Semantic Theory

Lecture 2 - Formal Foundations

Manfred Pinkal \& Stefan Thater

FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes

Summer 2012

Today

- First-order Predicate Logic
- Syntax
- Semantics
- Formalizing natural language

Sentence Meaning (recap)

- Truth-conditional semantics: to know the meaning of a (declarative) sentence is to know what the world would have to be like for the sentence to be true.
- Sentence meaning = truth-conditions
- \llbracket Every student works $\rrbracket^{M, g}=1$ iff. every student works
- Indirect interpretation by translating the sentence into some logical formula
- Every student works $\mapsto \forall x$ (student' $(x) \rightarrow$ work' $\left.^{\prime}(x)\right)$

Predicate Logic - Vocabulary

- Non-logical expressions:

- Individual constants: CON
- n-place relation constants: PRED ${ }^{n}$, for all $\mathrm{n} \geq 0$
- Infinite set of individual variables: VAR
- Logical connectives: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow, \forall, \exists$

■ Brackets: (,)

Predicate Logic - Syntax

- Terms: TERM = VAR \cup CON

- Atomic formulas:

- $R\left(t_{1}, \ldots, t_{n}\right)$ for $R \in$ PRED n and $t_{1}, \ldots, t_{n} \in$ TERM
- $t_{1}=t_{2}$ for $t_{1}, t_{2} \in$ TERM
- Well-formed formulas: the smallest set WFF such that
- all atomic formulas are WFF
- if φ and ψ are WFF, then $\neg \varphi,(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi)$, ($\varphi \leftrightarrow \psi$) are WFF
- if $x \in \operatorname{VAR}$, and φ is a WFF, then $\forall x \varphi$ and $\exists x \varphi$ are WFF

Formalizing natural language

(1) Bill loves Mary
(2) Bill reads a book
(3) Bill passed every exam
(4) Every student passed [the exam]
(5) Every student reads a book
(6) Bill and Mary are friends

Free and Bound Variables

- If $\forall x \varphi(\exists x \varphi)$ is a subformula of a formula ψ, then φ is the scope of this occurrence of $\forall x(\exists x)$ in ψ.
- An occurrence of variable x in a formula φ is free in φ if this occurrence of x does not fall within the scope of a quantifier $\forall x$ or $\exists x$ in φ.
- If $\forall x \psi(\exists x \psi)$ is a subformula of φ and x is free in ψ, then this occurrence of x is bound by this occurrence of the quantifier $\forall x(\exists x)$.
- A sentence is a formula without free variables.

Predicate Logic - Semantics

- Expressions of Predicate Logic are interpreted relative to model structures and variable assignments.
- Model structures are our "mathematical picture" of the world: They provide interpretations for the non-logical symbols (predicate symbols, individual constants).
- Variable assignments provide interpretations for variables.

Model structures

- Model structure: $M=\left\langle U_{M}, V_{M}\right\rangle$
- U_{M} is non-empty set - the "universe"
- V_{M} is an interpretation function assigning individuals $\left(\in \mathrm{U}_{\mathrm{M}}\right)$ to individual constants and n-ary relations over U_{M} to n place predicate symbols:
- $V_{M}(P) \subseteq U_{M}{ }^{n} \quad$ if P is an n-place predicate symbol
- $\mathrm{V}_{\mathrm{M}}(\mathrm{c}) \in \mathrm{U}_{\mathrm{M}} \quad$ if c is an individual constant
- Assignment function for variables $g: V A R \rightarrow U_{M}$

Model structures - Example

Model structures - Example

Interpretation (Terms)

- Interpretation of terms with respect to a model structure M and a variable assignment g :
- $\llbracket \alpha \rrbracket^{\mathrm{M}, g}= \begin{cases}\mathrm{V}_{\mathrm{M}}(\alpha) & \text { if } \alpha \text { is an individual constant } \\ g(\alpha) & \text { if } \alpha \text { is a variable }\end{cases}$

Interpretation (Formulas)

- Interpretation of formulas with respect to a model structure M and variable assignment g :
$\llbracket R\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{M, g}=1 \mathrm{iff}\left\langle\llbracket t_{1} \rrbracket^{M, g}, \ldots, \llbracket t_{n} \rrbracket^{M, g}\right\rangle \in V_{M}(R)$

$$
\begin{gathered}
\llbracket \mathrm{t}_{1}=\mathrm{t}_{2} \rrbracket^{\mathrm{M}, \mathrm{~g}}=1 \text { iff } \llbracket \mathrm{t}_{1} \rrbracket^{\mathrm{M}, \mathrm{~g}}=\llbracket \mathrm{t}_{2} \rrbracket^{\mathrm{M}, \mathrm{~g}} \\
\llbracket \neg \varphi \rrbracket^{\mathrm{M}, \mathrm{~g}}=1 \text { iff } \llbracket \varphi \rrbracket^{\mathrm{M}, \mathrm{~g}}=0
\end{gathered}
$$

$\llbracket \varphi \wedge \psi \rrbracket^{M, g}=1 \mathrm{iff} \llbracket \varphi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ and $\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
$\llbracket \varphi \vee \psi \rrbracket^{M, g}=1$ iff $\llbracket \varphi \rrbracket^{M, g}=1$ or $\llbracket \psi \rrbracket^{M, g}=1$
$\llbracket \varphi \rightarrow \psi \rrbracket^{M, g}=1$ iff $\llbracket \varphi \rrbracket^{M, g}=0$ or $\llbracket \psi \rrbracket^{M, g}=1$
$\llbracket \varphi \leftrightarrow \psi \rrbracket^{M, g}=1 \mathrm{iff} \llbracket \varphi \rrbracket^{\mathrm{M}, g}=\llbracket \psi \rrbracket^{M, g}$
$\llbracket \exists x \varphi \rrbracket^{\mathbb{M}, g}=1$ iff there is a $d \in U_{M}$ such that $\llbracket \varphi \rrbracket^{M, g[x / d]}=1$
$\llbracket \forall \chi \varphi \rrbracket^{M, g}=1$ iff for all $d \in U_{M}, \llbracket \varphi \rrbracket^{M, g[x / d]}=1$

Variable assignments

- We write $\mathbf{g}[\mathbf{x} / \mathbf{d}]$ for the assignment that assigns d to x and assigns the same values as g to all other variables.
- $g[x / d](y)=d$, if $x=y$
- $g[x / d](y)=g(y)$, if $x \neq y$

	\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{u}	\ldots
g	a	b	c	d	\ldots
$g[x / a]$	a	b	c	d	\ldots
$g[y / a]$	a	a	c	d	\ldots
$g[y / g(z)]$	a	c	c	d	\ldots
$g[y / a][u / a]$	a	a	c	a	\ldots
$g[y / a][y / b]$	a	b	c	d	\ldots

A rabbit is in a hat

- $\llbracket \exists x\left(\right.$ rabbit $^{\prime}(x) \wedge \exists y\left(\right.$ hat $\left.\left.^{\prime}(y) \wedge \mathrm{in}^{\prime}(\mathrm{x}, \mathrm{y})\right)\right) \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
- iff ... [\Rightarrow whiteboard]

No rabbit is white

- $\llbracket \neg \exists x\left(\right.$ rabbit' $^{\prime}(x) \wedge$ white $\left.^{\prime}(x)\right) \rrbracket^{M, g}=1$
- iff ... [\Rightarrow whiteboard]

Truth \&al.

- A formula $\boldsymbol{\varphi}$ is true in a model structure M iff $\llbracket \varphi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ for every variable assignment g
- A formula $\boldsymbol{\varphi}$ is valid $(\vDash \boldsymbol{\varphi})$ iff φ is true in all model structures
- A formula $\boldsymbol{\varphi}$ is satisfiable iff there is at least one model structure M such that φ is true in M
- A set of formulas Γ is (simultaneously) satisfiable iff there is a model structure M such that every formula in Γ is true in M (" M satisfies Γ," or " M is a model of Γ ")
- Γ entails a formula $\boldsymbol{\varphi}(\Gamma \vDash \boldsymbol{\varphi})$ iff φ is true in every model structure that satisfies Γ

Entailment?

(1)

$$
L(b, m) \vDash ? \exists x L(b, x)
$$

(b, m $\in C O N$)
(2) $\quad \exists x \forall y R(x, y) \models ? \forall y \exists x R(x, y)$
(3)
$\forall y P(y) \vDash ? \exists y P(y)$
(4) $\exists x P(x) \wedge \exists x Q(x) \vDash ? \exists x(P(x) \wedge Q(x))$

Formalizing natural language

(1) Bill reads a book
(2) Bill reads an interesting book
(3) Not every student answered every question
(4) Only Bill answered every question
(5) Two students flunked
(6) Mary is annoyed if someone is noisy
(7) Although nobody makes noise, Mary is annoyed

Literature

- L.T.F. Gamut (1991): Logic, Language and Meaning, Vol I. University of Chicago Press. Chapter 3

