Semantic Theory

Lexical Semantics I

Manfred Pinkal/ Stefan Thater
Saarland University
Summer 2012

Davidson's problem

Interpretation of adjunct constructions:
(1) The gardener killed the baron at midnight in the park
\Rightarrow kill $_{4}(\mathrm{~g}, \mathrm{~b}, \mathrm{~m}, \mathrm{p})$
(2) The gardener killed the baron at midnight
$\Rightarrow \operatorname{kill}_{3}(\mathrm{~g}, \mathrm{~b}, \mathrm{~m})$
(3) The gardener killed the baron in the park
\Rightarrow kill $_{2}(\mathrm{~g}, \mathrm{~b}, \mathrm{p})$
(4) The gardener killed the baron
\Rightarrow kill $_{1}(\mathrm{~g}, \mathrm{~b})$

- John loves Mary
- Mary kicked John
- Bill is coughing
- Bill saw an elephant
- Bill saw an accident
- Bill travelled to Paris
- Bill's travel started in Paris

Davidson's Problem

- Problem: How can the systematic logical entailment relations between the different uses of kill be explained?

- Naïve FOL interpretation does not solve the problem:
- kill $_{4}(\mathrm{~g}, \mathrm{~b}, \mathrm{~m}, \mathrm{p}) \mid \neq \mathrm{kill}_{3}(\mathrm{~g}, \mathrm{~b}, \mathrm{~m})$
- $\operatorname{kill}_{3}(\mathrm{~g}, \mathrm{~b}, \mathrm{~m}) \mid \neq \operatorname{kill}_{1}(\mathrm{~g}, \mathrm{~b})$
- etc.

An Interpretation Alternative

- Determine the maximum arity n of the predicate
- Take n to be the arity of the predicate.
- Bind syntactically empty argument positions with existential quantifier.
(1) \Rightarrow kill (g, b, m, p)
(2) \Rightarrow ヨy kill (g, b, m, y)
(3) $\Rightarrow \exists x$ kill $(\mathrm{g}, \mathrm{b}, \mathrm{x}, \mathrm{p})$
(4) $\Rightarrow \exists x \exists y$ kill (g, b, x, y)
- Problem: What is the maximum arity of a predicate? The gardener killed the baron at midnight in the park under cover of absolute darkness with a gun ...

Davidson's problem solved

- Semantic representation of verbs using events allows an arbitrary number of adjuncts.
- Since adjunct information is attached through conjunction, the entailment problem finds a trivial solution:
$\exists e[\operatorname{kill}(e, g, b) \wedge \operatorname{time}(e, m) \wedge \operatorname{location}(e, p)]$
$I=\quad \exists e[\operatorname{kill}(e, g, b) \wedge \operatorname{time}(e, m)]$

I= $\quad \mathrm{e}[\mathrm{kill}(\mathrm{e}, \mathrm{g}, \mathrm{b})$]

Davidson's Proposal

- Standard FOL-Semantics: two-place verbs denote sets of pairs of individuals.
- Davidson: Verbs denote events.
- More precisely: Verbs expressing events have an additional event argument, which is not realised at linguistic surface:
$\lambda y \lambda x \lambda e$. kill(e, x, y)
- In general, n-place event verbs are represented by relations of arity $\mathrm{n}+1$.
- Adjuncts express two-place relations between events and the respective "circumstantial information" (a time, a location, ...)
- The event variable is existentially bound:

The gardener killed the baron at midnight in the park

$$
\Rightarrow \exists \mathrm{e}[\text { kill }(\mathrm{e}, \mathrm{~g}, \mathrm{~b}) \wedge \operatorname{time}(\mathrm{e}, \mathrm{~m}) \wedge \text { location }(\mathrm{e}, \mathrm{p})]
$$

Semantic Theory 2012 © Manfred Pinkal, Saarland University

Model structure with events

- We enrich model structures with ontological information - in the traditional Aristotelian sense of ontology: The area of philosophy identifying and describing the basic "categories of being and their relations".
- We assume two disjoint classes, or kinds, or sorts of entities:
- A set of "standard individuals" or "objects" U
- A set of events E
- A model structure is defined as

$$
M=(U, E, V),
$$

with $U \cap E=\varnothing$,
V interpretation function like in standard FOL

Sorted (first-order) logic

Added value of event semantics

- We assume a separate inventory of variables for each sort of individuals:
- (Standard) Object variables: $\operatorname{Var}_{\mathrm{u}}=\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$
- Event variables: $\operatorname{Var}_{\mathrm{E}}=\mathrm{e}, \mathrm{e}^{\prime}, \mathrm{e}^{\prime \prime}, \ldots, \mathrm{e}_{1}, \mathrm{e}_{2}, \ldots$
- Variable assignment functions g assign object and event variables individuals of the respective sort-specific domain:
- $\mathrm{g}(\mathrm{x}) \in \mathrm{U}$ for $\mathrm{x} \in \operatorname{Var}_{\mathrm{U}}$
- $\mathrm{g}(\mathrm{e}) \in \mathrm{E}$ for $\mathrm{e} \in \mathrm{Var}_{\mathrm{E}}$
- Quantification ranges over sort-specific domains:
- $\quad[\exists \exists \mathrm{x} \Phi]^{\mathrm{M}, \mathrm{g}}=1 \quad$ iff there is an $a \in U$ s.t. $\left[[\Phi]^{\mathrm{M},[\mathrm{l} / \mathrm{a}]}=1\right.$
- $\quad\left[[\exists \mathrm{E} \Phi]^{\mathrm{M}, \mathrm{g}}=1 \quad\right.$ iff there is an $\mathrm{a} \in \mathrm{E}$ s.t. $[[\Phi]]^{\mathrm{M}, \mathrm{g}[/ a]}=1$

Added value of event semantics

Events as "first-class citizens" enable

- the natural representation of adjunct information
- a natural and uniform interpretation of event verbs and nominal event predicates
- a uniform treatment of NPs and infinitive constructions as verb complements
- an intuitive semantic construction for adjuncts
- a uniform treatment of noun modifiers (adjectives, post-nominal PPs) and adjuncts
- the plausible integration of tense

Uniform treatment of verb complements

- Bill saw an elephant. ヨe $\exists \mathrm{x}$ [see(e, $\mathrm{b}, \mathrm{x}) \wedge$ elephant(x)]
- Bill saw an accident.
$\exists e \exists \mathrm{e}$ [see(e, b, e') ^ accident(e')]
- Bill saw the children play
$\exists \mathrm{J} \mathrm{e}^{\prime}[$ see(e, b, e') ^ play(e', the-children)]

Adjuncts as modifiers

- Treatment of adjuncts as predicate modifiers, in analogy to attributive adjectives: type ((e,t),(e,t)):
- Adjectives modify a predicate over standard objects (represented by a common noun:
- Representation of the intersective adjective red:
$r e d \Rightarrow \lambda F \lambda x\left[F(x) \wedge \operatorname{red}^{*}(x)\right]$
modifying, e.g., $\lambda \times[\operatorname{book}(\mathrm{x})]$
- Adjuncts modify event predicates, represented by the sentence (more precise description follows):
- at midnight $\Rightarrow \lambda \mathrm{E} \lambda \mathrm{e}[\mathrm{E}(\mathrm{e}) \wedge$ time $(\mathrm{e}$, midnight $)]$, modifying, e.g., $\lambda e\left[i t _r a i n s(e)\right]$

Added value of event semantics

Events as "first-class citizens" enable

- the natural representation of adjunct information
- a natural and uniform interpretation of event verbs and nominal event predicates
- a uniform treatment of NPs and infinitive constructions as verb complements
- an intuitive semantic construction for adjuncts
- a uniform treatment of noun modifiers (adjectives, post-nominal PPs) and adjuncts
- the plausible integration of tense

Compositional derivation of event-semantic representations

- kill $\Rightarrow \lambda y \lambda x \lambda e . k i l l(e, x, y):(e,(e,(e, t)))$
- baron $\Rightarrow \mathrm{b}: \mathrm{e}$
- gardener $\Rightarrow \mathrm{g}: \mathrm{e}$
- at midnight $\Rightarrow \lambda \mathrm{E} \lambda \mathrm{e}[\mathrm{E}(\mathrm{e}) \wedge$ time(e, midnight)] : ((e,t),(e,t))
- in the park $\Rightarrow \lambda E \lambda e[E(e) \wedge$ location(e, park)] : ((e,t),(e,t))

$$
\lambda E \lambda e[E(e) \wedge \text { time }(e, \text { midnight })] \quad \lambda e . \operatorname{kill}(e, g, b):(e, t)
$$

$\lambda E \lambda e[E(e) \wedge \operatorname{location}(e$, park $) \quad \lambda e[k i l l(e, g, b) \wedge \operatorname{time}(e$, midnight $)]:(e, t)$
$\lambda e[k i l l(e, g, b) \wedge$ time $(e$, midnight $) \wedge$ location(e, park)] : (e, t)
Existential closure:
$\exists e[k i l l(e, g, b) \wedge$ time $(e$, midnight $) \wedge \operatorname{location}(e$, park $)]: t$

Added value of event semantics

Events as "first-class citizens" enable

- the natural representation of adjunct information
- a natural and uniform interpretation of event verbs and nominal event predicates
- a uniform treatment of NPs and infinitive constructions as verb complements
- an intuitive semantic construction for adjuncts
- a uniform treatment of noun modifiers (adjectives, post-nominal PPs) and adjuncts
- the plausible integration of tense

Added value of event semantics

Events as "first-class citizens" enable

- the natural representation of adjunct information
- a natural and uniform interpretation of event verbs and nominal event predicates
- a uniform treatment of NPs and infinitive constructions as verb complements
- an intuitive semantic construction for adjuncts
- a uniform treatment of noun modifiers (adjectives, post-nominal PPs) and adjuncts
- the plausible integration of tense

Adjuncts and modifiers

Uniform semantic representation for adjuncts and post-nominal modifiers

$$
\text { in the park } \Rightarrow \lambda F \lambda x[F(x) \wedge \text { location }(x, \text { park })]
$$

- Local adjunct:
[IThe gardener killed the baron] in the park]
$\Rightarrow \lambda E \lambda e[E(e) \wedge$ location(e, park)](λ e.kill $(\mathrm{e}, \mathrm{g}, \mathrm{b}))$ $\Leftrightarrow \lambda e[k i l l(e, g, b) \wedge$ location(e, park)]
- Post-nominal modifier of event noun:

The [[murder] in the park]
$\Rightarrow \lambda E \lambda e[E(e) \wedge$ location $(e$, park $)](\lambda e$.murder $(\mathrm{e}))$ $\Leftrightarrow \lambda e[m u r d e r(e) \wedge$ location(e, park)]

- Post-nominal modifier of standard noun

The [[fountain] in the park]
$\Rightarrow \lambda F \lambda x[E(x) \wedge$ location $(x$, park $)](\lambda y$.fountain $(y))$ $\Leftrightarrow \lambda x[f o u n t a i n(x) \wedge$ location $(x$, park $)]$

Semantic Theory 2012 © Manfred Pinkal, Saarland University

Tense

- Natural-language sentences are tensed:

John is walking
John walked
John will walk

- Representation of tense in conventional tense logic:
walk(john)
Pwalk(john)
Fwalk(john)

Classical tense Logic

- Representation of tense with tense operators P and F :
walk(john) Pwalk(john) Fwalk(john)
- Tense-logical model structure: $\mathrm{M}=<\mathrm{U}, \mathrm{T},<, \mathrm{V}>$

$$
-\cup \cap T=\varnothing
$$

- < a linear ordering on T
- V a value assignment function, which assigns
to every non-logical constant α a function from T to appropriate denotations of α
- Interpretation of tense operators:

```
|PA}\mp@subsup{\rrbracket}{}{M,t}=1\mathrm{ iff }\llbracketA\mp@subsup{\rrbracket}{}{M,}\mp@subsup{\textrm{t}}{}{\prime}=1\mathrm{ for at least one t' <t
```

$\llbracket \mathrm{FA} \rrbracket^{\mathrm{M}, \mathrm{t}}=1$ iff $\llbracket \mathrm{A} \rrbracket^{\mathrm{M}, \mathrm{t}^{\prime}}=1$ for at least one $\mathrm{t}^{\prime}>\mathrm{t}$

Temporal Event Structure

- A model structure with events and temporal precedence is defined as

$$
\begin{aligned}
& \mathrm{M}=\left(\mathrm{U}, \mathrm{E},<, e_{u}, \mathrm{~V}\right), \\
& \text { with } \mathrm{U} \cap \mathrm{E}=\varnothing, \\
& <\subseteq \mathrm{E} \times \mathrm{E} \text { an asymmetric relation (temporal precedence) } \\
& e_{u} \in \mathrm{E} \text { the utterance event } \\
& \mathrm{V} \text { an interpretation function like in standard FOL, with } \\
& \mathrm{D}_{\mathrm{e}}=\mathrm{U} \cup \mathrm{E}
\end{aligned}
$$

- Overlapping events:
e o e^{\prime} iff neither $e<e^{\prime}$ nor $e^{\prime}<e$

Temporal Relations

- The door opened, and Mary entered the room.
- John arrived. Then Mary left.
- Mary left, before John arrived
- John arrived. Mary had left already.
- John arrived at 9 p.m.
- The lecture is on Tuesday
- Mozart was born in 1756.
- Mary had left two hours, before John arrived.

Temporal Event Structure II

- An alternative model structure with points and intervals of time:
$\mathrm{M}=\left(\mathrm{U}, \mathrm{E}, \mathrm{T},<, t_{u}, t l, \mathrm{~V}\right)$,
with U, E, and T mutually disjoint,
<a linear ordering on T
$t_{u} \in \mathrm{~T}$ is the utterance time
t / a function from E to intervals of T
V an interpretation function like in standard FOL
- Precedence of events:
$e<e^{\prime}$ iff for all $\mathrm{t} \in \mathrm{t} /(\mathrm{e}), \mathrm{t}^{\prime} \in \mathrm{t} /\left(\mathrm{e}^{\prime}\right): \mathrm{t}<\mathrm{t}^{\prime}$
- Overlapping events:
$e \circ e^{\prime}$ iff $\quad t(\mathrm{e}) \cap t /\left(\mathrm{e}^{\prime}\right) \neq \varnothing$

Tense in Semantic Construction

- Tense is encoded in the verb inflection.
- There are reasons to give stem and inflection of the verb distinct syntactic representations, where inflection is represented as an abstract tense operator commanding the untensed rest of the sentence:

$$
\text { Bill walked: } \quad[\mathrm{s}[\mathrm{~s} \text { Bill [vp walk]] PAST] }
$$

- Semantic representation of tense operators expresses temporal location of reported event w.r.to utterance event:

$$
\begin{aligned}
& P A S T \Rightarrow \lambda E \exists \mathrm{e}\left(\mathrm{E}(\mathrm{e}) \wedge \mathrm{e}<\mathrm{e}_{\mathrm{u}}\right):((\mathrm{e}, \mathrm{t}), \mathrm{t}) \\
& P R E S \Rightarrow \lambda \mathrm{E} \exists \mathrm{e}\left(\mathrm{E}(\mathrm{e}) \wedge \mathrm{e} \circ \mathrm{e}_{\mathrm{u}}\right):((\mathrm{e}, \mathrm{t}), \mathrm{t})
\end{aligned}
$$

- Standard function application effects integration of temporal information and binding of the event variable:

$$
\lambda E \exists e\left(E(e) \wedge e<e_{u}\right) \quad \lambda e \cdot \operatorname{walk}(e, b)
$$

ヨe[walk(e,b) \wedge e < $\left.e_{u}\right]$

Semantic Theory 2012 © Manfred Pinkal, Saarland University

Stative and non-stative verbs

- Mary kicked John : "there is a kicking event, in which Mary and John are involved"
- John knew the answer: "there is a knowing event, in which John and the answer are involved" (?)
- There are verbs expressing states and verbs expressing events (which we call non-stative for the time being)

States: know, believe, have, desire, love

- Events: run, walk, kick, kill, build a house
- Only non-stative verbs come with an extra argument:
- kick(e, x, y)
- $\quad \operatorname{know}(\mathrm{x}, \mathrm{y})$

