Semantic Theory

Lexical Semantics III

Manfred Pinkal/ Stefan Thater

Saarland University
Summer 2012

Mass Nouns vs. Plurals

- Mass nouns are divisive, unlike plurals: An amount of water can always be subdivided into proper parts, which are water again.
- Mass nouns are a challenge for model theoretic semantics: Their denotations cannot be reduced to atomic individuals.
- water, gold, wood, money, soup, ...

Mass nouns behave like plurals in different respects:

- Mass nouns and plurals are closed under summation: students plus students is students water plus water is water
- Mass nouns and plurals combine with cardinalities: 5 students - 5 liters of water
- Mass nouns and plurals share grammatical patterns: e.g., indefinite plural NPs and indefinite mass term NPs don't take an article in English and German

Semantic Theory 2012 © Manfred Pinkal, Saarland University

Model structure for mass nouns

- We add another sort of entities, the "portions of matter" M, to the model structure, and distinguish an individual part and a material part relation, writing \leq_{i} for the former, and \leq_{m} for the latter:

$$
\mathrm{M}=\left\langle\left\langle\mathrm{U}, \leq_{i}\right\rangle,\left\langle\mathrm{M}, \leq_{\mathrm{m}}\right\rangle, \mathrm{V}\right\rangle
$$

- U $\mathrm{U} M=\varnothing$
- $\left\langle\mathrm{U}, \leq_{\mathrm{i}}\right\rangle$ is an atomic join semi-lattice
- $\left\langle\mathrm{M}, \leq_{m}\right\rangle$ is a non-atomic and dense join semi-lattice
- V is a value assignment function
- In the logical representation language, we add a material fusion operation and a material part relation, and distinguish $\oplus_{\mathrm{i}}, \oplus_{\mathrm{m}}, \triangleleft_{\mathrm{i}}$, and $\triangleleft_{\mathrm{m}}$.
- We use x, y, z, \ldots as variables referring to matters.

Examples

- There is close relationship between the domain of (atomic and sum) individuals and material entities: Each individual consists of a specific portion of matter.
- To model the object-matter relation, we introduce a "materialization" function h into the model structure: a homomorphism that maps (atomic and pluralic) individuals to the matter they consist of.
- $\mathrm{M}=\left\langle\left\langle\mathrm{U}, \leq_{\mathrm{i}}\right\rangle,\left\langle\mathrm{M}, \leq_{\mathrm{m}}\right\rangle, h, \mathrm{~V}\right\rangle$
- Because h is a homomorphism, the following hold:
$\mathrm{a} \leq_{\mathrm{i}} \mathrm{b}$ iff $h(\mathrm{a}) \leq_{\mathrm{m}} h(\mathrm{~b})$
$h\left(\mathrm{a} \sqcup_{\mathrm{i}} \mathrm{b}\right)=h(\mathrm{a}) \sqcup_{\mathrm{m}} h(\mathrm{~b})$
- We express the materialization function with the new logical operator m (type <e,e>): $\llbracket m(\alpha) \rrbracket^{\mathrm{M}, g}=h\left(\llbracket \alpha \rrbracket^{\mathrm{M}, \mathrm{g}}\right.$), where α : e is an expression denoting an individual entity.

Back to Event Semantics

- A model structure with events and temporal precedence is defined as

$$
\mathrm{M}=\left(\mathrm{U}, \mathrm{E},<, e_{u}, \mathrm{~V}\right),
$$

with $U \cap E=\varnothing$,
$<\subseteq$ E×E an asymmetric relation (temporal precedence)
$e_{u} \in E$ the utterance event
V an interpretation function like in standard FOL, with $D_{e}=U \cup E$

```
The/A ring is made of gold
    \exists
```

The/A ring contains gold
$\rightarrow \exists y \exists x\left(\operatorname{ring}(\mathrm{y}) \wedge \boldsymbol{x} \triangleleft_{\mathrm{m}} m(\mathrm{y}) \wedge \operatorname{gold}(\mathrm{x})\right)$

Model Structure with Sub-Events

- In analogy to plural semantics, we can represent subevent relations via a join semi-lattice.
$\mathrm{M}=\left(\mathrm{U},\left\langle\mathrm{E}, \leq_{\mathrm{e}}\right\rangle,<, e_{u}, \mathrm{~V}\right)$, with $U \cap E=\varnothing$,
$<\subseteq \mathrm{E} \times \mathrm{E}$ an asymmetric relation (temporal precedence)
$e_{u} \in \mathrm{E}$ the utterance event
$\left\langle E, \leq_{e}\right\rangle$ a join semi-lattice
V an interpretation function
- The model structure must observe some additional constraints on < and \leq_{e}, e.g.:

> If $e_{1}<e_{2}, e_{1}^{\prime} \leq_{e} e_{1}, e_{2}^{\prime} \leq_{e} e_{2}$, then $e_{1}^{\prime}<e_{2}^{\prime}$.
> If $e_{1}^{\prime} o e_{2}^{\prime}, e_{1}^{\prime} \leq_{e} e_{1}, e_{2}^{\prime} \leq_{e} e_{2}$, then $e_{1} o e_{2}$.

Model Structure with Sub-Events

Processes vs. proper events

- John walked from 8 a.m. to 11 a.m. \vDash John walked from 9 to 10 a.m.
- John walked from 8 to 9 and from 9 to $10 \vDash$ John walked from 8 to 10 a.m
- John painted a picture from 8 a.m. to 11 a.m. \neq John painted a picture from 9 to 10 a.m.

The Progressive

The progressive tense has the materialization function h_{e} as its semantics, which maps individual events (the telic action of John's eating an apple) to the process or activity carried out to bring the result about.

- John is eating an apple
- Progressive operator: PROG := $\lambda E \lambda \boldsymbol{e} \exists \mathrm{e}\left(\mathrm{E}(\mathrm{e}) \wedge \boldsymbol{e}=\mathrm{m}_{\mathrm{e}}(\mathrm{e})\right)$
- $\lambda E \lambda \boldsymbol{e} \exists \mathrm{e}\left(\mathrm{E}(\mathrm{e}) \wedge \boldsymbol{e}=\mathrm{m}_{\mathrm{e}}(\mathrm{e})\right)\left(\left(\lambda \mathrm{e} \exists \mathrm{x}\left[\mathrm{apple}(\mathrm{x}) \wedge\right.\right.\right.$ eat $\left.\left.\left.\left.\left(\mathrm{e}, \mathrm{j}^{*}, \mathrm{x}\right)\right]\right)\right)\right)$ $\Leftrightarrow_{\beta} \lambda \boldsymbol{e} \exists \mathrm{e}\left(\exists \mathrm{x}\left[\right.\right.$ apple $(\mathrm{x}) \wedge$ eat $\left.\left.\left(\mathrm{e}, \mathrm{j}^{*}, \mathrm{x}\right)\right] \wedge \boldsymbol{e}=\mathrm{m}_{\mathrm{e}}(\mathrm{e})\right)$
- PRES: $\lambda E \exists e\left(E(e) \wedge e o e_{u}\right)$
- $\lambda E \exists e\left(E(e) \wedge e o e_{u}\right)\left(\lambda \boldsymbol{e} \exists \mathrm{e}\left(\exists x\left[a p p l e(x) \wedge\right.\right.\right.$ eat $\left.\left(e, j^{*}, x\right)\right] \wedge \boldsymbol{e}=$ $\left.\mathrm{m}_{\mathrm{e}}(\mathrm{e})\right)$)
$\Leftrightarrow_{\beta} \exists \boldsymbol{e}\left(\exists \mathrm{e} \exists \mathrm{x}\left[\right.\right.$ apple $(\mathrm{x}) \wedge$ eat $\left.\left(\mathrm{e}, \mathrm{j}^{*}, \mathrm{x}\right)\right] \wedge \boldsymbol{e}=\mathrm{m}_{\mathrm{e}}(\mathrm{e}) \wedge \boldsymbol{e}$ oe $\left.\mathrm{e}_{\mathrm{u}}\right)$
Semantic Theory 2012 © Manfred Pinkal, Saarland University

