1 Type theory: Semantics

Let U is a non-empty set of entities. For every type τ , the domain of possible denotations D_{τ} is given by:

$$- D_e = U$$

$$- D_t = \{0, 1\}$$

 $- D_{\langle \sigma, \tau \rangle}$ is the set of functions from D_{σ} to D_{τ} .

A model structure is a pair $M = \langle U_M, V_M \rangle$ such that

- U_M is a non-empty set of individuals
- $-V_M$ is a function assigning every non-logical constant of type τ a member of D_{τ} .

Interpretation:

 $- [\![\alpha]\!]^{M,g} = V_M(\alpha)$ if α is a constant

$$- \llbracket \alpha \rrbracket^{M,g} = g(\alpha)$$
 if α is a variable

$$- \ [\![\alpha(\beta)]\!]^{M,g} = [\![\alpha]\!]^{M,g} ([\![\beta]\!]^{M,g})$$

 $- [\![\lambda v\alpha]\!]^{M,g} = \text{that function } f: D_{\sigma} \to D_{\tau} \text{ such that for all } a \in D_{\sigma}, f(a) = [\![\alpha]\!]^{M,g[v/a]}$ (for v a variable of type σ)

$$- \ \llbracket \alpha = \beta \rrbracket^{M,g} = 1 \text{ iff } \llbracket \alpha \rrbracket^{M,g} = \llbracket \beta \rrbracket^{M,g}$$

$$- \ \llbracket \neg \phi \rrbracket^{M,g} = 1 \text{ iff } \llbracket \phi \rrbracket^{M,g} = 0$$

- $\ \llbracket \phi \wedge \psi \rrbracket^{M,g} = 1 \text{ iff } \llbracket \phi \rrbracket^{M,g} = 1 \text{ and } \llbracket \psi \rrbracket^{M,g} = 1$
- $\ \llbracket \phi \lor \psi \rrbracket^{M,g} = 1 \text{ iff } \llbracket \phi \rrbracket^{M,g} = 1 \text{ or } \llbracket \psi \rrbracket^{M,g} = 1$
- $\ \llbracket \phi \rightarrow \psi \rrbracket^{M,g} = 1 \text{ iff } \llbracket \phi \rrbracket^{M,g} = 0 \text{ or } \llbracket \psi \rrbracket^{M,g} = 1$
- $[\exists v \phi]^{M,g} = 1$ iff there is an $a \in D_{\tau}$ such that $[\![\phi]\!]^{M,g[v/a]} = 1$ (for v a variable of type τ)
- $\llbracket \forall v \phi \rrbracket^{M,g} = 1 \text{ iff for all } a \in D_{\tau}, \llbracket \phi \rrbracket^{M,g[x/a]} = 1 \text{ (for } v \text{ a variable of type } \tau)$

2 Cooper Storage

Transitive verbs are analysed as constants of type $\langle \langle \langle e, t \rangle, t \rangle, \langle e, t \rangle \rangle$.

Storage: $\langle Q, \Delta \rangle \Rightarrow_S \langle \lambda P. P(x_i), \Delta \cup \{Q_i\} \rangle$

if A is an noun phrase whose semantic value is $\langle Q, \Delta \rangle$, then $\langle \lambda P.P(x_i), \Delta \cup \{Q_i\} \rangle$ is also a semantic value for A, where $i \in N$ is a new index.

Retrieval: $\langle \alpha, \Delta \cup \{Q_i\} \rangle \Rightarrow_R \langle Q(\lambda x_i.\alpha), \Delta \rangle$

if A is any sentence with semantic value $\langle \lambda \alpha, \Delta \cup \{Q_i\} \rangle$, then $\langle Q(\lambda x_i.\alpha), \Delta \rangle$ is also a semantic value for A.

3 Nested Cooper Storage

Storage: $\langle Q, \Delta \rangle \Rightarrow_S \langle \lambda P.P(x_i), \{ \langle Q, \Delta \rangle_i \} \rangle$

if A is an noun phrase whose semantic value is $\langle Q, \Delta \rangle$, then $\langle \lambda P.P(x_i), \{\langle Q, \Delta \rangle_i\}\rangle$ is also a semantic value for A, where $i \in N$ is a new index.

Retrieval: $\langle \alpha, \Delta \cup \{ \langle Q, \Gamma \rangle_i \} \rangle \Rightarrow_R \langle Q(\lambda x_i \cdot \alpha), \Delta \cup \Gamma \rangle$

if A is any sentence with semantic value $\langle \alpha, \Delta \cup \{ \langle Q, \Gamma \rangle_i \} \rangle$, then $\langle Q(\lambda x_i.\alpha), \Delta \cup \Gamma \rangle$ is also a semantic value for A.

4 DRT: Syntax

A discourse representation structure (DRS) K is a pair $\langle U_K, C_K \rangle$ where

 $- U_K$ is a set of discourse referents

 $-C_K$ is a set of conditions.

Conditions:

$R(u_1,\ldots,u_n)$	R is an <i>n</i> -place relation, $u_i \in U_K$
u = v	$u, v \in U_K$
u = a	$u \in U_K$, a a proper name
$K_1 \Rightarrow K_2$	K_1 and K_2 DRSs
$K_1 \lor K_2$	K_1 and K_2 DRSs
$\neg K_1$	K_1 is a DRS

5 DRT: Embedding, verifying embedding

Let U_D be a set of discourse referents, $K = \langle U_K, C_K \rangle$ a DRS with $U_K \subseteq U_D$, $M = \langle U_M, V_M \rangle$ a model structure of first-order predicate logic that is suitable for K. An *embedding* of U_D into M is a (partial) function from U_D to U_M that assigns individuals from U_M to discourse referents.

An embedding f verifies the DRS K in M $(f \models_M K)$ iff

1. $U_K \subseteq \text{Dom}(f)$ and

2. f verifies each condition $\alpha \in C_K$.

f verifies a condition α in M ($f \models_M \alpha$) in the following cases:

$f\models_M R(u_1,\ldots,u_n)$	iff $\langle f(u_1), \ldots, f(u_n) \rangle \in V_M(R)$
$f \models_M u = v$	$\inf f(u) = f(v)$
$f \models_M u = a$	$\inf f(u) = V_M(a)$
$f\models_M K_1 \Rightarrow K_2$	iff for all $g \supseteq_{U_{K_1}} f$ such that $g \models_M K_1$,
	there is $h \supseteq_{U_{K_2}} g$ such that $h \models_M K_2$
$f \models_M \neg K_1$	iff there is no $\tilde{g} \supseteq_{U_{K_1}} f$ such that $g \models_M K_1$
$f\models_M K_1 \vee K_2$	iff there is a $g_1 \supseteq_{U_{K_1}} f$ such that $g_1 \models_M K_1$,
	or there is a $g_2 \supseteq_{U_{K_2}} f$ such that $g_2 \models_M K_2$.