Semantic Theory

Lecture 4: Cooper Storage

Manfred Pinkal \& Stefan Thater

FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes

Summer 2012

Semantics Sonstruction (recap)

- Semantic lexicon

- maps words to semantic representations (type theory)
- Semantics construction rules
- tell for each syntactic rule $X \rightarrow Y_{1} Y_{2}$ how to combine the semantic represenatations of Y_{1} and Y_{2} to obtain a semantic representation for X
- we assume here that there is only a single operation to combine meaning representation: functional application
- Note: all syntactic categories (N, V, NP, VP, ...) are mapped to semantic representations with the same type - all N's have type $\langle e, t\rangle$, all NP's have type $\langle\langle e, t\rangle, t\rangle, \ldots$

Semantics Sonstruction (recap)

(2) $\mapsto \lambda P \lambda Q \forall x(P(x) \rightarrow Q(x)):\langle\langle e, t\rangle,\langle\langle e, t\rangle, t\rangle$
(3) \mapsto student' : $\langle e, t\rangle$
(1) $\mapsto \lambda P \lambda Q \forall x(P(x) \rightarrow Q(x))$ (student'): $\langle\langle e, t\rangle, t\rangle$ $\Rightarrow \beta_{\beta} \lambda Q \forall x\left(\right.$ student $\left.{ }^{\prime}(x) \rightarrow Q(x)\right)$
(4) = (5) \mapsto work' $^{\prime}:\langle\mathrm{e}, \mathrm{t}\rangle$
(0) $\mapsto \lambda Q \forall x\left(\right.$ student $\left.{ }^{\prime}(x) \rightarrow Q(x)\right)\left(\right.$ work' $\left.^{\prime}\right): t$
$\Rightarrow \beta$ (student' $(x) \rightarrow$ work $\left.^{\prime}(x)\right)$

Transitive Verbs

- Every student reads a book
- $\forall x\left(\right.$ student ${ }^{\prime}(x) \rightarrow \exists y\left(\operatorname{book}^{\prime}(\mathrm{y}) \wedge \operatorname{read}^{\prime}(\mathrm{y})(\mathrm{x})\right)$

Transitive Verbs (1 ${ }^{\text {st }}$ attempt)

- read \mapsto read' $\in \mathrm{WE}_{\langle(\langle e, t), t),\langle e, t\rangle\rangle}$
- read a book \mapsto read' $\left(\lambda P \exists y\left(\operatorname{book}^{\prime}(\mathrm{y}) \wedge \mathrm{P}(\mathrm{y})\right) \in \mathrm{WE}_{(\mathrm{e}, \mathrm{t})}\right.$
- every student reads a book
- $\mapsto \lambda R \forall x\left(\right.$ student $\left.{ }^{\prime}(x) \rightarrow R(x)\right)\left(\right.$ read ${ }^{\prime}\left(\lambda P \exists y\left(\right.\right.$ book $\left.\left.^{\prime}(y) \wedge P(y)\right)\right)$
- $\Leftrightarrow \forall x\left(\right.$ student $\left.^{\prime}(x) \rightarrow \operatorname{read}^{\prime}\left(\lambda P \exists y\left(\operatorname{book}^{\prime}(y) \wedge P(y)\right)\right)(x)\right)$

- Problem:

without an additional meaning postulate the formula does not capture the truth-conditions of the sentence.

Transitive Verbs (final version)

- Solution:
- use a more explicit λ-term for transitive verbs
- read $\mapsto \lambda Q \lambda z Q(\lambda x(\operatorname{read} *(x)(z))) \in \mathrm{WE}_{\langle\langle(e, t), t),(e, t)\rangle}$
- Note: read* $\in \mathrm{WE}_{(\mathrm{e},(\mathrm{e}, \mathrm{t})\rangle}$
- read a book
- $\mapsto \lambda Q \lambda z Q(\lambda x(r e a d *(x)(z)))\left(\lambda P \exists y\left(\operatorname{book}^{\prime}(y) \wedge P(y)\right)\right)$
- $\epsilon_{\beta} \lambda z\left(\lambda P \exists y\left(\operatorname{book}^{\prime}(y) \wedge P(y)\right)(\lambda x(\right.$ read*(x)(z))))
- $\Theta_{\beta} \lambda z\left(\exists y\left(\right.\right.$ book' $^{\prime}(\mathrm{y}) \wedge \lambda x($ read*(x)(z))(y)))
- $\Leftrightarrow_{\beta} \lambda z\left(\exists y\left(\operatorname{book}^{\prime}(\mathrm{y}) \wedge \mathrm{read}^{*}(\mathrm{y})(\mathrm{z})\right)\right)$

Transitive Verbs (final version)

- Solution:

- use a more explicit λ-term for transitive verbs
- read a book
- $\mapsto \lambda z \exists y\left(\operatorname{book}^{\prime}(y) \wedge \operatorname{read}^{*}(y)(z)\right)$
- every student
- $\mapsto \lambda R \forall x\left(\right.$ student $\left.{ }^{\prime}(x) \rightarrow R(x)\right)$
- every student reads a book
- $\mapsto \lambda R \forall x\left(\right.$ student $\left.{ }^{\prime}(x) \rightarrow R(x)\right)\left(\lambda z \exists y\left(\right.\right.$ book' $^{\prime}(y) \wedge$ read* $\left.\left.(y)(z)\right)\right)$
- $\Leftrightarrow_{\beta} \forall x\left(\right.$ student $\left.{ }^{\prime}(x) \rightarrow \lambda z \exists y\left(\operatorname{book}^{\prime}(\mathrm{y}) \wedge \operatorname{read}^{*}(\mathrm{y})(\mathrm{z})\right)(\mathrm{x})\right)$
- $\epsilon_{\beta} \forall x\left(\right.$ student $\left.^{\prime}(x) \rightarrow \exists y\left(\operatorname{book}^{\prime}(\mathrm{y}) \wedge \operatorname{read}^{*}(\mathrm{y})(\mathrm{x})\right)\right)$

Scope Ambiguities

- Every student reads a book
a. $\forall x\left(\operatorname{stadent}^{\prime}(x) \rightarrow \exists y\left(\operatorname{book}^{\prime}(\mathrm{y}) \wedge \operatorname{read}^{*}(\mathrm{y})(\mathrm{x})\right)\right)$
b. $\exists y\left(\operatorname{book}^{\prime}(\mathrm{y}) \wedge \forall x\left(\right.\right.$ student $\left.\left.^{\prime}(\mathrm{x}) \rightarrow \operatorname{read}^{*}(\mathrm{y})(\mathrm{x})\right)\right)$
- Every student didn't pay attention
a. $\forall x($ student' $(x) \rightarrow \neg$ pay-attention' $(x))$
b. $\neg \forall x\left(\right.$ student ${ }^{\prime}(x) \rightarrow$ pay-attention' $\left.(x)\right)$
- Some inhabitant of every midwestern city participated
- An American flag stood in front of every building
- John searches a good book about semantics
- Pola wants to marry a millionaire

Scope Ambiguities

- Using the semantics construction rules from the previous lecture, we can derive only one reading for sentences exhibiting a scope ambiguity.
- (... if the sentence has a unique syntactic structure)
- Quantifier scope is not determined by the syntactic position in which the corresponding NP occurs.
- Mismatch between syntactic and semantic structure is a challenge for compositional semantics construction.

Cooper Storage

- Cooper-Storage is a technique to derive different readings of sentences exhibiting a scope ambiguity
- The different readings are derived by using a single, surface-based syntactic structure

Cooper Storage

- Natural language expressions are assigned ordered pairs $\langle\alpha, \Delta\rangle$ as semantic values:
- $\boldsymbol{\alpha} \in \mathbf{W E}_{\mathbf{T}}$ is the content
- $\boldsymbol{\Delta} \subseteq \mathbf{W E} \mathbf{E}_{((e, t), \mathrm{t})}$ is the quantifier store
- Quantifiers (NPs) can either apply in situ, or they can be moved to the store for later application ("storage").
- At sentence nodes, quantifiers can be removed from the store and applied to the content ("retrieval").
- A term α counts as a semantic representation for a sentence if we can derive $\langle\alpha, \varnothing\rangle$ as its semantic value.

The basic idea

- Storage at (1)
$\langle\lambda G \exists x(b k(x) \wedge G(x)), \varnothing\rangle \Rightarrow$
$\left\langle\lambda F . F\left(x_{1}\right),\left\{[\lambda G \exists x(b k(x) \wedge G(x))]_{1}\right\}\right\rangle$

- Retrieval at (2)

$\left\langle\forall y\left(s t(y) \rightarrow r d\left(x_{1}\right)(y)\right),\left\{[\lambda G \exists x(b k(x) \wedge G(x))]_{1}\right\}\right\rangle \Rightarrow$ $\left\langle\lambda G \exists x(b k(x) \wedge G(x))\left(\lambda \mathbf{x}_{\mathbf{1}}\left(\forall y\left(\operatorname{st}(y) \rightarrow r d\left(\mathbf{x}_{\mathbf{1}}\right)(y)\right), \varnothing\right\rangle\right.\right.$

- After $\boldsymbol{\beta}$-reduction:
$\langle\exists x(b k(x) \wedge \forall y(s t(y) \rightarrow r d(x)(y))), \varnothing\rangle$

Sample Grammar

S	\rightarrow NP VP	PN	\rightarrow Bill \mid John $\mid \ldots$
NP	\rightarrow DET N'	DET	\rightarrow every \mid a \mid some
NP	$\rightarrow \mathrm{PN}$	N	\rightarrow student \mid book $\mid \ldots$
N^{\prime}	$\rightarrow \mathrm{N}$	P	\rightarrow of \mid at $\mid \ldots$
N^{\prime}	\rightarrow N PP	TV	\rightarrow reads \mid likes $\mid \ldots$
VP	\rightarrow IV	$\mathrm{IV} \rightarrow$ works \mid sleeps $\mid \ldots$	
VP	\rightarrow TV NP		
PP	$\rightarrow \mathrm{P}$ NP		

Semantic Lexicon

$$
\begin{aligned}
& \text { Bill } \mapsto \lambda F\left(F\left(b^{*}\right)\right) \quad \in \mathrm{WE}_{\langle(e, t, t\rangle} \\
& \text { every } \mapsto \lambda F \lambda G \forall x(F(x) \rightarrow G(x)) \quad \in \mathrm{WE}_{\langle(e, t),\langle(e, t\rangle, t\rangle\rangle} \\
& a \mapsto \lambda F \lambda G \exists x(F(x) \wedge G(x)) \quad \in W^{\langle(e, t),\langle(e, t), t\rangle)}(\\
& \text { works } \mapsto \text { work' } \\
& \in \mathrm{WE}_{(\mathrm{e}, \mathrm{t})} \\
& \text { student } \mapsto \text { student }{ }^{\prime} \in \mathrm{WE}_{(e, t)} \\
& \text { book } \mapsto \text { book' }^{\prime} \in \mathrm{WE}_{(\mathrm{e}, \mathrm{t})} \\
& \text { university } \mapsto \text { university' } \\
& \in \mathrm{WE}_{(\mathrm{e}, \mathrm{t})} \\
& \text { reads } \mapsto \lambda Q \lambda x(Q(\lambda y(r e a d *(y)(x)))) \in \mathrm{WE}_{\langle(/ e, t), t), ~(e, t)\rangle} \\
& \text { of, at } \mapsto \text { [} \Rightarrow \text { exercise }] \\
& \in W E_{\langle(\langle e, t\rangle, t\rangle,\langle\langle e, t\rangle,\langle e, t\rangle\rangle}
\end{aligned}
$$

Cooper-Storage

Semantic Construction [1/3]

- $\mathbf{X} \rightarrow \mathbf{Y} \mathbf{Z}$ or $\mathbf{X} \rightarrow \mathbf{Z} \mathbf{Y}$
- if $\quad Y \mapsto\langle\alpha, \Delta\rangle, \alpha \in \mathrm{WE}_{(\sigma, \tau)}$
- and $Z \mapsto\langle\beta, \Gamma\rangle, \beta \in W E_{\sigma}$
- then $X \mapsto\langle\alpha(\beta), \Delta \cup \Gamma\rangle$
- $\mathbf{X} \rightarrow \mathbf{Y}$

- if $\quad Y \mapsto\langle\alpha, \Delta\rangle$
- then $X \mapsto\langle\alpha, \Delta\rangle$
- $X \rightarrow \mathbf{w}$
- $X \mapsto\langle\alpha, \varnothing\rangle$, where $\alpha=\operatorname{SemLex}(w)$

Every student reads a book

Every student reads a book
(9) $\langle\lambda F \lambda G \exists x(F(x) \wedge G(x)), \varnothing\rangle$
(11) $\left\langle\right.$ book' $\left.^{\prime}, \varnothing\right\rangle$
(10) $\left\langle\right.$ book' $\left.^{\prime}, \varnothing\right\rangle$
(8) $\left\langle\lambda F \lambda G \exists x(F(x) \wedge G(x))\left(b o o k^{\prime}\right), \varnothing\right\rangle$
$\Leftrightarrow_{\beta}\left\langle\lambda G \exists x\left(\operatorname{book}^{\prime}(x) \wedge G(x)\right), \varnothing\right\rangle$

Semantic Construction [2/3]

- Storage: $\langle\mathrm{Q}, \Delta\rangle \Rightarrow_{\mathrm{S}}\left\langle\lambda \mathrm{P} . \mathrm{P}\left(\mathbf{x}_{\mathbf{i}}\right), \Delta \cup\left\{\left[\mathrm{Q} \mathbf{]}_{\mathbf{i}}\right\}\right\rangle\right.$
- if A is an noun phrase whose semantic value is $\langle Q, \Delta\rangle$, then $\left\langle\lambda P . P\left(x_{i}\right), \Delta \cup\{[Q]]_{i}\right\}$ is also a semantic value for A, where $i \in N$ is a new index.
- The original content is moved to the store.
- The new content is a placeholder of type $\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle$
- Note: by using this rule, we can assign more than one semantic value to a noun phrase.

Every student reads ... (cont'd)

(9) $\langle\lambda F \lambda G \exists x(F(x) \wedge G(x)), \varnothing\rangle$
(10) $\left\langle\mathrm{book}^{\prime}, \varnothing\right\rangle$
(11) $\langle b o o k ', ~ \varnothing\rangle$
(8) $\langle\lambda F \lambda G \exists x(F(x) \wedge G(x))(b o o k '), \varnothing\rangle$
$\Leftrightarrow_{\beta}\left\langle\lambda G \exists x\left(\operatorname{book}^{\prime}(x) \wedge G(x)\right), \varnothing\right\rangle$

$\longrightarrow \quad \Rightarrow \leq\left\langle\lambda P . P\left(\mathbf{x}_{\mathbf{1}}\right),\left\{\left[\lambda G \exists x\left(\operatorname{book}^{\prime}(x) \wedge G(x)\right)\right]_{\mathbf{1}}\right\}\right\rangle$

Cooper-Storage

Every student reads ... (cont'd)
(8) $\left\langle\lambda P . P\left(x_{1}\right),\left\{\left[\lambda G \exists x\left(\operatorname{book}^{\prime}(x) \wedge G(x)\right)\right]_{1}\right\}\right\rangle$
(7) $\left\langle\lambda Q \lambda x\left(Q\left(\lambda y\left(\operatorname{read}^{*}(y)(x)\right)\right)\right), \varnothing\right\rangle$
(6) $\left\langle\boldsymbol{\lambda} \mathbf{Q} \boldsymbol{\lambda} \times\left(\mathbf{Q}\left(\lambda y\left(\operatorname{read}^{*}(\mathrm{y})(\mathrm{x})\right)\right)\right)\left(\boldsymbol{\lambda} \mathbf{P} \cdot \mathbf{P}\left(\mathbf{x}_{\mathbf{1}}\right)\right),\left\{[\boldsymbol{\lambda G \exists x}(\ldots)]_{\mathbf{1}}\right\}\right\rangle$
$\Leftrightarrow_{\beta}\left\langle\lambda x\left(\boldsymbol{\lambda P}\left(\mathbf{P}\left(\mathbf{x}_{1}\right)\right)(\boldsymbol{\lambda y}(\right.\right.$ read* $\left.\left.(\mathbf{y})(\mathbf{x})))\right),\left\{[\lambda G \exists x(\ldots)]_{1}\right\}\right\rangle$
$\Leftrightarrow_{\beta}\left\langle\lambda x\left(\boldsymbol{\lambda y}\left(\operatorname{read}^{*}(\mathbf{y})(x)\right)\left(\mathbf{x}_{\mathbf{1}}\right)\right),\left\{[\lambda G \exists x(\ldots)]_{1}\right\}\right\rangle$
$\Leftrightarrow_{\beta}\left\langle\lambda x\left(\operatorname{read} *\left(\mathbf{x}_{\mathbf{1}}\right)(x)\right),\left\{[\lambda G \exists x(\ldots)]_{\mathbf{1}}\right\}\right\rangle$

Cooper-Storage

Every student reads ... (cont’d)

(6) $\left\langle\lambda x\left(\operatorname{read}^{*}\left(\mathbf{x}_{1}\right)(x)\right),\left\{\left[\lambda G \exists x\left(\operatorname{book}^{\prime}(x) \wedge G(x)\right)\right]_{1}\right\}\right\rangle$
(2) $\left\langle\lambda G \forall y\left(\right.\right.$ student $\left.\left.{ }^{\prime}(y) \rightarrow G(y)\right), \varnothing\right\rangle$
(1) $\left\langle\boldsymbol{\lambda} \mathbf{G} \forall y\left(\right.\right.$ student $\left.\left.^{\prime}(\mathrm{y}) \rightarrow \mathbf{G}(\mathrm{y})\right)\left(\boldsymbol{\lambda} \mathbf{x}\left(\operatorname{read}^{*}\left(\mathbf{x}_{\mathbf{1}}\right)(\mathbf{x})\right)\right),\left\{[\ldots]_{\mathbf{1}}\right\}\right\rangle$
$\Leftrightarrow \beta\left\langle\forall y\left(\right.\right.$ student $\left.\left.{ }^{\prime}(y) \rightarrow \boldsymbol{\lambda} \mathbf{x}\left(\operatorname{read}^{*}\left(\mathrm{x}_{1}\right)(\mathbf{x})\right)(\mathbf{y})\right),\left\{[\ldots]_{\mathbf{1}}\right\}\right\rangle$
$\Leftrightarrow \beta\left\langle\forall y\left(\right.\right.$ student $\left.\left.{ }^{\prime}(y) \rightarrow \operatorname{read}^{*}\left(\mathbf{x}_{\mathbf{1}}\right)(\mathrm{y})\right),\left\{[\ldots]_{\mathbf{1}}\right\}\right\rangle$

Semantic Construction [3/3]

■ Retrieval: $\left\langle\alpha, \Delta \cup\left\{[Q]_{i}\right\}\right\rangle \Rightarrow \mathrm{R}\left\langle\mathrm{Q}\left(\boldsymbol{\lambda} \mathbf{x}_{\mathbf{i}} \alpha\right), \Delta\right\rangle$

- if A is any sentence with semantic value $\langle\alpha, \Delta \cup\{[Q] i\}\rangle$, then $\left\langle Q\left(\lambda x_{i} \alpha\right), \Delta\right\rangle$ is also a semantic value for A.
- Notation: read " u " as "disjoint union"

Every student reads ... (cont'd)
(1) $\left\langle\forall y\left(\right.\right.$ student $\left.\left.^{\prime}(y) \rightarrow \operatorname{read}^{*}\left(\mathbf{x}_{\mathbf{1}}\right)(\mathrm{y})\right),\left\{[\lambda G \exists x(\ldots)]_{\mathbf{1}}\right\}\right\rangle$
$\Rightarrow_{\mathrm{R}}\left\langle\lambda G \exists x\left(\operatorname{book}^{\prime}(x) \wedge G(x)\right)\left(\lambda \mathbf{x}_{1}\left(\forall y\left(\ldots \mathbf{x}_{\mathbf{1}} \ldots\right)\right)\right), \varnothing\right\rangle$
$\Leftrightarrow \beta\left\langle\exists x\left(\operatorname{book}^{\prime}(x) \wedge \boldsymbol{\lambda} \mathbf{x}_{1}\left(\forall y\left(\ldots \mathbf{x}_{1} \ldots\right)\right)(x)\right), \varnothing\right\rangle$
$\Leftrightarrow_{\beta}\left\langle\exists x\left(\operatorname{book}^{\prime}(x) \wedge \forall y\left(\right.\right.\right.$ student $\left.\left.\left.^{\prime}(y) \rightarrow \operatorname{read}^{*}(x)(y)\right)\right), \varnothing\right\rangle$

Cooper-Storage

Problem: Nested noun phrases

■ Every researcher of a company works

Problem: Nested noun phrases

(8) $\left\langle\lambda F\left(F\left(\mathbf{x}_{1}\right)\right),\left\{[\lambda G \exists x(\operatorname{comp}(x) \wedge G(x))]_{1}\right\}\right\rangle$
(4) $\left\langle\lambda x\left(\operatorname{res}(x) \wedge \operatorname{of}\left(\mathbf{x}_{1}\right)(x)\right),\left\{[. . .]_{1}\right\}\right\rangle$
(2) $\left\langle\lambda G \forall y\left(\left(\operatorname{res}(y) \wedge\right.\right.\right.$ of $\left.\left.\left.\left(\mathbf{x}_{\mathbf{1}}\right)(\mathrm{y})\right) \rightarrow \mathrm{G}(\mathrm{y})\right),\left\{[. . .]_{\mathbf{1}}\right\}\right\rangle$
$\Rightarrow s\left\langle\lambda F\left(F\left(\mathbf{x}_{2}\right)\right),\left\{\left[\lambda G \forall y\left(\left(r e s(y) \wedge o f\left(\mathbf{x}_{1}\right)(y)\right) \rightarrow G(y)\right)\right]_{2},[\ldots]_{1}\right\}\right\rangle$
(1) $\left\langle\operatorname{work}\left(\mathbf{x}_{2}\right),\left\{[\ldots]_{2},[\ldots]_{1}\right\}\right\rangle$

Problem: Nested noun phrases

$\left\langle\operatorname{work}\left(x_{2}\right),\left\{\left[Q_{2}=\lambda G \forall y\left(\left(\operatorname{res}(y) \wedge \operatorname{of}\left(\mathbf{x}_{1}\right)(\mathrm{y})\right) \rightarrow G(\mathrm{y})\right)\right]_{2}\right.\right.$,
$\left.\left.\left[Q_{1}=\lambda G \exists x(\operatorname{comp}(x) \wedge G(x))\right]_{\mathbf{1}}\right\}\right\rangle$
$\Rightarrow R\left\langle Q_{1}\left(\lambda x_{1} \cdot \operatorname{work}\left(x_{2}\right)\right),\left\{\left[Q_{2}\right]_{2}\right\}\right\rangle$
$\Leftrightarrow_{\beta}\left\langle\exists x\left(\operatorname{comp}(x) \wedge \operatorname{work}\left(x_{2}\right)\right),\left\{\left[Q_{2}\right]_{2}\right\}\right\rangle$
$\Rightarrow \mathrm{R}\left\langle\mathrm{Q}_{2}\left(\lambda \mathrm{x}_{2} . \exists \mathrm{x}\left(\operatorname{comp}(\mathrm{x}) \wedge \operatorname{work}\left(\mathrm{x}_{2}\right)\right)\right), \varnothing\right\rangle$
$\Leftrightarrow_{\beta}\left\langle\forall y\left(\left(\operatorname{res}(y) \wedge\right.\right.\right.$ of $\left.\left.\left.\left(\mathbf{x}_{1}\right)(\mathrm{y})\right) \rightarrow \exists x(\operatorname{comp}(x) \wedge \operatorname{work}(y))\right), \varnothing\right\rangle$

Not a reading! Variable x_{1} occurs free!

Problem: Nested noun phrases

- The unstructered store does not reflect the dependencies between quantifiers in complex noun phrases like „every [reasearcher of a company]"

■ \Rightarrow quantifiers can be retrieved in any order!

- 〈 $\left.\left.\operatorname{work}\left(x_{2}\right),\left\{\left[\lambda G \forall y\left(\ldots x_{1} \ldots\right)\right)\right]_{2},[\lambda G \exists x(\ldots)]_{1}\right\}\right\rangle$
- We want: Q_{1} cannot be retrieved if Q_{2} is still on the store

Nested Cooper Storage

- Storage: $\langle\mathrm{Q}, \Delta\rangle \Rightarrow \mathrm{s}\left\langle\lambda \mathrm{P} . \mathrm{P}\left(\mathbf{x}_{\mathbf{i}}\right),\left\{\langle\mathrm{Q}, \Delta\rangle_{\mathrm{i}}\right\}\right\rangle$
- If A is a noun phrase whose semantic value is $\langle Q, \Delta\rangle$, then $\left(\lambda P . P\left(x_{i}\right),\left\{\langle Q, \Delta\rangle_{i}\right\}\right)$ is also a semantic value for A, where $i \in N$ is a new index.
- The original semantic value including its store is moved to the store.

Nested Cooper Storage

- Retrieval: $\left\langle\alpha, \Delta \cup\left\{\langle Q, \Gamma\rangle_{\mathbf{i}}\right\}\right\rangle \Rightarrow\left\langle Q\left(\lambda \mathbf{x}_{\mathbf{i}} \alpha\right), \Delta \cup \Gamma\right\rangle$
- If A is a sentence with semantic value $\left\langle\alpha, \Delta \cup\left\{\langle\mathrm{Q}, \Gamma\rangle_{\mathrm{i}}\right\}\right\rangle$, then $\left\langle Q\left(\lambda x_{i} . \alpha\right), \Delta \cup \Gamma\right\rangle$ is also a semantic value of the sentence.
- \Rightarrow nested stores are not accessible for retrieval

Every reasearcher of a ...

Every reasearcher of a ...

(8) $\langle\lambda G \exists x(\operatorname{comp}(x) \wedge G(x)), \varnothing\rangle$
$\Rightarrow s\left\langle\lambda F . F\left(x_{1}\right),\left\{\left\langle Q_{1}=\lambda G(\exists x(\operatorname{comp}(x) \wedge G(x)), \varnothing\rangle_{1}\right\}\right\rangle\right.$
(4) $\left\langle\lambda y\left(r e s(y) \wedge o f\left(x_{1}\right)(y)\right),\left\{\left\langle Q_{1}, \varnothing\right\rangle_{1}\right\}\right\rangle$
(2) $\left\langle\lambda G \forall z\left(\left(\operatorname{res}(z) \wedge\right.\right.\right.$ of $\left.\left.\left.\left(x_{1}\right)(z)\right) \rightarrow G(z)\right),\left\{\left\langle Q_{1}, \varnothing\right\rangle_{1}\right\}\right\rangle$
$\Rightarrow s\left\langle\lambda F . F\left(x_{2}\right),\left\{\left\langle Q_{2}=\lambda G \forall z(\ldots),\left\{\left\langle Q_{1}, \varnothing\right\rangle_{1}\right\}\right\rangle_{2}\right\}\right\rangle$
(9) \langle work, $\varnothing\rangle$
(1) $\left\langle\operatorname{work}\left(\mathrm{x}_{2}\right),\left\{\left\langle\mathrm{Q}_{2},\left\{\left\langle\mathrm{Q}_{1}, \varnothing\right\rangle_{1}\right\}\right\rangle_{2}\right\}\right\rangle$

Every reasearcher of a ...

〈work(x_{2}), $\left\{\left\langle\mathrm{Q}_{2},\left\{\left\langle\mathrm{Q}_{1}, \varnothing\right\rangle_{1}\right\}\right\rangle_{2}\right\}$)
$\Rightarrow \mathrm{R}\left\langle\mathrm{Q}_{2}\left(\lambda \mathrm{x}_{2}, \operatorname{work}\left(\mathrm{x}_{2}\right)\right),\left\{\left\langle\mathrm{Q}_{1}, \varnothing\right\rangle_{1}\right\}\right\rangle$
$\Leftrightarrow_{\beta}\left\langle\forall z\left(\left(\operatorname{res}(z) \wedge\right.\right.\right.$ of $\left.\left.\left.\left(x_{1}\right)(z)\right) \rightarrow \operatorname{work}(z)\right),\left\{\left\langle Q_{1}, \varnothing\right\rangle_{1}\right\}\right\rangle$
$\Rightarrow{ }_{R}\left\langle\mathrm{Q}_{1}\left(\lambda \mathrm{x}_{1} . \forall \mathrm{z}\left(\left(\operatorname{res}(\mathrm{z}) \wedge\right.\right.\right.\right.$ of $\left.\left.\left.\left.\left(\mathrm{x}_{1}\right)(\mathrm{z})\right) \rightarrow \operatorname{work}(\mathrm{z})\right)\right), \varnothing\right\rangle$
$\Leftrightarrow \beta\langle\exists x(\operatorname{comp}(x) \wedge \forall z((\operatorname{res}(z) \wedge \circ f(x)(z)) \rightarrow$ work(z))$), \varnothing\rangle$

Every reasearcher of a ...

$\left\langle\operatorname{work}\left(x_{2}\right),\left\{\left\langle\lambda G \forall z(\ldots),\left\{\langle\lambda G \exists x(\ldots), \varnothing\rangle_{1}\right\}\right\rangle_{2}\right\}\right\rangle$
$\Rightarrow{ }_{R}^{*} \exists x(\operatorname{comp}(x) \wedge \forall z((\operatorname{res}(z) \wedge$ of $(x)(z)) \rightarrow \operatorname{work}(z)))$

- No other reading can be derived!
- But how do we derive the "direct scope" reading?
- Simple answer: don't store, apply quantifiers "in situ"

Can we derive all readings?

- Storing a quantifier means to "move it upwards" in the syntax tree (roughly speaking).
- Every student did not pay attention
- "Every student" is higher in the tree than the negation
- \Rightarrow the negation cannot take scope over "every student"

Some restrictions on scope

- Some inhabitant of every midwestern city participated
- two readings: (a) direct scope and (b) every ব* some $^{\text {a }}$
- Someone who inhabits every midwestern city participated
- only the direct scope reading available

Finite clauses can create "scope islands"

- Quantifiers must take scope within such clauses

Some restrictions on scope

- You will inherit a fortune if every man dies
- "every man" cannot take scope over complete sentence
- If a friend of mine from Texas had died in a fire, I would have inherited a fortune (Fodor \& Sag 1982)
- "a friend of mine from Texas" can take wide scope
- Finite clauses can create "scope islands"
- Quantifiers must take scope within such clauses
- Indefinites can "escape" scope islands

Compositionality

- Denotations ("D-compositionality")

The denotation of a complex expression is a function of the denotations its parts.

■ Semantic representations ("S-compositionality")
The semantic representation of a complex expression is a function of the semantic representations of its parts.

Compositionality

- Storage techniques are (up to non-determinism) compositional on the level of semantic representations.
- But are not compositional on the level of denotations:

Semantic values $\langle\alpha, \Delta\rangle$ don't receive an interpretation.

Literature

- Patrick Blackburn, Johan Bos (2005): Representation and Inference for Natural Language. A First Course in Computational Semantics. CSLI Press.
- W. R. Keller (1988). Nested Cooper storage: The proper treatment of quantification in ordinary noun phrases. In Reyle, Rohrer (Ed.). Natural Language Parsing and Linguistic Theories
- E. G. Ruys, Yoad Winter (2008). Quantifier scope in formal linguistics. To appear in: Handbook of Philosophical Logic, 2nd Edition.

