1 Type theory: Semantics

Let U is a non-empty set of entities. For every type τ, the domain of possible denotations D_{τ} is given by:

- $D_{e}=U$
- $D_{t}=\{0,1\}$
- $D_{\langle\sigma, \tau\rangle}$ is the set of functions from D_{σ} to D_{τ}.

A model structure is a pair $M=\left\langle U_{M}, V_{M}\right\rangle$ such that

- U_{M} is a non-empty set of individuals
- V_{M} is a function assigning every non-logical constant of type τ a member of D_{τ}.

Interpretation:
$-\llbracket \alpha \rrbracket^{M, g}=V_{M}(\alpha)$ if α is a constant

- $\llbracket \alpha \rrbracket^{M, g}=g(\alpha)$ if α is a variable
$-\llbracket \alpha(\beta) \rrbracket^{M, g}=\llbracket \alpha \rrbracket^{M, g}\left(\llbracket \beta \rrbracket^{M, g}\right)$
$-\llbracket \lambda v \alpha \rrbracket^{M, g}=$ that function $f: D_{\sigma} \rightarrow D_{\tau}$ such that for all $a \in D_{\sigma}, f(a)=\llbracket \alpha \rrbracket^{M, g[v / a \rrbracket}$ (for v a variable of type σ)
$-\llbracket \alpha=\beta \rrbracket^{M, g}=1$ iff $\llbracket \alpha \rrbracket^{M, g}=\llbracket \beta \rrbracket^{M, g}$
$-\llbracket \neg \phi \rrbracket^{M, g}=1$ iff $\llbracket \phi \rrbracket^{M, g}=0$
$-\llbracket \phi \wedge \psi \rrbracket^{M, g}=1$ iff $\llbracket \phi \rrbracket^{M, g}=1$ and $\llbracket \psi \rrbracket^{M, g}=1$
$-\llbracket \phi \vee \psi \rrbracket^{M, g}=1$ iff $\llbracket \phi \rrbracket^{M, g}=1$ or $\llbracket \psi \rrbracket^{M, g}=1$
$-\llbracket \phi \rightarrow \psi \rrbracket^{M, g}=1$ iff $\llbracket \phi \rrbracket^{M, g}=0$ or $\llbracket \psi \rrbracket^{M, g}=1$
$-\llbracket \exists v \phi \rrbracket^{M, g}=1$ iff there is an $a \in D_{\tau}$ such that $\llbracket \phi \rrbracket^{M, g[v / a]}=1$ (for v a variable of type τ)
$-\llbracket \forall v \phi \rrbracket^{M, g}=1$ iff for all $a \in D_{\tau}, \llbracket \phi \rrbracket^{M, g[x / a]}=1$ (for v a variable of type τ)

2 Cooper Storage

Transitive verbs are analysed as constants of type $\langle\langle\langle e, t\rangle, t\rangle,\langle e, t\rangle\rangle$.
Storage: $\langle Q, \Delta\rangle \Rightarrow_{S}\left\langle\lambda P . P\left(x_{i}\right), \Delta \cup\left\{Q_{i}\right\}\right\rangle$
if A is an noun phrase whose semantic value is $\langle Q, \Delta\rangle$, then $\left\langle\lambda P . P\left(x_{i}\right), \Delta \cup\left\{Q_{i}\right\}\right\rangle$ is also a semantic value for A , where $i \in N$ is a new index.
Retrieval: $\left\langle\alpha, \Delta \cup\left\{Q_{i}\right\}\right\rangle \Rightarrow_{R}\left\langle Q\left(\lambda x_{i} . \alpha\right), \Delta\right\rangle$
if A is any sentence with semantic value $\left\langle\lambda \alpha, \Delta \cup\left\{Q_{i}\right\}\right\rangle$, then $\left\langle Q\left(\lambda x_{i} . \alpha\right), \Delta\right\rangle$ is also a semantic value for A.

3 Nested Cooper Storage

Storage: $\langle Q, \Delta\rangle \Rightarrow_{S}\left\langle\lambda P \cdot P\left(x_{i}\right),\left\{\langle Q, \Delta\rangle_{i}\right\}\right\rangle$
if A is an noun phrase whose semantic value is $\langle Q, \Delta\rangle$, then $\left\langle\lambda P . P\left(x_{i}\right),\left\{\langle Q, \Delta\rangle_{i}\right\}\right\rangle$ is also a semantic value for A , where $i \in N$ is a new index.
Retrieval: $\left\langle\alpha, \Delta \cup\left\{\langle Q, \Gamma\rangle_{i}\right\}\right\rangle \Rightarrow_{R}\left\langle Q\left(\lambda x_{i} \cdot \alpha\right), \Delta \cup \Gamma\right\rangle$
if A is any sentence with semantic value $\left\langle\alpha, \Delta \cup\left\{\langle Q, \Gamma\rangle_{i}\right\}\right\rangle$, then $\left\langle Q\left(\lambda x_{i} . \alpha\right), \Delta \cup \Gamma\right\rangle$ is also a semantic value for A .

4 DRT: Syntax

A discourse representation structure (DRS) K is a pair $\left\langle U_{K}, C_{K}\right\rangle$ where

- U_{K} is a set of discourse referents
- C_{K} is a set of conditions.

Conditions:

$$
\begin{array}{ll}
R\left(u_{1}, \ldots, u_{n}\right) & R \text { is an } n \text {-place relation, } u_{i} \in U_{K} \\
u=v & u, v \in U_{K} \\
u=a & u \in U_{K}, a \text { a proper name } \\
K_{1} \Rightarrow K_{2} & K_{1} \text { and } K_{2} \text { DRSs } \\
K_{1} \vee K_{2} & K_{1} \text { and } K_{2} \text { DRSs } \\
\neg K_{1} & K_{1} \text { is a DRS }
\end{array}
$$

5 DRT: Embedding, verifying embedding

Let U_{D} be a set of discourse referents, $K=\left\langle U_{K}, C_{K}\right\rangle$ a DRS with $U_{K} \subseteq U_{D}, M=$ $\left\langle U_{M}, V_{M}\right\rangle$ a model structure of first-order predicate logic that is suitable for K. An embedding of U_{D} into M is a (partial) function from U_{D} to U_{M} that assigns individuals from U_{M} to discourse referents.
An embedding f verifies the DRS K in $M\left(f \models_{M} K\right)$ iff

1. $U_{K} \subseteq \operatorname{Dom}(f)$ and
2. f verifies each condition $\alpha \in C_{K}$.
f verifies a condition α in $M\left(f \models_{M} \alpha\right)$ in the following cases:

$$
\begin{array}{ll}
f \models_{M} R\left(u_{1}, \ldots, u_{n}\right) & \text { iff }\left\langle f\left(u_{1}\right), \ldots, f\left(u_{n}\right)\right\rangle \in V_{M}(R) \\
f \models_{M} u=v & \text { iff } f(u)=f(v) \\
f \models_{M} u=a & \text { iff } f(u)=V_{M}(a) \\
f \models_{M} K_{1} \Rightarrow K_{2} & \\
\text { iff for all } g \supseteq_{K_{1}} f \text { such that } g \models_{M} K_{1}, \\
f \models_{M} \neg K_{1} & \\
\text { there is } h \supseteq U_{K_{2}} g \text { such that } h \models_{M} K_{2} \\
f \models_{M} K_{1} \vee K_{2} & \\
& \text { iff there is no } g \supseteq U_{K_{1}} f \text { such that } g \models_{M} K_{1} \\
& \\
& \text { or there is a a } g_{1} \supseteq U_{K_{1}} f \text { such that } g_{1} \models_{M} K_{1}, \\
& U_{K_{2}} f \text { such that } g_{2} \models_{M} K_{2} .
\end{array}
$$

