Semantic Theory Lecture 3 – Semantics Construction

Manfred Pinkal & Stefan Thater FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes

Summer 2012

First-order logic

- Formulas of first-order logic can talk about properties of and relations between individuals.
- Constants and variables denote individuals.
- Quantification is restricted to quantification over individuals.

2

Limits of first-order logic

- First-order logic is not expressive enough to capture the full range of meaning of natural language:
 - Modification ("good student", "former professor")
 - Sentence embedding verbs ("knows that ...")
 - Higher order quantification ("have the same hair color")
 - ...
- First-order logic does not support compositional semantics construction.

Limits of first-order logic

- The principle of compositionality (recap): The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined (cited from Partee &al., 1993)
- Compositional semantics construction:
 - compute meaning representations for sub-expressions.
 - combine them to obtain a meaning representation for a complex expression.
- a man walks $\mapsto \exists x(man'(x) \land walk'(x))$
 - a man ↦ (?)
 - walks ↦ (?)

4

Type Theory

- The types of non-logical expressions provided by firstorder logic are not sufficient to describe the semantic function of all natural language expressions.
- Type theory provides a much richer inventory of types: higher-order relations and functions of different kinds.

5

Types

- Basic types:
 - e the type of individual terms ("entities")
 - t the type of formulas ("truth-values")
- Complex types:
 - If σ , τ are types, then (σ, τ) is a type.
 - (σ, τ) is the type of functions mapping arguments of type σ to values of type τ.
- Types indicate, how many arguments a predicate has, and what types the arguments must have.

Type Theory – Vocabulary

- Constants: For every type τ a possibly empty set of non-logical constants CON_τ (pairwise disjoint)
- Variables: For every type τ an infinite set of variables VAR_τ (pairwise disjoint)
- Logical symbols: ∀, ∃, ∧, v, …
- Brackets: (,)

8

Type Theory – Syntax

- The sets of well-formed expressions WE_τ for every type τ are given by:
 - (i) $CON_{\tau} \subseteq WE_{\tau}$ and $VAR_{\tau} \subseteq WE_{\tau}$, for every type τ
 - (ii) If α is in WE_(σ, τ), β in WE_{σ}, then $\alpha(\beta) \in WE_{\tau}$.
 - (iii) If A, B are in WE_t, then \neg A, (A ∧ B), (A ∨ B), (A → B), (A ↔ B) are in WE_t.
 - (iv) If A is in WE_t and v is a variable of arbitrary type, then $\forall vA$ and $\exists vA$ are in WE_t.
 - (v) If α , β are well-formed expressions of the same type, then $\alpha = \beta \in WE_t$.

10

Characteristic Functions

- Many natural language expression have a type (σ, t) .
- (σ, t) the type of functions mapping elements of type σ to true or false.
- Such function are also known as **characteristic** functions, and can be thought of as subsets of D_{σ} .
- Example: "student" is a constant of type (e, t) and can be seen as characterising the set of students.

11

Characteristic Functions

- U = {a, b, c, d}
- X = {a, b}
- Characterisitic function f_X of X (over U):

■ f_X(a) = 1

•	$f_{X}(a) = 1$		(
•	f _X (b) = 1	$\begin{array}{c} a \rightarrow 1 \\ b \rightarrow 1 \\ c \rightarrow 0 \end{array}$	
•	$f_X(c) = 0$	c → 0	

- [d → 0] ■ f_X(d) = 0
- More generally: For all $a \in U$, $f_X(a) = 1$ iff $a \in X$

Type Theory – Semantics [3/3]

- Interpretation with respect to a model structure
 M = (U, V) and a variable assignment g:
 - $$\begin{split} \text{(v)} \quad & [\![\exists v \phi]\!]^{M,g} = 1 \text{ iff there is a } d \in \mathsf{D}_\tau \text{ such that } [\![\phi]\!]^{M,g[\nu/d]} = 1 \\ & [\![\forall v \phi]\!]^{M,g} = 1 \text{ iff for all } d \in \mathsf{D}_\tau : [\![\phi]\!]^{M,g[\nu/d]} = 1 \\ & (\text{where } \nu \text{ is a variable of type } \tau) \end{split}$$

Adjective Classes & Meaning Postulates

- Natural language:
 - Bill is a good student ⊨ Bill is a student
- Type theory:
 - good'(student')(b*) ⊭ student'(b*)
- We need additional "meaning postulates" to get the intended entailment relations
- Meaning postulates are restrictions on models and constrain the possible meaning of certain words

17

Adjective Classes & Meaning Postulates

- Intersective adjectives ("blond")
 - [[blond N]] = [[blond]] ∩ [[N]]
 - Meaning postlate: $\forall G \forall x (blond(G)(x) \rightarrow (blond^*(x) \land G(x)))$
 - Note: blond $\in WE_{((e, t), (e, t))}$, blond* $\in WE_{(e,t)}$
- Subsective adjectives ("good")
 - $[good N] \subseteq [N]$
 - Meaning postlate: $\forall G \forall x (good(G)(x) \rightarrow G(x))$
- Privative adjectives ("former")
 - [[former N]] ∩ [[N]] = Ø
 - Meaning postlate: $\forall G \forall x (former(G)(x) \rightarrow \neg G(x))$

Semantics Construction

- The principle of compositionality (recap): The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined (cited from Partee &al.,1993)
- Compositional semantics construction:
 - compute meaning representations for sub-expressions
 - combine them to obtain a meaning representation for a complex expression.

19

Semantic lexicon Bill ↦ b* : e Mary ↦ m* : e likes ↦ like' : (e, (e, t)) works ↦ work' : (e, t) read "↦" as "translates into"

Semantics Construction Rules (1st Version)

- **S** → **NP VP** if VP $\mapsto \alpha'$ and NP $\mapsto \beta'$, then S $\mapsto \alpha'(\beta')$
- **NP** → **PN** if PN $\mapsto \alpha'$, then NP $\mapsto \alpha'$
- **VP** \rightarrow **IV** if IV $\mapsto \alpha'$, then VP $\mapsto \alpha'$
- **VP** → **TV NP** if TV $\mapsto \alpha'$ and NP $\mapsto \beta'$, then VP $\mapsto \alpha'(\beta')$

22

λ -Abstraction

- $\lambda x(drive(x) \wedge drink(x))$
 - a term of type (e, t)
 - denotes the property (set of individuals) of being "an x such that x drives and drinks"
- λ-abstraction is an operation that takes an expression and "opens" specific argument positions.
- The result of abstraction over individual variable x in the formula "drive(x) ∧ drink(x)" results in the complex expression "λx(drive(x) ∧ drink(x))."

25

Type Theory with λ -Operator

- Syntax like basic type theory, plus:
 - If α is in WE_τ and v is a variable of type σ, then λvα is a well-formed expression of type (σ, τ).
- The scope of the λ-operator is the smallest WE to its right. Wider scope must be indicated by brackets.
- We often use the "dot notation" λx. ... indicating that the λ-operator takes widest possible scope.

26

λ -Abstraction – Semantics

- If $\alpha \in WE_{\tau}$, $v \in VAR_{\sigma}$, then $[\lambda v \alpha]^{M,g}$ is that function $f: D_{\sigma} \rightarrow D_{\tau}$ such that for all $a \in D_{\sigma}$, $f(a) = [[\alpha]^{M,g[v/a]}$
- $[\lambda x(drink(x) \land drive(x))]^{M,g} = ...$
 - [⇒ whiteboard]

28

β-Reduction

- $\blacksquare \ [[\lambda v \alpha(\beta)]]^{M,g} = [[\alpha]]^{M,g[v/[[\beta]]M,g]}$
 - \Rightarrow all (free) occurrences of the λ -variable in α get the interpretation of β as value.
- Syntactic shortcut: β-reduction
 - $\lambda \vee \alpha(\beta) \Leftrightarrow [\beta/\nu] \alpha$
 - $[\beta/v]\alpha$ is the result of replacing all *free occurrences* of v in α with β .
- Achtung: The equivalence is not unconditionally valid

29

Variable capturing

- Are $\lambda v \alpha(\beta)$ and $[\beta/v]\alpha$ always equivalent?
 - $\lambda x[drive'(x) \land drink'(x)](j^*) \Leftrightarrow drive'(j^*) \land drink'(j^*)$
 - $\lambda x[drive'(x) \land drink'(x)](y) \Leftrightarrow drive'(y) \land drink'(y)$
 - $\lambda x[\forall y \text{ know}'(x)(y)](j^*) \Leftrightarrow \forall y \text{ know}(j^*)(y)$
 - NOT: $\lambda x[\forall y \text{ know}'(x)(y)](y) \Leftrightarrow \forall y \text{ know}(y)(y)$
- Let v, v' be variables of the same type, α any wellformed expression.
- v is free for v' in α iff no free occurrence of v' in α is in the scope of a quantifier or a λ-operator that binds v.

Semantics Construction Rules (2nd Version)

- **S** → **NP VP** if VP $\mapsto \alpha'$ and NP $\mapsto \beta'$, then S $\mapsto \beta'(\alpha')$
- NP → DET N if DET $\mapsto \alpha'$ and N $\mapsto \beta'$, then NP $\mapsto \alpha'(\beta')$
- **NP** \rightarrow **PN** if PN $\mapsto \alpha'$, then NP $\mapsto \alpha'$
- **VP** \rightarrow **IV** if IV $\mapsto \alpha'$, then VP $\mapsto \alpha'$

35

Literature

- L.T.F. Gamut (1991): Logic, Language and Meaning, Vol II. University of Chicago Press. Chapter 4
- David Dowty, Robert Wall and Stanley Peters (1981): Introduction to Montague Semantics. Dordrecht, Reidel. Chapter 4.