Semantic Theory Lecture 9: Generalized Quantifiers

Manfred Pinkal & Stefan Thater FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes

Summer 2012

Generalized Quantifiers

- Every student works
 - $\forall x(student'(x) \rightarrow work'(x))$
 - Every student $\mapsto \lambda Q \forall x(student'(x) \rightarrow Q(x))$
 - $\llbracket Every \ student \rrbracket^{M} = \{ \ P \subseteq U_{M} \mid \ \llbracket student \rrbracket \subseteq P \ \}$
- A generalized quantifier is a set of properties
 - property = set of individuals
- A sentence of the form [s NP VP] is true iff $\llbracket VP \rrbracket \in \llbracket NP \rrbracket$
 - [[Every student works]] = 1 iff [[work]] ∈ [[every student]]

2

Generalized Quantifier Theory

- What formal properties do quantifiers have?
- What natural subclasses can be distinguished?
- Which subclasses actually represent meanings of natural language noun phrases?

Negative Polarity Items

- a. John needn't go there
 b. *John need go there
- (2) a. Nobody saw **any**thing
 - b. *Somebody saw **any**thing
- (3) a. No student has ever been in Saarbrückenb. *Some student has ever been in Saarbrücken
- Negative polarity items (any, ever, ...) ⇒ items that can occur only in "negative contexts"
- Question: What licenses negative polarity items?

8

Coordination

- (1) No man and few women walked
- (2) None of the girls and at most three boys walked
- (3) *A man and few women walked
- (4) *John and no woman saw Jane
- Question: which noun phrases can be coordinated?

11

Inference Patterns

- (1) All men walked rapidly |= All men walked
- (2) No man **walked** ⊨ No man **walked rapidly**
- (3) A girl **smoked a cigar** \models A girl **smoked**
- (4) Few girls **smoked** ⊨ Few girls **smoked** a **cigar**

Upward Monotonicity

- A quantifier Q is upward monotonic in M = (U, V) iff Q is closed under supersets:
 - for all X, $Y \subseteq U$: if $X \in Q$ and $X \subseteq Y$, then $Y \in Q$
- A noun phrase is upward monotonic if it denotes an upward monotonic quantifier.

14

Downward Monotonicity

- No man walked ⊨
 No man walked rapidly
- (2) Not every woman was asleep ⊨ Not every woman was dreaming
- (3) Less than half of the girls smoked ⊨
 Less than half of the girls smoked cigars
- (4) Few boys were playing ⊨
 Few boys were playing out on the street

17

Downward Monotonicity

- A quantifier Q is **downward monotonic** in M = (U, V) iff Q is closed under inclusion:
 - for all X, $Y \subseteq U$: if $X \in Q$ and $X \supseteq Y$, then $Y \in Q$
- A noun phrase is downward monotonic if it denotes a downward monotonic quantifier.

19

Negative Polarity Items

- (1) a. John needn't go thereb. *John need go there
- (2) a. Nobody saw anything
 - b. *Somebody saw anything
- (3) a. No student has ever been in Saarbrückenb. *Some student has ever been in Saarbrücken
- ⇒ negative polarity items are licensed only in downward monotonic contexts.

20

Coordination

- (1) No man and few women walked
- (2) None of the girls and at most three boys walked
- (3) *A man and few women walked
- (4) *John and no woman saw Jane
- Non-comparative noun phrases can be coordinated iff they have the same direction of monotonicity.

Coordination

- (1) *A man and few women walked
- (2) A man but few women walked
- (3) *John and no woman saw Jane
- (4) John but no woman saw Jane
- Coordination with the connective "but" requires noun phrases of different direction of monotonicity.

22

Language Universals

- Monotonicity Constraint (Barwise & Cooper 1981) The simple noun phrases of any natural language express monotone quantifiers or conjunctions of monotone quantifiers.
- Simple noun phrase: Proper names or noun phrases of the form [NP DET N]

23

Negation of Quantifiers

- **External negation:** $\neg Q = \{ P \subseteq U_M \mid P \notin Q \}$
 - \neg [all N]] = { P \subseteq U_M | P \notin [all N]] }
 - $= \{ \mathsf{P} \subseteq \mathsf{U}_{\mathsf{M}} \mid \llbracket \mathsf{N} \rrbracket \cap \mathsf{P} \neq \llbracket \mathsf{N} \rrbracket \}$
 - \neg [all N]] = [[not all N]]
- Internal negation: $Q \neg = \{ P \subseteq U_M \mid (U_M P) \in Q \}$
 - $[[all N]] \neg = \{ P \subseteq U_M \mid (U_M P) \in Q \}$ $= \{ P \subseteq U_M \mid [[N]] \cap (U_M P) \neq \emptyset \}$ $= \{ P \subseteq U_M \mid [[N]] \cap P = \emptyset \}$
 - [[all N]]¬ = [[no N]]

Determiners

- Every man walked $\mapsto \forall x(man'(x) \rightarrow walk'(x))$
 - Every $\Rightarrow \lambda P \lambda Q \forall x (P(x) \rightarrow Q(x))$
 - $[[Every]](A)(B) = 1 \text{ iff } A \subseteq B$
- We can consider determiners as expressions that take a noun and a verb phrase to form a sentence.
- Semantically, the interpretation of a determiner can be seen as a relation between two sets.

Persistence A determiner D is persistent in M iff for all X, Y, Z: if D(X, Z) and X ⊆ Y, then D(Y, Z) Persistence test: If [[N₁]] ⊆ [[N₂]], then DET N₁ VP ⊨ DET N₂ VP Some men walked ⊨ Some human beings walked At least four girls were smoking ⊨ At least four women were smoking ⊨ At least four women were smoking.

28

Antipersistence

- A determiner D is antipersistent in M iff for all X,Y,Z:
 - if D(X, Z) and $Y \subseteq X$, then D(Y, Z)
- Antipersistence test:
 - If $[N_2] \subseteq [N_1]$, then DET $N_1 VP \models$ DET $N_2 VP$
 - All children walked ⊨ All toddlers walked
 - No woman was smoking ⊨ No girl was smoking
 - At most three Englishmen agreed ⊨ At most three Londoners agreed.

29

Persistence and Monotonicity

- Persistence and monotonicity are closely related:
 - Persistence (antipersistence) is upward (downward) monotonicity of the first argument.
 - Upward (downward) monotonicity of noun phrases is upward (downward) monotonicity of the second argument of the determiner in the NP.
- Terminology:
 - left-monotonicity (1mon and ↓mon)
 - right-monotonicity (mon1 and mon1)

Lives on

- A quantifier Q lives on X iff for all Y,
 - $Y \in Q$ iff $X \cap Y \in Q$
- Universal (Barwise & Cooper 1981, cited from Gamut) In every natural language, simple determiners together with an N yield an NP which lives on [N]
- Apparent exception: only
 - Only men smoke cigars ⇔
 Only men are men that smoke cigars
 - ⇒ "only" not a determiner?

Literature

- L.T.F. Gamut. Logic, Language, and Meaning. Vol 2. Chapter 7.
- Partee, ter Meulen, Wall. Mathematical Methods for Linguists. Chapter 14.
- Jon Barwise & Robin Cooper. Generalized Quantifiers. Linguistics and Philosophy. 1981.