Semantic Theory

Lexical Semantics III

Manfred Pinkal/ Stefan Thater Saarland University Summer 2012

Mass Nouns and Plurals

• water, gold, wood, money, soup, ...

Mass nouns behave like plurals in different respects:

- Mass nouns and plurals are closed under summation: students plus students is students water plus water is water
- Mass nouns and plurals combine with cardinalities:
 5 students 5 liters of water
- Mass nouns and plurals share grammatical patterns:
 e.g., indefinite plural NPs and indefinite mass term NPs don't take an article in English and German

Semantic Theory 2012 © Manfred Pinkal, Saarland University

2

Mass Nouns vs. Plurals

3

- Mass nouns are divisive, unlike plurals: An amount of water can always be subdivided into proper parts, which are water again.
- Mass nouns are a challenge for model theoretic semantics: Their denotations cannot be reduced to atomic individuals.

Model structure for mass nouns

 We add another sort of entities, the "portions of matter" M, to the model structure, and distinguish an individual part and a material part relation, writing ≤_i for the former, and ≤_m for the latter:

 $\mathsf{M} = \langle \langle \mathsf{U}, \leq_i \rangle, \, \langle \mathsf{M}, \leq_m \rangle, \, \mathsf{V} \rangle$

- U∩M=Ø
- ⟨U, ≤_i⟩ is an atomic join semi-lattice
- $\langle M, \leq_m \rangle$ is a non-atomic and dense join semi-lattice
- V is a value assignment function
- In the logical representation language, we add a material fusion operation and a material part relation, and distinguish ⊕_i, ⊕_m, ⊲_i, and ⊲_m.
- We use *x*, *y*, *z*, ... as variables referring to matters.

Model structure for mass nouns

- There is close relationship between the domain of (atomic and sum) individuals and material entities: Each individual consists of a specific portion of matter.
- To model the object-matter relation, we introduce a "materialization" function *h* into the model structure: a homomorphism that maps (atomic and pluralic) individuals to the matter they consist of.
- $M = \langle \langle U, \leq_i \rangle, \langle M, \leq_m \rangle, h, V \rangle$
- Because h is a homomorphism, the following hold:
 a ≤_i b iff h(a) ≤_m h(b)
 h(a ⊔, b) = h(a) ⊔_m h(b)
- We express the materialization function with the new logical operator *m* (type <e,e>): [*m*(α)]^{M,g} = *h*([[α]^{M,g}), where α:e is an expression denoting an individual entity.

Semantic Theory 2012 © Manfred Pinkal, Saarland University

Back to Event Semantics

5

- A model structure with events and temporal precedence is defined as
 - $M = (U, E, <, e_u, V),$
 - with U \cap E = Ø,
 - $< \subseteq E \times E$ an asymmetric relation (temporal precedence)
 - $e_u \in E$ the utterance event
 - V an interpretation function like in standard FOL, with
 - $D_e = U \cup E$

- The/A ring is made of gold $\rightarrow \exists y(ring(y) \land gold(m(y)))$
- The/A ring contains gold $\Rightarrow \exists y \exists x (ring(y) \land x \triangleleft_m m(y) \land gold(x))$

Semantic Theory 2012 © Manfred Pinkal, Saarland University

6

Model Structure with Sub-Events

• In analogy to plural semantics, we can represent subevent relations via a join semi-lattice.

 $\mathsf{M}=(\mathsf{U},\,\langle\mathsf{E},\,\leq_\mathsf{e}\rangle\,,\,<,\,e_{\scriptscriptstyle U},\,\mathsf{V}),$

- with U∩E = Ø,
- $\leq E \times E$ an asymmetric relation (temporal precedence)
- $e_u \in E$ the utterance event
- $\langle E, \leq_e \rangle$ a join semi-lattice
- V an interpretation function
- The model structure must observe some additional constraints on < and ≤_e, e.g.:

If $e_1 < e_2$, $e_1' \leq_e e_1$, $e_2' \leq_e e_2$, then $e_1' < e_2'$.

If $e_1' o e_2'$, $e_1' \leq_e e_1$, $e_2' \leq_e e_2$, then $e_1 o e_2$.

7

Model Structure with Sub-Events

Application:

 Modeling complex events as sequences of temporally ordered sub-events (e.g. "scripts" like: visit a restaurant, shopping in the supermarket)

Processes vs. proper events

- John walked from 8 a.m. to 11 a.m. ⊨ John walked from 9 to 10 a.m.
- John walked from 8 to 9 and from 9 to 10 ⊨ John walked from 8 to 10 a.m.
- John painted a picture from 8 a.m. to 11 a.m. ⊢ John painted a picture from 9 to 10 a.m.

Semantic Theory 2012 © Manfred Pinkal, Saarland University

Processes and mass terms

9

- Processes are cumulative and divisive:
- $rain(e_1)$, $rain(e_2) \vDash rain(e_1 \oplus_e e_2)$
- $e_1 \triangleleft_e e_2$, rain(e_2) \vDash rain(e_1)
- Assume individual events and "event matter", in analogy to the semantics of common nouns, and represent them through different join semi-lattices:
 M = (⟨U, ≤_i⟩, ⟨M, ≤_m⟩, h, ⟨E_i, ≤_{ei}⟩, ⟨E_m, ≤_{em}⟩, <, e_u, V)
- ... plus a materialisation function that maps individual events to processes:
 M = ((U, ≤_i), (M, ≤_m), h, (E_i, ≤_{ei}), (E_m, ≤_{em}), h_e, <, e_u, V)
- Add relations ⊲_{ei}, ⊲_{em}, and operators ⊕_{ei}, ⊕_{em}, m_e to the representation language, and give them the straightforward semantic interpretation in terms of ≤_{ei}, ≤_{em}, ⊔_{ei}, ⊔_{em}, h_e.

11

Semantic Theory 2012 $\ensuremath{\mathbb{C}}$ Manfred Pinkal, Saarland University

10

The Progressive

The progressive tense has the materialization function h_e as its semantics, which maps individual events (the telic action of John's eating an apple) to the process or activity carried out to bring the result about.

- John is eating an apple
- Progressive operator: PROG := $\lambda E \lambda e \exists e(E(e) \land e = m_e(e))$
- $\lambda E \lambda \boldsymbol{e} \exists e(E(e) \land \boldsymbol{e} = m_e(e))((\lambda e \exists x[apple(x) \land eat(e, j^*, x)])))$ $\Leftrightarrow_{B} \lambda \boldsymbol{e} \exists e(\exists x[apple(x) \land eat(e, j^*, x)] \land \boldsymbol{e} = m_e(e))$
- PRES : $\lambda E \exists e(E(e) \land e_u)$
- λE∃e(E(e) ∧ e o e_u) (λe ∃e(∃x[apple(x) ∧ eat(e, j*, x)] ∧ e = m_e(e)))

 $\Leftrightarrow_{\beta} \exists e (\exists e \exists x [apple(x) \land eat(e, j^*, x)] \land e = m_e(e) \land e \circ e_u)$ Semantic Theory 2012 © Manfred Pinkal, Saarland University