Semantic Theory Lecture 2 - Formal Foundations

Manfred Pinkal & Stefan Thater FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes

Summer 2012

Today

- First-order Predicate Logic
 - Syntax
 - Semantics
- Formalizing natural language

2

Sentence Meaning (recap)

- Truth-conditional semantics: to know the meaning of a (declarative) sentence is to know what the world would have to be like for the sentence to be true.
- Sentence meaning = truth-conditions
 - [[Every student works]]^{M,g} = 1 iff. every student works
- Indirect interpretation by translating the sentence into some logical formula
 - Every student works $\mapsto \forall x(student'(x) \rightarrow work'(x))$

- **Terms:** TERM = VAR ∪ CON
- Atomic formulas:
 - $R(t_1,...,t_n)$ for $R \in PRED^n$ and $t_1, ..., t_n \in TERM$
 - $t_1 = t_2$ for $t_1, t_2 \in \text{TERM}$
- Well-formed formulas: the smallest set WFF such that
 - all atomic formulas are WFF
 - if ϕ and ψ are WFF, then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \rightarrow \psi)$, $(\phi \leftrightarrow \psi)$ are WFF
 - if $x \in VAR$, and φ is a WFF, then $\forall x \varphi$ and $\exists x \varphi$ are WFF

5

Formalizing natural language

- (1) Bill loves Mary
- (2) Bill reads a book
- (3) Bill passed every exam
- (4) Every student passed [the exam]
- (5) Every student reads a book
- (6) Bill and Mary are friends

Free and Bound Variables

- If ∀xφ (∃xφ) is a subformula of a formula ψ, then φ is the scope of this occurrence of ∀x (∃x) in ψ.
- An occurrence of variable x in a formula φ is free in φ if this occurrence of x does not fall within the scope of a quantifier ∀x or ∃x in φ.
- If ∀xψ (∃xψ) is a subformula of φ and x is free in ψ, then this occurrence of x is **bound by** this occurrence of the quantifier ∀x (∃x).
- A **sentence** is a formula without free variables.

7

Predicate Logic - Semantics

- Expressions of Predicate Logic are interpreted relative to model structures and variable assignments.
- Model structures are our "mathematical picture" of the world: They provide interpretations for the non-logical symbols (predicate symbols, individual constants).
- Variable assignments provide interpretations for variables.

8

Model structures

- Model structure: $M = \langle U_M, V_M \rangle$
 - U_M is non-empty set the "universe"
 - V_M is an interpretation function assigning individuals (∈U_M) to individual constants and n-ary relations over U_M to nplace predicate symbols:
 - $V_M(P) \subseteq U_M^n$ if P is an n-place predicate symbol
 - $V_M(c) \in U_M$ if c is an individual constant
- Assignment function for variables g: VAR \rightarrow U_M

Variable assignments

- We write g[x/d] for the assignment that assigns d to x and assigns the same values as g to all other variables.
 - g[x/d](y) = d, if x = y
 - g[x/d](y) = g(y), if $x \neq y$

	х	У	z	u	
g	а	b	С	d	
g[x/a]	а	b	с	d	
g[y/a]	а	а	с	d	
g[y/g(z)]	а	с	с	d	
g[y/a][u/a]	а	а	с	а	
g[y/a][y/b]	а	b	с	d	

A rabbit is in a hat

- $[\exists x(rabbit'(x) \land \exists y(hat'(y) \land in'(x, y)))]^{M,g} = 1$
 - iff ... [⇒ whiteboard]

Description of the probability of the probabi

■ Γ entails a formula φ (Γ ⊨ φ) iff φ is true in every model structure that satisfies Γ

17

Ent	Entailment?					
(1)	L(b, m) ⊨ [?] ∃xL(b, x)	(b, m \in CON)				
(2)	$\exists x \forall y R(x,y) \models^? \forall y \exists x R(x,y)$					
(3)	$\forall y P(y) \models^? \exists y P(y)$					
(4)	$\exists x P(x) \land \exists x Q(x) \models^? \exists x (P(x) \land Q(x))$					

Formalizing natural language

- (1) Bill reads a book
- (2) Bill reads an interesting book
- (3) Not every student answered every question
- (4) Only Bill answered every question
- (5) Two students flunked
- (6) Mary is annoyed if someone is noisy
- (7) Although nobody makes noise, Mary is annoyed

19

20

Literature

 L.T.F. Gamut (1991): Logic, Language and Meaning, Vol I. University of Chicago Press. Chapter 3