of natural-language expressions.

Indefinite NPs

- A student is working
- Standard type-theoretic analysis:
 a ⇒ λPλQ∃x[P(x) ∧ Q(x)]
 a student ⇒ λQ∃x[student'(x) ∧ Q(x)]

A student is working $\Rightarrow \exists x[student'(x) \land work'(x)]$

- A student is working. The student/ She is successful.
- Indefinite noun phrases establish the context for later reference, they introduce new reference objects. Type-theoretic semantics cannot model this effect (without serious changes).

 $she \Rightarrow \lambda PP(x)$

She is successful \Rightarrow successful'(x)

A student is working. She is sucessful.

 $\Rightarrow \exists x[student'(x) \land work'(x)] \land successful'(x)$

Semantic Theory, SS 2012 $\ensuremath{\mathbb C}$ M. Pinkal, S. Thater

10

Context dependence: Wrap up

- The interpretation of most context-dependent expressions, e.g., definite noun phrases, is determined by context in a complex way.
- Some types of expressions, like indefinite noun phrases, introduce new context information, which is available at a later stage of discourse for anaphoric reference. Modelling this kind of context change potential is outside the reach of standard type-theoretic semantics, with of without context-semantic extension.
- Reference objects established in discourse need not be real objects:
 Once upon a time there was a king, who had a beautiful daughter.
 Someone whoever that may be will eventually find out. That person
 will tell others, and everyone will be terribly upset.

Discourse Semantics

- The basic idea: Meaning as Context Change Potential
- Focus on anaphoric use of noun phrases (definite and indefinite, full NPs and pronouns).
- Meaning representation uses discourse referents in addition to formulas encoding truth conditions.
- "Division of labor" between definite and indefinite NPs:
 - Indefinite NPs introduce new discourse referents
 - Definite NPs refer to "old" or "familiar" discourse referents (which are already part of the meaning representation)
- Discourse Representation Theory: Hans Kamp (1981), Irene Heim (1980)
- Reading: Hans Kamp/Uwe Reyle: From Discourse to Logic, Kluwer: Dordrecht 1993.

```
13
```

An example

• A professor owns a book. He reads it.

Discourse Representation Theory (DRT)

Semantic Theory, SS 2012 © M. Pinkal, S. Thater

14

An example

• A professor owns a book. He reads it.

An example

• A professor owns a book. He reads it.

An example

• A professor owns a book. He reads it.

An example

• A professor owns a book. He reads it..

An example

• A professor owns a book. He reads it.

An example

• A professor owns a book. He reads it.

DRS (Basic Version)

- A discourse representation structure (DRS) K is a pair $\langle U_{K},\,C_{K}\rangle,$ where
 - U_K is a set of discourse referents
 - C_{K} is a set of conditions
- (Fully reduced) conditions:
 - $R(u_1, \ldots, u_n)$ R n-place relation, $u_i \in U_K$
 - u = v $u, v \in U_K$
 - u = a $u \in U_{\kappa}$, a is proper name
- Reducible conditions: Conditions of form α or $\alpha(x_1,...,x_n)$, where α is a context-free parse tree.

• A professor owns a book. He reads it.

professor(x) book(y) own(x, y) z = x u = y read(z, u)

Semantic Theory, SS 2012 © M. Pinkal, S. Thater

22

DRS (Basic Version)

- A discourse referent (DR) u is free in DRS K = $\langle U_K, C_K \rangle$, if u is free in one of K's conditions, and u $\notin U_K$.
- A DRS K is closed in K iff no DR occurs free in K.
- A reducible (fully reduced) DRS is a DRS which contains (does not contain) reducible conditions.

DRS Construction Algorithm

25

- Input:
 - a text $\Sigma = \langle S_1, ..., S_n \rangle$
 - a DRS $K_0 \,$ (= $\langle \varnothing, \varnothing \rangle$, by default)
- Repeat for i = 1, ..., n:
 - Add parse tree $P(S_i)$ to the conditions of K_{i-1} .
 - Apply DRS construction rules to reducible conditions of K_{i-1} , until no reduction steps are possible any more. The resulting DRS is K_i , the discourse representation of text $\langle S_1, ..., S_i \rangle$.

- DRS Construction Rule for Personal Pronoun
 - Triggering Configuration:
 - α is reducible condition in DRS K; α contains [_S[_{NP} β] [_{VP} γ]] or [_{VP} [_V γ] [_{NP} β]] as substructure.
 - β is a personal pronoun.
 - Action:
 - Add a new DR x to U_{K} .
 - Replace β in α by x.
 - Select an appropriate DR $y \in U_K$, and add x = y to C_K .

- Triggering Configuration:
 - α is reducible condition in DRS K, containing [_{S[NP} β] [_{VP} γ]] or [_{VP} [_V γ] [_{NP} β]] as a substructure.
 - β is $\epsilon\delta$, ϵ indefinite article
- Action:
 - Add a new DR x to U_{K} .
 - Replace β in α by x.
 - Add $\delta(x)$ to C_{K} .

Semantic Theory, SS 2012 © M. Pinkal, S. Thater

26

DRS Construction Rule for Proper Names

- Triggering Configuration:
 - α is reducible condition in DRS K; α contains [_S[_{NP} β] [_{VP} γ]] or [_{VP} [_V γ] [_{NP} β]] as substructure.
 - β is a proper name.
- Action:
 - Add a new DR x to U_{K} .
 - Replace β in α by x.
 - Add $x = \beta$ to C_{K} .

A more complex example

Semantic Theory, SS 2012 © M. Pinkal, S. Thater

Indefinite NP rule

х S VP ŇP professor(x) recommendsDet SRel Ν à RPro_i book NP ÑР that ŇΡ she likes

Semantic Theory, SS 2012 © M. Pinkal, S. Thater

30

Flattening

DRS-CR for Relative Clauses

- Triggering configuration:
 - $\alpha(x)$ is reducible condition in DRS K; α contains $[N' [N' \beta]]$ [SBel Y]] as a substructure
 - γ is relative clause of the form $\delta\epsilon$, where δ is a relative pronoun and ε a sentence with an NP gap t, δ and t are co-indexed.
- Actions:

ху

- Remove $\alpha(\mathbf{x})$ from C_{κ} .
- Add $\beta(\mathbf{x})$ to C_{κ} .
- Replace the NP gap in ϵ by x, and add the resulting structure to C_{κ} .

Semantic Theory, SS 2012 © M. Pinkal, S. Thater

33

35

Relative Clause Rule

likes

Personal Pronoun Rule

Fully reduced DRS after Flattening

хуz		
professor(x)		
recommends(x, y)		
z = x		
likes(z, y)		

Semantic Theory, SS 2012 © M. Pinkal, S. Thater

The Highest Triggering Configuration Constraint

37

- If two triggering configurations of one or two different DRS construction rules occur in a reducible condition, then first apply the construction rule to the highest triggering configuration.
- The highest triggering configuration is the one whose top node dominates the top nodes of all other triggering configurations.

- A problem: The basic DRS construction algorithm can derive DRSes for both of the following sentences, with the indicated anaphoric binding
 - [A professor]; recommends a book that she; likes
 - *She, recommends a book that [a professor], likes

Semantic Theory, SS 2012 © M. Pinkal, S. Thater

38

DRT: Denotational Interpretation

- Let
 - U_D a set of discourse referents,
 - K = $\langle U_{K}, C_{K} \rangle$ a DRS with $U_{K} \subseteq U_{D}$,
 - M = $\langle U_M, V_M \rangle$ a FOL model structure appropriate for K.
- An *embedding* of K into M is a (partial) function f from U_D to U_M such that U_K ⊆ Dom(f).

Verifying embedding

- An embedding f of K in M verifies K in M: f I=_MK iff f verifies every condition $\alpha \in C_{K}$.
- f verifies condition α in M (f $|=_{M} \alpha$):
 - (i) $f \models_M R(x_1, ..., x_n)$ iff $\langle f(x_1), ..., f(x_n) \rangle \in V_M(R)$
 - (ii) $f \models_M x = a$ iff $f(x) = V_M(a)$
 - (iii) $f \mid_{=_M} x = y$ iff f(x) = f(y)

Semantic Theory, SS 2012 C M. Pinkal, S. Thater

Semantic Theory, SS 2012 © M. Pinkal, S. Thater

41

Example Computation

Let K be the example DRS from above:

 $K = \langle x, y, z, u \rangle$

{professor(x), book(y), own(x,y), read(z,u), z=x, u=y} >

$$\begin{split} f \mid &=_{\mathsf{M}} \mathsf{K} \text{ iff } f \text{ verifies every condition } \alpha \in \mathsf{C}_{\mathsf{K}}, \text{ i.e.:} \\ f \mid &=_{\mathsf{M}} \mathsf{professor}(x) \land f \mid =_{\mathsf{M}} \mathsf{book}(y) \text{ } f \mid =_{\mathsf{M}} \land \mathsf{own}(x,y) \land \\ f \mid &=_{\mathsf{M}} \mathsf{read}(z,u) \land f \mid =_{\mathsf{M}} z = x \land f \mid =_{\mathsf{M}} u = y \\ \text{which holds iff:} \\ f(x) &\in \mathsf{V}_{\mathsf{M}}(\mathsf{professor}) \land f(y) \in \mathsf{V}_{\mathsf{M}}(\mathsf{book}) \land \langle f(x), f(y) \rangle \in \mathsf{V}_{\mathsf{M}}(\mathsf{own}) \land \end{split}$$

 $\langle f(z), f(u) \rangle \in V_M(read) \land f(z)=f(x) \land f(u)=f(y)$

Simplification

 $f \models_M K iff$

$$\begin{split} f(x) &\in V_{M}(\text{professor}) \land f(y) \in V_{M}(\text{book}) \land \langle f(x), f(y) \rangle \in V_{M}(\text{own}) \land \\ &\langle f(z), f(u) \rangle \in V_{M}(\text{read}) \land f(z) = f(x) \land f(u) = f(y) \\ \text{iff} \\ f(x) &\in V_{M}(\text{professor}) \land f(y) \in V_{M}(\text{book}) \land \langle f(x), f(y) \rangle \in V_{M}(\text{own}) \land \\ &\langle f(x), f(u) \rangle \in V_{M}(\text{read}) \land f(u) = f(y) \end{split}$$

42

Simplification

$f \mid =_{M} K$ iff

- $$\begin{split} f(x) &\in V_{M}(\text{professor}) \land f(y) \in V_{M}(\text{book}) \land \langle f(x), f(y) \rangle \in V_{M}(\text{own}) \land \\ &\langle f(z), f(u) \rangle \in V_{M}(\text{read}) \land f(z) = f(x) \land f(u) = f(y) \\ \text{iff} \\ f(x) &\in V_{M}(\text{professor}) \land f(y) \in V_{M}(\text{book}) \land \langle f(x), f(y) \rangle \in V_{M}(\text{own}) \land \\ &\langle f(x), f(u) \rangle \in V_{M}(\text{read}) \land f(u) = f(y) \\ \text{iff} \\ f(x) &\in V_{M}(\text{professor}) \land f(y) \in V_{M}(\text{book}) \land \langle f(x), f(y) \rangle \in V_{M}(\text{own}) \land \\ &\langle f(x), f(y) \rangle \in V_{M}(\text{read}) \end{split}$$
- Semantic Theory, SS 2012 © M. Pinkal, S. Thater
- Basic features of DRT

45

- DRT models linguistic meaning as anaphoric potential (through DRS construction) plus truth conditions (through model embedding).
- In particular, DRT explains the ambivalent character of indefinite NPs: Expressions that introduce new reference objects into context, and are truth conditionally equivalent to existential quantifiers.

- Let K be a closed DRS and M be an appropriate model structure for K.
- K is true in M iff there is a verifying embedding f of K in M such that Dom(f) = U_K

Semantic Theory, SS 2012 © M. Pinkal, S. Thater

46

Translation of DRSes to FOL

• DRS K = $\langle \{x_1, ..., x_n\}, \{c_1, ..., c_k\} \rangle$

 $\begin{array}{c} x_1 \dots x_n \\ c_1 \dots c_n \end{array}$

is truth-conditionally equivalent to the following FOL formula: $\exists x_1...\exists x_n[c_1 \land ... \land c_k]$