Semantic Theory

Lecture 3 - Semantics Construction

Manfred Pinkal \& Stefan Thater

FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes

Summer 2012

First-order logic

- Formulas of first-order logic can talk about properties of and relations between individuals.
- Constants and variables denote individuals.
- Quantification is restricted to quantification over individuals.

Limits of first-order logic

- First-order logic is not expressive enough to capture the full range of meaning of natural language:
- Modification ("good student", "former professor")
- Sentence embedding verbs ("knows that ...")
- Higher order quantification ("have the same hair color")
- ...
- First-order logic does not support compositional semantics construction.

Limits of first-order logic

- The principle of compositionality (recap): The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined (cited from Partee \&al., 1993)
- Compositional semantics construction:
- compute meaning representations for sub-expressions.
- combine them to obtain a meaning representation for a complex expression.
- a man walks $\mapsto \exists x\left(\operatorname{man}^{\prime}(\mathrm{x}) \wedge\right.$ walk' $\left.^{\prime}(\mathrm{x})\right)$
- a man \mapsto (?)
- walks \mapsto (?)

Type Theory

- The types of non-logical expressions provided by firstorder logic are not sufficient to describe the semantic function of all natural language expressions.
- Type theory provides a much richer inventory of types: higher-order relations and functions of different kinds.

Types

- Basic types:

- e - the type of individual terms ("entities")
- \mathbf{t} - the type of formulas ("truth-values")
- Complex types:
- If σ, τ are types, then $\langle\sigma, \tau\rangle$ is a type.
- $\langle\sigma, \tau\rangle$ is the type of functions mapping arguments of type σ to values of type τ.
- Types indicate, how many arguments a predicate has, and what types the arguments must have.

Types of Predicate Logic

- Individual constants and variables: e
- One-place predicates (sleep, walk, ...)
- $\langle\mathrm{e}, \mathrm{t}$)
- Two-place predicates (read, admire, ...)
- $\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle$
- Three-place predicates (give, ...)
- $\langle\mathrm{e},\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle\rangle$

Type Theory - Vocabulary

- Constants: For every type τ a possibly empty set of non-logical constants $\operatorname{CON}_{\tau}$ (pairwise disjoint)
- Variables: For every type τ an infinite set of variables VAR $_{\tau}$ (pairwise disjoint)

■ Logical symbols: $\forall, \exists, \wedge, v, \ldots$

- Brackets: (,)

Type Theory - Syntax

■ The sets of well-formed expressions $\mathbf{W E}_{\boldsymbol{\tau}}$ for every type τ are given by:
(i) $\mathrm{CON}_{\tau} \subseteq W E_{\tau}$ and $\mathrm{VAR}_{\tau} \subseteq W E_{\tau}$, for every type τ
(ii) If α is in $W E_{(0, \tau)}, \beta$ in $W E_{\sigma}$, then $\alpha(\beta) \in W E_{\tau}$.
(iii) If A, B are in $W E_{t}$, then $\neg A$, $(A \wedge B)$, $(A \vee B),(A \rightarrow B)$, ($A \leftrightarrow B$) are in WEt.
(iv) If A is in $W E_{t}$ and v is a variable of arbitrary type, then $\forall v A$ and $\exists v A$ are in $W E_{t}$.
(v) If α, β are well-formed expressions of the same type, then $\alpha=\beta \in W E_{t}$.

Type Theory - Semantics [1/3]

- Let U be a non-empty set of entities.
- The domain of possible denotations $\mathbf{D}_{\boldsymbol{\tau}}$ for every type τ is given by:
- $D_{e}=U$
- $D_{t}=\{0,1\}$
- $D_{(\sigma, \tau)}$ is the set of all functions from D_{σ} to D_{τ}
- Expressions of type τ denote elements of D_{τ}
- For instance
- $\alpha \in \mathrm{WE}_{(e, \text { t) }}$ denotes a set of individual
- $\alpha \in \mathrm{WE}_{(\langle\mathrm{e}, \mathrm{t}, \mathrm{t})}$ denotes a set of sets of individuals

Characteristic Functions

- Many natural language expression have a type $\langle\sigma, \mathrm{t}\rangle$.
- $\langle\sigma, \mathrm{t}\rangle$ the type of functions mapping elements of type σ to true or false.
- Such function are also known as characteristic
functions, and can be thought of as subsets of D_{0}.
- Example: "student" is a constant of type $\langle\mathrm{e}, \mathrm{t}\rangle$ and can be seen as characterising the set of students.

Characteristic Functions

- $\mathrm{U}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
- $X=\{a, b\}$
- Characterisitic function f_{x} of X (over U):
- $f_{x}(a)=1$
- $f_{x}(b)=1$
- $f_{x}(\mathrm{c})=0$
- $\mathrm{f}_{\mathrm{x}}(\mathrm{d})=0$
$\left[\begin{array}{ll}a & \rightarrow 1 \\ b & \rightarrow 1 \\ c & \rightarrow 0 \\ d & \rightarrow 0\end{array}\right]$
- More generally: For all $a \in U, f_{X}(a)=1$ iff $a \in X$

Type Theory - Semantics [2/3]

- A model structure for a type theoretic language consists of a pair $\mathbf{M}=\langle\mathbf{U}, \mathbf{V}\rangle$, where
- U is a non-empty domain of individuals
- V is an interpretation function, which assigns to every member of $C O N_{\tau}$ an element of D_{τ}.
- Variable assignment g assigns every variable of type τ a member of D_{τ}

Type Theory - Semantics [3/3]

- Interpretation with respect to a model structure $\mathbf{M}=\langle\mathbf{U}, \mathbf{V}\rangle$ and a variable assignment \mathbf{g} :
(i) $\llbracket \alpha \rrbracket^{M, g}=V(\alpha)$, if α is a constant $\llbracket \alpha \rrbracket^{M, g}=g(\alpha)$, if α is a variable
(ii) $\llbracket \alpha(\beta) \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \alpha \rrbracket^{\mathrm{M}, 9}\left(\llbracket \beta \rrbracket^{\mathrm{M}, \mathrm{g}}\right)$
(iii) $\llbracket \neg \varphi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ iff $\llbracket \varphi \rrbracket^{\mathrm{M}, g}=0$
$\llbracket \varphi \wedge \psi \rrbracket^{\mathbb{M}, \mathrm{g}}=1 \mathrm{iff} \llbracket \varphi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ and $\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
$\llbracket \varphi \vee \psi \rrbracket^{M, g}=1$ iff $\llbracket \varphi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ or $\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
...
(iv) $\llbracket \alpha=\beta \rrbracket^{M, g}=1$ iff $\llbracket \alpha \rrbracket^{M, g}=\llbracket \beta \rrbracket^{M, g}$

Type Theory - Semantics [3/3]

- Interpretation with respect to a model structure $\mathbf{M}=\langle\mathbf{U}, \mathbf{V}\rangle$ and a variable assignment \mathbf{g} :
(v) $\llbracket \exists v \varphi \rrbracket^{M, g}=1$ iff there is a $d \in D_{\tau}$ such that $\llbracket \varphi \rrbracket^{M, g[v / d]}=1$ $\llbracket \forall \vee \varphi \rrbracket^{M, g}=1$ iff for all $d \in D_{\tau}: \llbracket \varphi \rrbracket^{M, g[v / d]}=1$ (where v is a variable of type τ)

Examples [\Rightarrow whiteboard]

- Bill reads a book
- $\llbracket \exists x\left(\operatorname{book}^{\prime}(x) \wedge \operatorname{read}^{\prime}(x)\left(b^{*}\right) \rrbracket^{M, 9}=1\right.$ iff \ldots
- Bill is a good student
- \llbracket good'(student $\left.{ }^{\prime}\right)\left(b^{*}\right) \rrbracket^{M, g}=1$ iff ...

```
    read':{e, \langlee,t\rangle\rangle b* : e
    book':{e,t\rangle x : e
student' : <e, t\rangle
    good' : \\langlee, t\rangle, \langlee, t\rangle\rangle
```


Adjective Classes \& Meaning Postulates

- Natural language:

- Bill is a good student \vDash Bill is a student

- Type theory:

- good'(student')(b*) \neq student'(b*)
- We need additional "meaning postulates" to get the intended entailment relations
- Meaning postulates are restrictions on models and constrain the possible meaning of certain words

Adjective Classes \& Meaning Postulates

- Intersective adjectives ("blond")
- \llbracket blond $N \mathbb{N}=\llbracket$ blond $\mathbb{\square} \mathbb{I} \mathbb{N} \rrbracket$
- Meaning postlate: $\forall G \forall x($ blond $(G)(x) \rightarrow$ (blond $*(x) \wedge G(x))$
- Note: blond $\in W E_{((e, t), ~(e, t)}$, blond ${ }^{*} \in W E_{(e, t)}$
- Subsective adjectives ("good")
- $\llbracket \operatorname{good} N \rrbracket \subseteq \mathbb{N} \rrbracket$
- Meaning postlate: $\forall G \forall x(\operatorname{good}(G)(x) \rightarrow G(x))$
- Privative adjectives ("former")
- \llbracket former $\mathrm{N} \rrbracket \cap \llbracket N \rrbracket=\varnothing$
- Meaning postlate: $\forall G \forall x($ former $(G)(x) \rightarrow \neg G(x))$

Semantics Construction

- The principle of compositionality (recap): The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined (cited from Partee \&al.,1993)
- Compositional semantics construction:
- compute meaning representations for sub-expressions
- combine them to obtain a meaning representation for a complex expression.

A simple grammar

S	\rightarrow NP VP	PN	\rightarrow Bill
NP	\rightarrow PN	PN	\rightarrow Mary
VP	\rightarrow IV	IV	\rightarrow works
VP	\rightarrow TV NP	TV	\rightarrow likes

- Bill works
- Bill likes Mary
- ...

Semantic lexicon

■ Bill $\mapsto \mathrm{b}^{*}$: e

- Mary $\mapsto \mathrm{m}^{*}$: e
- likes \mapsto like' : $\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle$

■ works \mapsto work' : $\langle\mathrm{e}, \mathrm{t}\rangle$

■ read " \mapsto " as "translates into"

Semantics Construction Rules
(1 ${ }^{\text {st }}$ Version)

- S \rightarrow NP VP
if $V P \mapsto \alpha^{\prime}$ and $N P \mapsto \beta^{\prime}$, then $S \mapsto \alpha^{\prime}\left(\beta^{\prime}\right)$
- NP $\rightarrow \mathbf{P N}$
if $\mathrm{PN} \mapsto \alpha^{\prime}$, then $N P \mapsto \alpha^{\prime}$
- VP \rightarrow IV
if IV $\mapsto \alpha^{\prime}$, then VP $\mapsto \alpha^{\prime}$
- VP \rightarrow TV NP
if TV $\mapsto \alpha^{\prime}$ and $N P \mapsto \beta^{\prime}$, then VP $\mapsto \alpha^{\prime}\left(\beta^{\prime}\right)$

Bill likes Mary

Noun Phrases

John works \mapsto work(j)
Somebody works $\mapsto \boldsymbol{\exists} \mathbf{x}($ work $(\mathbf{x}))$
Every student works $\mapsto \boldsymbol{\forall x}($ student $(\mathbf{x}) \rightarrow$ work $(\mathbf{x}))$
A student works $\mapsto \mathbf{~} \mathbf{x}($ student(x) $\boldsymbol{\wedge}$ work($\mathbf{x})$)
No student works $\mapsto \neg \exists \mathbf{x}(\boldsymbol{s t u d e n t}(\mathbf{x}) \boldsymbol{\wedge}$ work(\mathbf{x}))
John and Mary work \mapsto work(j) \wedge work(m)

λ-Abstraction

■ $\boldsymbol{\lambda} \mathbf{x}($ drive(x) $\boldsymbol{\wedge} \operatorname{drink}(x))$

- a term of type $\langle\mathrm{e}, \mathrm{t}\rangle$
- denotes the property (set of individuals) of being "an x such that x drives and drinks"
- λ-abstraction is an operation that takes an expression and "opens" specific argument positions.
- The result of abstraction over individual variable x in the formula "drive $(x) \wedge \operatorname{drink}(x)$ " results in the complex expression " $\lambda x(\operatorname{drive}(x) \wedge \operatorname{drink}(x))$."

Type Theory with λ-Operator

- Syntax like basic type theory, plus:
- If α is in W_{τ} and v is a variable of type σ, then $\lambda v \alpha$ is a well-formed expression of type $\langle\sigma, \tau\rangle$.
- The scope of the λ-operator is the smallest WE to its right. Wider scope must be indicated by brackets.
- We often use the "dot notation" $\boldsymbol{\lambda} \mathbf{x}$. ... indicating that the λ-operator takes widest possible scope.

λ-Abstraction - Semantics

■ If $\alpha \in \mathrm{WE}_{\tau}, v \in \mathrm{VAR}_{\sigma}$, then $\llbracket \lambda v \alpha \rrbracket^{\mathrm{M}, 9}$ is that function $f: D_{\sigma} \rightarrow D_{\tau}$ such that for all $a \in D_{\sigma}, f(a)=\llbracket \alpha \rrbracket^{M, g[v / a]}$

- $\llbracket \lambda x(\operatorname{drink}(x) \wedge \operatorname{drive}(x)) \rrbracket^{M, g}=\ldots$
- [\Rightarrow whiteboard]

λ-Abstraction - Semantics

- If $\alpha \in \mathrm{WE}_{\tau}, v \in \mathrm{VAR}_{\sigma}$, then $\llbracket \lambda v \alpha \rrbracket^{M, g}$ is that function $f: D_{\sigma} \rightarrow D_{\tau}$ such that for all $a \in D_{\sigma}, f(a)=\llbracket \alpha \rrbracket^{M, g[v / a]}$
- If the λ-expression is applied to some argument, we can simplify the interpretation:
- $\llbracket \lambda v \alpha \rrbracket^{M, g}(A)=\llbracket \alpha \rrbracket^{M, g[v / A]}$
- $\llbracket \lambda x(\operatorname{drink}(x) \wedge \operatorname{drive}(x))\left(b^{*}\right) \rrbracket^{M, g}=1$
- iff $\llbracket \lambda x(\operatorname{drink}(x) \wedge \operatorname{drive}(x)) \rrbracket^{M, g}\left(\llbracket b^{*} \rrbracket^{M, g}\right)=1$
- iff $\llbracket \lambda x(\operatorname{drink}(x) \wedge \operatorname{drive}(x)) \rrbracket^{M, g}\left(V_{M}\left(b^{*}\right)\right)=1$
- iff $\llbracket \operatorname{drink}(x) \wedge \operatorname{drive}(x) \rrbracket^{M, g\left[x /\left(b^{*}\right)\right]}=1$
- iff $\llbracket \operatorname{drink}(x) \rrbracket^{M, g\left[x N\left(b^{*}\right)\right]}$ and $\llbracket \operatorname{drive}(x) \rrbracket^{M, g\left[x N\left(b^{*}\right)\right]}=1$
- iff $\mathrm{V}_{\mathrm{M}}($ drink $)\left(\mathrm{V}_{\mathrm{M}}\left(\mathrm{b}^{*}\right)\right)=1$ and $\mathrm{V}_{\mathrm{M}}($ drive $)\left(\mathrm{V}_{M}\left(\mathrm{~b}^{*}\right)\right)=1$

β-Reduction

- $\llbracket \lambda \mathrm{V} \alpha(\beta) \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \alpha \rrbracket^{\mathrm{M}, g[\mathrm{~V} /[\lceil\beta \rrbracket \mathrm{M}, g]}$
- \Rightarrow all (free) occurrences of the λ-variable in α get the interpretation of β as value.
- Syntactic shortcut: $\boldsymbol{\beta}$-reduction
- $\lambda v \alpha(\beta) \Leftrightarrow[\beta / v] \alpha$
- $[\beta / v] \alpha$ is the result of replacing all free occurrences of v in α with β.
- Achtung: The equivalence is not unconditionally valid

Variable capturing

- Are $\lambda v \alpha(\beta)$ and $[\beta / v] \alpha$ always equivalent?
- $\lambda x\left[\operatorname{drive}^{\prime}(x) \wedge \operatorname{drink}^{\prime}(\mathrm{x})\right]\left(\mathrm{j}^{*}\right) \Leftrightarrow \operatorname{drive}^{\prime}\left(\mathrm{j}^{*}\right) \wedge \operatorname{drink}^{\prime}\left(\mathrm{j}^{*}\right)$
- $\lambda x\left[\operatorname{drive}^{\prime}(x) \wedge \operatorname{drink}^{\prime}(x)\right](y) \Leftrightarrow \operatorname{drive}^{\prime}(\mathrm{y}) \wedge \operatorname{drink}^{\prime}(\mathrm{y})$
- $\lambda x\left[\forall y \operatorname{know}^{\prime}(\mathrm{x})(\mathrm{y})\right]\left(\mathrm{j}^{*}\right) \Leftrightarrow \forall \mathrm{y} \operatorname{know}\left(\mathrm{j}^{*}\right)(\mathrm{y})$
- NOT: $\lambda x\left[\forall y \operatorname{know}^{\prime}(x)(y)\right](y) \Leftrightarrow \forall y \operatorname{know}(y)(y)$
- Let $\mathrm{v}, \mathrm{v}^{\prime}$ be variables of the same type, α any wellformed expression.
- \mathbf{v} is free for \mathbf{v}^{\prime} in $\boldsymbol{\alpha}$ iff no free occurrence of v^{\prime} in α is in the scope of a quantifier or a λ-operator that binds v.

Conversion rules

- β-conversion: $\lambda v \alpha(\beta) \Leftrightarrow[\beta / v] \alpha$
- if all free variables in β are free for v in α.
- $\boldsymbol{\alpha}$-conversion: $\lambda \mathrm{v} \alpha \Leftrightarrow \lambda w[w / v] \alpha$
- if w is free for v in α.
- $\boldsymbol{\eta}$-conversion: $\lambda v(\alpha(v)) \Leftrightarrow \alpha$

Back to noun phrases

- Every student
- $\mapsto \lambda P \forall x\left(\right.$ student $\left.{ }^{\prime}(x) \rightarrow P(x)\right)$
- Type: $\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle$
- Interpretation:

- Every student denotes the set of properties that apply to every student ("property" = sets of individuals).
- \llbracket Every student】 $=\{\mathrm{P} \mid$ every student has property P$\}$
- Semantic construction rule for $S \rightarrow$ NP VP:
- if VP $\mapsto \alpha^{\prime}$ and $N P \mapsto \beta^{\prime}$, then $S \mapsto \beta^{\prime}\left(\alpha^{\prime}\right)$

Back to noun phrases

■ Interpretation of "every student:" the set of properties P that apply to every student

- every student $\mapsto \lambda P \forall x$ (student $\left.{ }^{\prime}(x) \rightarrow P(x)\right)$
- Interpretation of "a student:" the set of properties P that apply to some student.
- a student $\mapsto \lambda P \exists x\left(\right.$ student $\left.{ }^{\prime}(x) \wedge P(x)\right)$

■ Interpretation of "Bill:" the set of properties P that apply to Bill.

- Bill \mapsto 入P.P($\left.\mathrm{b}^{*}\right)$

Determiners

- a, some $\mapsto \lambda F \lambda G \exists x(F(x) \wedge G(x))$
- every $\quad \rightarrow \lambda F \lambda G \forall x(F(x) \rightarrow G(x))$
- no $\quad \mapsto \lambda F \lambda G \neg \exists x(F(x) \wedge G(x))$

Semantics Construction Rules

(2 ${ }^{\text {nd }}$ Version)

- $\mathbf{S} \rightarrow \mathbf{N P}$ VP
if $V P \mapsto \alpha^{\prime}$ and $N P \mapsto \beta^{\prime}$, then $S \mapsto \beta^{\prime}\left(\alpha^{\prime}\right)$
- NP \rightarrow DET N
if DET $\mapsto \alpha^{\prime}$ and $N \mapsto \beta^{\prime}$, then $N P \mapsto \alpha^{\prime}\left(\beta^{\prime}\right)$
■ NP $\rightarrow \mathbf{P N}$
if $P N \mapsto \alpha^{\prime}$, then $N P \mapsto \alpha^{\prime}$
- VP \rightarrow IV
if IV $\mapsto \alpha^{\prime}$, then VP $\mapsto \alpha^{\prime}$

Every student works

(2) $\mapsto \lambda P \lambda Q \forall x(P(x) \rightarrow Q(x)):\langle\langle e, t\rangle,\langle\langle e, t\rangle, t\rangle$
(3) \mapsto student' : $\langle e, t\rangle$
(1) $\mapsto \lambda P \lambda Q \forall x(P(x) \rightarrow Q(x))\left(\right.$ student $\left.{ }^{\prime}\right):\langle\langle e, t\rangle, t\rangle$
$\Rightarrow{ }_{\beta} \lambda Q \forall x\left(\right.$ student $\left.{ }^{\prime}(x) \rightarrow Q(x)\right)$
(4) = (5) \mapsto work' $^{\prime}:\langle\mathrm{e}, \mathrm{t}\rangle$
(0) $\mapsto \lambda Q \forall x\left(\right.$ student $\left.{ }^{\prime}(x) \rightarrow Q(x)\right)\left(\right.$ work' $\left.^{\prime}\right): t$
$\Rightarrow \beta \boldsymbol{\forall x}\left(\right.$ student' $(x) \rightarrow$ work' $\left.^{\prime}(x)\right)$

Literature

- L.T.F. Gamut (1991): Logic, Language and Meaning, Vol II. University of Chicago Press. Chapter 4
- David Dowty, Robert Wall and Stanley Peters (1981): Introduction to Montague Semantics. Dordrecht, Reidel. Chapter 4.

