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Generalized Quantifiers

■ Every student works 
■ ∀x(student’(x) → work’(x))
■ Every student ↦ λQ∀x(student’(x) → Q(x))
■ ⟦Every student⟧M = { P ⊆ UM |  ⟦student⟧ ⊆ P }

■ A generalized quantifier is a set of properties
■ property = set of individuals

■ A sentence of the form [S NP VP] is true iff ⟦VP⟧ ∈ ⟦NP⟧
■ ⟦Every student works⟧ = 1 iff ⟦work⟧ ∈ ⟦every student⟧
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⟦every student⟧

■ ⟦every student⟧ denotes the set of properties that 
apply to every student (i.e., all supersets of ⟦student⟧)
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⟦student⟧



⟦a student⟧

■ ⟦a student⟧ denotes the set of properties that apply to 
at least one student.
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⟦student⟧

⟦two students⟧

■ ⟦two students⟧ denotes the set of properties that 
apply to at least (exactly) two students.
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⟦student⟧

⟦Bill⟧

■ ⟦Bill⟧ denotes the set of properties that apply to Bill
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Bill



Noun Phrase Interpretations

+ ⟦all N⟧M+= { P ⊆ UM | ⟦N⟧ ∩ P = ⟦N⟧ }

+ ⟦a N⟧M+= { P ⊆ UM | ⟦N⟧ ∩ P ≠ ∅ }

+ ⟦not all N⟧M+= { P ⊆ UM | ⟦N⟧ ∩ P ≠ ⟦N⟧ }

+ ⟦no N⟧M+= { P ⊆ UM | ⟦N⟧ ∩ P = ∅ }

+ ⟦exactly n N⟧M+= { P ⊆ UM | card(⟦N⟧ ∩ P) = n }

+ ⟦at most n N⟧M+= { P ⊆ UM | card(⟦N⟧ ∩ P) ≤ n }

+ ⟦at least n N⟧M+= { P ⊆ UM | card(⟦N⟧ ∩ P) ≥ n }

7

Generalized Quantifier Theory

■ What formal properties do quantifiers have?

■ What natural subclasses can be distinguished?

■ Which subclasses actually represent meanings of 
natural language noun phrases?
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Negative Polarity Items

(1) a.+John needn’t go there
b.+*John need go there

(2) a.+Nobody saw anything
b.!*Somebody saw anything

(3) a.+No student has ever been in Saarbrücken
b.+*Some student has ever been in Saarbrücken

■ Negative polarity items (any, ever, …)
⇒ items that can occur only in “negative contexts” 

■ Question: What licenses negative polarity items? 
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There-Sentences

(1) There is someone in the garden

(2) There is no one in the garden

(3) There are two unicorns in the garden

(4) *There is/are everyone in the garden

(5) *There is John in the garden

(6) *There are the two unicorns in the garden 

■ Question: which noun phrases can appear in “there” 
sentences (and why)?

■ Note: as exclamations (4) - (6) are correct
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Coordination

(1) No man and few women walked

(2) None of the girls and at most three boys walked

(3) *A man and few women walked

(4) *John and no woman saw Jane

■ Question: which noun phrases can be coordinated?
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(1) All men walked rapidly ⊨ All men walked

(2) No man walked ⊨ No man walked rapidly

(3) A girl smoked a cigar ⊨ A girl smoked

(4) Few girls smoked ⊨ Few girls smoked a cigar 

(1) All men walked rapidly ⊨ All men walked

(2) No man walked ⊨ No man walked rapidly

(3) A girl smoked a cigar ⊨ A girl smoked

(4) Few girls smoked ⊨ Few girls smoked a cigar 

Inference Patterns
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Upward Monotonicity

■ All men walked rapidly ⊨ All men walked

■ Note: ⟦walked rapidly⟧ ⊆ ⟦walked⟧

■ A girl smoked a cigar ⊨ A girl smoked
■ Note: ⟦smoked a cigar⟧ ⊆ ⟦smoked⟧

■ Observation:
A sentence [S NP VP] remains true if the denotation of 
the verb phrase is made “larger”
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Upward Monotonicity

■ A quantifier Q is upward monotonic in M = ⟨U, V⟩ iff Q 
is closed under supersets:
■ for all X, Y ⊆ U: if X ∈ Q and X ⊆ Y, then Y ∈ Q

■ A noun phrase is upward monotonic if it denotes an 
upward monotonic quantifier.
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Upward Monotonicity Tests

■ If ⟦VP1⟧ ⊆ ⟦VP2⟧, then NP VP1 ⊨ NP VP2

■ All men walked rapidly ⊨ All men walked
■ No man walked rapidly ⊭ No man walked
■ Note: ⟦walked rapidly⟧ ⊆ ⟦walked⟧

■ NP VP1 and VP2 ⊨ NP VP1 and NP VP2

■ All men smoked and drank ⊨
All men smoked and all men drank

■ No man smoked and drank ⊭
No man smoked and no man drank

■ Note: ⟦VP1 and VP2⟧ = ⟦VP1⟧ ∩ ⟦VP2⟧
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Upward Monotonicity

■ The set of upward monotonic quantifiers is closed under 
conjunction and disjunction:
■ the intersection (union) of two upward monotonic 

quantifiers is an upward monotonic quantifier.

■ All boys and a girl walked rapidly ⊨ 
All boys and a girl walked

■ Note: 
■ ⟦NP1 and NP2⟧ = ⟦NP1⟧ ∩ ⟦NP2⟧
■ ⟦NP1 or NP2⟧ = ⟦NP1⟧ ∪ ⟦NP2⟧
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Downward Monotonicity

(1) No man walked ⊨ 
No man walked rapidly

(2) Not every woman was asleep ⊨
Not every woman was dreaming

(3) Less than half of the girls smoked ⊨
Less than half of the girls smoked cigars

(4) Few boys were playing ⊨
Few boys were playing out on the street 
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Downward Monotonicity

■ A quantifier Q is downward monotonic in M = ⟨U, V⟩ 
iff Q is closed under inclusion:
■ for all X, Y ⊆ U: if X ∈ Q and X ⊇ Y, then Y ∈ Q

■ A noun phrase is downward monotonic if it denotes a 
downward monotonic quantifier.
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Downward Monotonicity Tests

■ If ⟦VP1⟧ ⊇ ⟦VP2⟧, then NP VP1 ⊨ NP VP2

■ All men walked  ⊭ All men walked rapidly
■ No man walked ⊨ No man walked rapidly
■ Note: ⟦walked⟧ ⊇ ⟦walked rapidly⟧

■ NP VP1 or VP2 ⊨ NP VP1 and NP VP2

■ Neither girl was drinking or smoking ⊨
Neither girl was drinking and neither girl was smoking.

■ All boys sing or dance ⊭
All boys sing and all boys dance.

■ Note: ⟦VP1 or VP2⟧ = ⟦VP1⟧ ∪ ⟦VP2⟧
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Negative Polarity Items

(1) a.+John needn’t go there
b.+*John need go there

(2) a.+Nobody saw anything
b.+*Somebody saw anything

(3) a.+No student has ever been in Saarbrücken
b.+*Some student has ever been in Saarbrücken

■ ⇒ negative polarity items are licensed only in downward 
monotonic contexts.
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Coordination

(1) No man and few women walked

(2) None of the girls and at most three boys walked

(3) *A man and few women walked

(4) *John and no woman saw Jane

■ Non-comparative noun phrases can be coordinated iff 
they have the same direction of monotonicity.
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Coordination

(1) *A man and few women walked

(2) A man but few women walked

(3) *John and no woman saw Jane

(4) John but no woman saw Jane 

■ Coordination with the connective “but” requires noun 
phrases of different direction of monotonicity.
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Language Universals

■ Monotonicity Constraint (Barwise & Cooper 1981)
The simple noun phrases of any natural language 
express monotone quantifiers or conjunctions of 
monotone quantifiers.

■ Simple noun phrase: Proper names or noun phrases 
of the form [NP DET N] 
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Negation of Quantifiers

■ External negation: ¬Q = { P ⊆ UM | P ∉ Q } 
■ ¬⟦all N⟧+= { P ⊆ UM | P ∉ ⟦all N⟧ }

+ = { P ⊆ UM | ⟦N⟧ ∩ P ≠ ⟦N⟧ } 
■ ¬⟦all N⟧+= ⟦not all N⟧

■ Internal negation: Q¬ = { P ⊆ UM | (UM - P) ∈ Q }
■ ⟦all N⟧¬+= { P ⊆ UM | (UM - P) ∈ Q }

+ = { P ⊆ UM | ⟦N⟧ ∩ (UM - P) ≠ ∅ }
+ = { P ⊆ UM | ⟦N⟧ ∩ P = ∅ }

■ ⟦all N⟧¬+= ⟦no N⟧
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Negation of Quantifiers

■ If Q is an upward monotonic quantifier, then both ¬Q 
and Q¬ are downward monotonic.

■ If Q is an downward monotonic quantifier, then both ¬Q 
and Q¬ are upward monotonic.
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■ The dual Q* of a quantifier Q in M
■ Q* = ¬Q¬+= { P ⊆ UM | (UM - P) ∈ ¬Q }

+ = { P ⊆ UM | (UM - P) ∉ Q }.

■ If Q is upward monotonic, then Q* is upward monotonic.

■ If Q is downward monotonic, then Q* is downward 
monotonic.

Duals
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all N no N

an N not an N

dual dual

internal negation

internal negation

external negation

Determiners
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■ Every man walked ↦ ∀x(man’(x) → walk’(x))
■ Every ⇒ λPλQ∀x(P(x) → Q(x))
■ ⟦Every⟧(A)(B) = 1 iff A ⊆ B

■ We can consider determiners as expressions that take a 
noun and a verb phrase to form a sentence.

■ Semantically, the interpretation of a determiner can be 
seen as a relation between two sets.



Persistence

■ A determiner D is persistent in M iff for all X, Y, Z: 
■ if D(X, Z) and X ⊆ Y, then D(Y, Z)

■ Persistence test:
■ If ⟦N1⟧ ⊆ ⟦N2⟧, then DET N1 VP ⊨ DET N2 VP
■ Some men walked ⊨

Some human beings walked
■ At least four girls were smoking ⊨

At least four women were smoking.
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Antipersistence

■ A determiner D is antipersistent in M iff for all X,Y,Z: 
■ if D(X, Z) and Y ⊆ X, then D(Y, Z)

■ Antipersistence test:
■ If ⟦N2⟧ ⊆ ⟦N1⟧, then DET N1 VP ⊨ DET N2 VP
■ All children walked ⊨

All toddlers walked
■ No woman was smoking ⊨

No girl was smoking
■ At most three Englishmen agreed ⊨

At most three Londoners agreed.
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Persistence and Monotonicity

■ Persistence and monotonicity are closely related: 
■ Persistence (antipersistence) is upward (downward) 

monotonicity of the first argument.
■ Upward (downward) monotonicity of noun phrases is 

upward (downward) monotonicity of the second argument 
of the determiner in the NP.

■ Terminology:
■ left-monotonicity (↑mon and ↓mon)
■ right-monotonicity (mon↑ and mon↓)
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Left and Right Monotonicity

↑mon↑+ some, at least n, infinitely many

↓mon↑+ all

↓mon↓+ no, at most n, a finite number of

↑mon↓+ not all
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Conservativity 

■ Conservativity: for every A, B ⊆ U
■ Q(A, B) ⇔ Q(A, A ∩ B)

■ Test: D N VP ⇔ D N are N that VP
■ All students work ⇔

All students are students that work
■ Some girls are dancing ⇔

Some girls are girls that are dancing
■ Most teachers are motivated ⇔

Most teachers are teachers that are motivated

32

Lives on

■ A quantifier Q lives on X iff for all Y,
■ Y ∈ Q iff X ∩ Y ∈ Q

■ Universal (Barwise & Cooper 1981, cited from Gamut)
In every natural language, simple determiners together 
with an N yield an NP which lives on ⟦N⟧

■ Apparent exception: only
■ Only men smoke cigars ⇎ 

Only men are men that smoke cigars
■ ⇒ “only” not a determiner?
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