
Semantic Theory
Lecture 4: Cooper Storage

Manfred Pinkal & Stefan Thater
FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes

Summer 2012

Semantics Sonstruction (recap)

■ Semantic lexicon
■ maps words to semantic representations (type theory)

■ Semantics construction rules
■ tell for each syntactic rule X → Y1 Y2 how to combine the

semantic represenatations of Y1 and Y2 to obtain a
semantic representation for X

■ we assume here that there is only a single operation to
combine meaning representation: functional application

■ Note: all syntactic categories (N, V, NP, VP, …) are
mapped to semantic representations with the same type
■ all N’s have type ⟨e, t⟩, all NP’s have type ⟨⟨e, t⟩, t⟩, …

2

Semantics Sonstruction (recap)

(2) ↦ λPλQ∀x(P(x) → Q(x)) : ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩

(3) ↦ student’ : ⟨e, t⟩

(1) ↦ λPλQ∀x(P(x) → Q(x))(student’): ⟨⟨e, t⟩, t⟩
' ⇒β λQ∀x(student’(x) → Q(x))

(4) = (5) ↦ work’ : ⟨e, t⟩

(0) ↦ λQ∀x(student’(x) → Q(x))(work’) : t
' ⇒β ∀x(student’(x) → work’(x))

3

NP (1)

S (0)

VP (4)

IV (5)DET (2)

worksEvery

N (3)

student

Transitive Verbs

■ Every student reads a book
■ ∀x(student’(x) → ∃y(book’(y) ∧ read’(y)(x))

4

NP
! "R#x(student’(x) $ R(x))

S
! #x(student’(x) $ %y(book’(y) & read’(y)(x)))

VP
! (??)

TV
! (??)

reads

Every student NP
! "P%y(book’(y) & P(y))

a book

Transitive Verbs (1st attempt)

■ read ↦ read’ ∈ WE⟨⟨⟨e,t⟩, t⟩, ⟨e, t⟩⟩

■ read a book ↦ read’(λP∃y(book’(y) ∧ P(y)) ∈ WE⟨e, t⟩

■ every student reads a book
■ ↦ λR∀x(student’(x) → R(x))(read’(λP∃y(book’(y) ∧ P(y)))
■ ⇔ ∀x(student’(x) → read’(λP∃y(book’(y) ∧ P(y)))(x))

■ Problem:
without an additional meaning postulate the formula
does not capture the truth-conditions of the sentence.

5

Transitive Verbs (final version)

■ Solution:
■ use a more explicit λ-term for transitive verbs

■ read ↦ λQλzQ(λx(read*(x)(z))) ∈ WE⟨⟨⟨e,t⟩, t⟩, ⟨e, t⟩⟩

■ Note: read* ∈ WE⟨e, ⟨e, t⟩⟩

■ read a book
■ ↦ λQλzQ(λx(read*(x)(z)))(λP∃y(book’(y) ∧ P(y)))
■ ⇔β λz(λP∃y(book’(y) ∧ P(y))(λx(read*(x)(z))))
■ ⇔β λz(∃y(book’(y) ∧ λx(read*(x)(z))(y)))
■ ⇔β λz(∃y(book’(y) ∧ read*(y)(z)))

6

Transitive Verbs (final version)

■ Solution:
■ use a more explicit λ-term for transitive verbs

■ read a book
■ ↦ λz∃y(book’(y) ∧ read*(y)(z))

■ every student
■ ↦ λR∀x(student’(x) → R(x))

■ every student reads a book
■ ↦ λR∀x(student’(x) → R(x))(λz∃y(book’(y) ∧ read*(y)(z)))
■ ⇔β ∀x(student’(x) → λz∃y(book’(y) ∧ read*(y)(z))(x))
■ ⇔β ∀x(student’(x) → ∃y(book’(y) ∧ read*(y)(x)))

7

8

Scope Ambiguities

■ Every student reads a book
a. ∀x(student’(x) → ∃y(book’(y) ∧ read*(y)(x)))
b. ∃y(book’(y) ∧ ∀x(student’(x) → read*(y)(x)))

■ Every student didn’t pay attention
a. ∀x(student’(x) → ¬pay-attention’(x))
b. ¬∀x(student’(x) → pay-attention’(x))

■ Some inhabitant of every midwestern city participated

■ An American flag stood in front of every building

■ John searches a good book about semantics

■ Pola wants to marry a millionaire

Scope Ambiguities

■ Using the semantics construction rules from the
previous lecture, we can derive only one reading for
sentences exhibiting a scope ambiguity.
■ (… if the sentence has a unique syntactic structure)

■ Quantifier scope is not determined by the syntactic
position in which the corresponding NP occurs.

■ Mismatch between syntactic and semantic structure is a
challenge for compositional semantics construction.

9

10

Cooper Storage

■ Cooper-Storage is a technique to derive different
readings of sentences exhibiting a scope ambiguity

■ The different readings are derived by using a single,
surface-based syntactic structure

Sentence Syntactic analysis ⋮

Semantic representation

Semantic representation

11

Cooper Storage

■ Natural language expressions are assigned ordered
pairs ⟨α, Δ⟩ as semantic values:
■ α ∈ WEτ is the content
■ Δ ⊆ WE⟨⟨e,t⟩,t⟩ is the quantifier store

■ Quantifiers (NPs) can either apply in situ, or they can be
moved to the store for later application (“storage”).

■ At sentence nodes, quantifiers can be removed from the
store and applied to the content (“retrieval”).

■ A term α counts as a semantic representation for a
sentence if we can derive ⟨α, ∅⟩ as its semantic value.

■ Storage at (1)
⟨λG∃x(bk(x) ∧ G(x)), ∅⟩ ⇒
⟨λF.F(x1), {[λG∃x(bk(x) ∧ G(x))]1}⟩

■ Retrieval at (2)
⟨∀y(st(y) → rd(x1)(y)), {[λG∃x(bk(x) ∧ G(x))]1}⟩ ⇒
⟨λG∃x(bk(x) ∧ G(x))(λx1(∀y(st(y) → rd(x1)(y)), ∅⟩

■ After β-reduction:
⟨∃x(bk(x) ∧ ∀y(st(y) → rd(x)(y))), ∅⟩

The basic idea

12

Cooper-Storage

S (2)

NP VP

V

reads

NP (1)

a book

every student

Sample Grammar

' S'→ NP VP' PN'→'Bill | John | …

'NP'→ DET N’' DET'→ every | a | some

'NP'→ PN' N'→ student | book | …

' N’'→ N' P'→ of | at | …

' N’'→ N PP' TV'→ reads | likes | …

' VP'→ IV' IV'→ works | sleeps | …

' VP'→ TV NP

' PP'→ P NP

13

Cooper-Storage

Semantic Lexicon

' Bill'↦ λF(F(b*))' ∈ WE⟨⟨e,t⟩,t⟩

' every'↦ λFλG∀x(F(x) → G(x))' ∈ WE⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩

' a'↦ λFλG∃x(F(x) ∧ G(x))' ∈ WE⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩

' works'↦ work’' ∈ WE⟨e,t⟩

' student'↦ student’' ∈ WE⟨e,t⟩

' book'↦ book’' ∈ WE⟨e,t⟩

'university'↦ university’' ∈ WE⟨e,t⟩

' reads'↦ λQλx(Q(λy(read*(y)(x))))' ∈ WE⟨⟨⟨e,t⟩,t⟩, ⟨e,t⟩⟩

' of, at'↦ [⇒ exercise]' ∈ WE⟨⟨⟨e,t⟩,t⟩, ⟨⟨e,t⟩, ⟨e,t⟩⟩

14

Cooper-Storage

Semantic Construction [1/3]

■ X → Y Z or X → Z Y
■ if / Y/↦ ⟨α, Δ⟩, α ∈ WE⟨σ,τ⟩

■ and/ Z/↦ ⟨β, Γ⟩, β ∈ WEσ

■ then/ X/↦ ⟨α(β), Δ ∪ Γ⟩

■ X → Y
■ if/ Y/↦ ⟨α, Δ⟩
■ then/ X/↦ ⟨α, Δ⟩

■ X → w
■ X ↦ ⟨α, ∅⟩, where α = SemLex(w)

15

Cooper-Storage

X ! "#($), % & '(

Y ! "#, %(Z ! "$, '(

Every student reads a book

16

Cooper-Storage

S (1)

NP (2) VP (6)

DET (3) V (7)N’ (4)

every

student

reads

NP (8)

DET (9) N’ (10)

a

book

N (5)

N (11)

Every student reads a book

' (9)'⟨λFλG∃x(F(x) ∧ G(x)), ∅⟩

'(11)'⟨book’, ∅⟩

'(10)'⟨book’, ∅⟩

' (8)'⟨λFλG∃x(F(x) ∧ G(x))(book’), ∅⟩

' '⇔β ⟨λG∃x(book’(x) ∧ G(x)), ∅⟩

17

Cooper-Storage

NP (8)

DET (9) N’ (10)

a

book

N (11)

Semantic Construction [2/3]

■ Storage: ⟨Q, Δ⟩ ⇒S ⟨λP.P(xi), Δ ∪ {[Q]i}⟩
■ if A is an noun phrase whose semantic value is ⟨Q, Δ⟩, then

⟨λP.P(xi), Δ ∪ {[Q]i}⟩ is also a semantic value for A, where
i ∈ N is a new index.

■ The original content is moved to the store.
■ The new content is a placeholder of type ⟨⟨e,t⟩,t⟩

■ Note: by using this rule, we can assign more than one
semantic value to a noun phrase.

18

Cooper-Storage

Every student reads … (cont’d)

' (9)'⟨λFλG∃x(F(x) ∧ G(x)), ∅⟩

'(10)'⟨book’, ∅⟩

'(11)'⟨book’, ∅⟩

' (8)'⟨λFλG∃x(F(x) ∧ G(x))(book’), ∅⟩

' '⇔β ⟨λG∃x(book’(x) ∧ G(x)), ∅⟩

' '⇒S ⟨λP.P(x1), {[λG∃x(book’(x) ∧ G(x))]1}⟩

19

Cooper-Storage

NP (8)

DET (9) N’ (10)

a

book

N (11)

Every student reads … (cont’d)

' (8)'⟨λP.P(x1), {[λG∃x(book’(x) ∧ G(x))]1}⟩

' (7)'⟨λQλx(Q(λy(read*(y)(x)))), ∅⟩

' (6)'⟨λQλx(Q(λy(read*(y)(x))))(λP.P(x1)), {[λG∃x(…)]1}⟩

' '⇔β ⟨λx(λP(P(x1))(λy(read*(y)(x)))), {[λG∃x(…)]1}⟩

' '⇔β ⟨λx(λy(read*(y)(x))(x1)), {[λG∃x(…)]1}⟩

' '⇔β ⟨λx(read*(x1)(x)), {[λG∃x(…)]1}⟩

20

Cooper-Storage

VP (6)

V (7)

reads

NP (8)

a book

Every student reads … (cont’d)

' (6)'⟨λx(read*(x1)(x)), {[λG∃x(book’(x) ∧ G(x))]1}⟩

' (2)'⟨λG∀y(student’(y) → G(y)), ∅⟩

' (1)'⟨λG∀y(student’(y) → G(y))(λx(read*(x1)(x))), {[...]1}⟩

' '⇔β ⟨∀y(student’(y) → λx(read*(x1)(x))(y)), {[...]1}⟩

' '⇔β ⟨∀y(student’(y) → read*(x1)(y)), {[...]1}⟩

21

Cooper-Storage

S (1)

NP (2) VP (6)

every student reads a book

Semantic Construction [3/3]

■ Retrieval: ⟨α, Δ ∪ {[Q]i}⟩ ⇒R ⟨Q(λxi α), Δ⟩
■ if A is any sentence with semantic value ⟨α, Δ ∪ {[Q]i}⟩,

then ⟨Q(λxi α), Δ⟩ is also a semantic value for A.
■ Notation: read “∪” as “disjoint union”

22

Cooper-Storage

Every student reads … (cont’d)

' (1)'⟨∀y(student’(y) → read*(x1)(y)), {[λG∃x(...)]1}⟩

' '⇒R ⟨λG∃x(book’(x) ∧ G(x))(λx1(∀y(… x1 …))), ∅⟩

' '⇔β ⟨∃x(book’(x) ∧ λx1(∀y(… x1 …))(x)), ∅⟩

' '⇔β ⟨∃x(book’(x) ∧ ∀y(student’(y) → read*(x)(y))), ∅⟩

23

Cooper-Storage

S (1)

NP (2) VP (6)

every student reads a book

Problem: Nested noun phrases

■ Every researcher of a company works

24

Cooper-Storage

S (1)

NP (2) VP (9)

DET (3) worksN’ (4)

every

researcher

N (5)

P (7)

PP (6)

NP (8)

a companyof

' (8)'⟨λF(F(x1)), {[λG∃x(comp(x) ∧ G(x))]1}⟩

' (4)'⟨λx(res(x) ∧ of(x1)(x)), {[…]1}⟩

' (2)'⟨λG∀y((res(y) ∧ of(x1)(y)) → G(y)), {[…]1}⟩

' ⇒S' ⟨λF(F(x2)),{[λG∀y((res(y) ∧ of(x1)(y)) → G(y))]2, […]1}⟩

' (1)'⟨work(x2), {[…]2, […]1}⟩ S (1)

NP (2) VP (9)

DET (3) worksN’ (4)

every

researcher

N (5)

P (7)

PP (6)

NP (8)

a companyof

Problem: Nested noun phrases

25

Cooper-Storage

Problem: Nested noun phrases

⟨work(x2), {'[Q2 = λG∀y((res(y) ∧ of(x1)(y)) → G(y))]2,

, [Q1 = λG∃x(comp(x) ∧ G(x))]1}⟩

' ⇒R'⟨Q1(λx1.work(x2)), {[Q2]2}⟩

' ⇔β'⟨∃x(comp(x) ∧ work(x2)), {[Q2]2}⟩'

' ⇒R'⟨Q2(λx2.∃x(comp(x) ∧ work(x2))), ∅⟩

' ⇔β'⟨∀y((res(y) ∧ of(x1)(y)) → ∃x(comp(x) ∧ work(y))), ∅⟩

Not a reading! Variable x1 occurs free!

26

Cooper-Storage

Problem: Nested noun phrases

■ The unstructered store does not reflect the
dependencies between quantifiers in complex noun
phrases like „every [reasearcher of a company]“

■ ⇒ quantifiers can be retrieved in any order!

■ ⟨work(x2), {[λG∀y(… x1 …))]2, [λG∃x(…)]1}⟩
■ We want: Q1 cannot be retrieved if Q2 is still on the store

27

Cooper-Storage

Nested Cooper Storage

■ Storage: ⟨Q, Δ⟩ ⇒S ⟨λP.P(xi), {⟨Q, Δ⟩i}⟩
■ If A is a noun phrase whose semantic value is ⟨Q, Δ⟩,

then ⟨λP.P(xi), {⟨Q, Δ⟩i}) is also a semantic value for A,
where i ∈ N is a new index.

■ The original semantic value including its store is
moved to the store.

28

(Keller, 1988)

Nested Cooper Storage

■ Retrieval: ⟨α, Δ ∪ {⟨Q, Γ⟩i}⟩ ⇒ ⟨Q(λxi α), Δ ∪ Γ⟩
■ If A is a sentence with semantic value ⟨α, Δ ∪ {⟨Q, Γ⟩i}⟩,

then ⟨Q(λxi.α), Δ ∪ Γ⟩ is also a semantic value of the
sentence.

■ ⇒ nested stores are not accessible for retrieval

29

(Keller, 1988)

Every reasearcher of a …

30

Nested Cooper-Storage

S (1)

NP (2) VP (9)

DET (3) worksN’ (4)

every

researcher

N (5)

P (7)

PP (6)

NP (8)

a companyof

Every reasearcher of a …

' (8)'⟨λG∃x(comp(x) ∧ G(x)), ∅⟩

' '⇒S ⟨λF.F(x1), {⟨Q1 = λG(∃x(comp(x) ∧ G(x)), ∅⟩1}⟩

' (4)'⟨λy(res(y) ∧ of(x1)(y)), {⟨Q1, ∅⟩1}⟩

' (2)'⟨λG∀z((res(z) ∧ of(x1)(z)) → G(z)), {⟨Q1, ∅⟩1}⟩

' '⇒S ⟨λF.F(x2), {⟨Q2 = λG∀z(…), {⟨Q1, ∅⟩1}⟩2}⟩

' (9)'⟨work, ∅⟩

' (1)'⟨work(x2), {⟨Q2, {⟨Q1, ∅⟩1}⟩2}⟩

31

Nested Cooper-Storage

S (1)

NP (2) VP (9)

DET (3) worksN’ (4)

every

researcher

N (5)

P (7)

PP (6)

NP (8)

a companyof

Every reasearcher of a …

⟨work(x2), {⟨Q2, {⟨Q1, ∅⟩1}⟩2}⟩

' ⇒R' ⟨Q2 (λx2.work(x2)), {⟨Q1, ∅⟩1}⟩

' ⇔β'⟨∀z((res(z) ∧ of(x1)(z)) → work(z)), {⟨Q1, ∅⟩1}⟩

' ⇒R'⟨Q1(λx1.∀z((res(z) ∧ of(x1)(z)) → work(z))), ∅⟩

' ⇔β'⟨∃x(comp(x) ∧ ∀z((res(z) ∧ of(x)(z)) → work(z))), ∅⟩

32

Nested Cooper-Storage

Every reasearcher of a …

⟨work(x2), {⟨λG∀z(…), {⟨λG∃x(…), ∅⟩1}⟩2}⟩

' ⇒*R'∃x(comp(x) ∧ ∀z((res(z) ∧ of(x)(z)) → work(z)))

■ No other reading can be derived!
■ But how do we derive the “direct scope” reading?
■ Simple answer: don’t store, apply quantifiers “in situ”

33

Nested Cooper-Storage

Can we derive all readings?

■ Storing a quantifier means to “move it upwards” in the
syntax tree (roughly speaking).

■ Every student did not pay attention
■ “Every student” is higher in the tree than the negation
■ ⇒ the negation cannot take scope over “every student”

34

S (1)

NP (2) VP (3)

every student AUX

didn’t

VP

pay attention

Some restrictions on scope

■ Some inhabitant of every midwestern city participated
■ two readings: (a) direct scope and (b) every ⊲* some

■ Someone who inhabits every midwestern city
participated
■ only the direct scope reading available

35

(see Ruys & Winter, 2008)

Finite clauses can create “scope islands”
■ Quantifiers must take scope within such clauses

Some restrictions on scope

■ You will inherit a fortune if every man dies
■ “every man” cannot take scope over complete sentence

■ If a friend of mine from Texas had died in a fire, I would
have inherited a fortune (Fodor & Sag 1982)
■ “a friend of mine from Texas” can take wide scope

■ Finite clauses can create “scope islands”
■ Quantifiers must take scope within such clauses
■ Indefinites can “escape” scope islands

36

(see Ruys & Winter, 2008)

Compositionality

■ Denotations (“D-compositionality”)
The denotation of a complex expression is a function of
the denotations its parts.

■ Semantic representations (“S-compositionality”)
The semantic representation of a complex expression is
a function of the semantic representations of its parts.

37

Compositionality

■ Storage techniques are (up to non-determinism)
compositional on the level of semantic representations.

■ But are not compositional on the level of denotations:
Semantic values ⟨α, Δ⟩ don’t receive an interpretation.

38

Literature

■ Patrick Blackburn, Johan Bos (2005): Representation and
Inference for Natural Language. A First Course in
Computational Semantics. CSLI Press.

■ W. R. Keller (1988). Nested Cooper storage: The proper
treatment of quantification in ordinary noun phrases. In
Reyle, Rohrer (Ed.). Natural Language Parsing and
Linguistic Theories

■ E. G. Ruys, Yoad Winter (2008). Quantifier scope in
formal linguistics. To appear in: Handbook of
Philosophical Logic, 2nd Edition.

39

