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DRT: Denotational Interpretation

• Let

– UD a set of discourse referents,

– K = !UK, CK" a DRS with UK # UD,

– M = !UM, VM" a FOL model structure

appropriate for K.

• An embedding of K into M is a (partial)
function f from UD to UM such that UK #
Dom(f).
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Verifying embedding

• An embedding f of K in M verifies K in M:

f I=M K iff f verifies every condition $ % CK.

• f verifies condition $ in M (f |=M $):

(i) f |=M R(x1,…, xn) iff!f(x1), ... , f(xn)" %
VM(R)

(ii) f |=M x = a iff f(x) = VM(a)

(iii) f |=M x = y iff f(x) = f(y)
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Example Computation

Let K be the example DRS from above:

K = < {x, y, z, u},

   {professor(x), book(y), own(x,y), read(z,u), z=x, u=y} >

f |=M K iff  f verifies every condition $ % CK, i.e.:

f |=M professor(x) & f |=M book(y) f |=M & own(x,y) &

f |=M read(z,u) & f |=M z=x & f |=M u=y

which holds iff:

f(x)%VM(professor) & f(y)%VM(book) & !f(x), f(y)" %VM(own) &
!f(z), f(u)" %VM(read) & f(z)=f(x) & f(u)=f(y)
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Simplification

f |=M K iff

f(x)%VM(professor) & f(y)%VM(book) & !f(x), f(y)" %VM(own) &
!f(z), f(u)" %VM(read) & f(z) = f(x) & f(u) = f(y)

iff

f(x)%VM(professor) & f(y)%VM(book) & !f(x), f(y)" %VM(own) &
!f(x), f(u)" %VM(read) & f(u) = f(y)

iff

f(x)%VM(professor) & f(y)%VM(book) & !f(x), f(y)" %VM(own) &
!f(x), f(y)" %VM(read)
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Truth

• Let K be a closed DRS and M be an appropriate model

structure for K.

K is true in M iff there is a verifying embedding f of K in M

such that Dom(f) = UK

• Let D be a discourse/text, K a DRS that can be

constructed from D.

D is true with respect to K in M iff K is true in M.

• Let D be a discourse/text, which is true with respect to all

DRSes that can be consructed from D:

D is true in M iff D is true with respect to all DRSes that

can be constructed from D.
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DRS: Computation of truth conditions

• Compute conditions for verifying embedding.

• Simplify.

• Specify truth, based on (simplified) conditions
for verifying embedding.
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Basic features of DRT

• DRT models linguistic meaning as anaphoric
potential (through DRS construction) plus truth
conditions (through model embedding).

• In particular, DRT explains the ambivalent
character of indefinite NPs: Expressions that
introduce new reference objects into context, and
are truth conditionally equivalent to existential
quantifiers.
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• DRS K = !{x1, ..., xn}, {c1, ..., ck}"

is truth-conditionally equivalent to the

following FOL formula:

'x1...'xn[c1 & ... & ck]

x1 . . . xn

c1 . . . cn

Translation of DRSes to FOL
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DRT II: Extensions

• Conditionals, indefinites and anaphora

• Complex conditions

• Accessibility
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Indefinite NPs and conditionals

Indefinite NPs and conditional clauses:

• If a student works, the professor is happy.
(1) 'x[student(x) & work(x)] ( happy_prof

(2) )x[student(x) & work(x) ( happy_prof]

• Formulas (1) and (2) are logically
equivalent:
'xA ( B * )x[A ( B]

given that x doesn't occur free in B.
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Indefinite NPs, Conditionals, and
Anaphora

• If a student works, he will be successful.

(1)  'x[student(x) & work(x)] ( successful(x)

(2)  'x[student(x) & work(x) ( successful(x)]

(3) )x [student(x) & work(x) ( successful(x)]

(1) is not closed

(2) has wrong truth conditions (much too weak)

(3) is correct, but how do you derive this

compositionally?

• This is called the donkey sentence problem, with
reference to the classical example by P.T. Geach
(1967): If a farmer owns a donkey, he beats it.
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Indefinite NPs and Discourse Structure

• A car is parked in front of Peter's garage. Peter

needs to get to the office quickly. He doesn't

know who owns the car. He calls the police, and

it is towed away.

• Suppose a car is parked in front of Peter's

garage. Peter needs to get to the office quickly.

He doesn't know who owns the car. Then he will

call the police, and it will be towed away.

• Let a and b be two positive integers. Let b further

be even. Then the product of a and b is even too.
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Context-dependent interpretation of
indefinites

• The „quantificational force“ of indefinites

depends on context:

– Existential in plain assertions and narrative

contexts

– Universal in conditional or hypothetical

reasoning.

• DRT offers uniform treatment in DRS

construction, different truth conditional

interpretation induced is by the respective

context.
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DRS for conditionals: An example

• If a professor owns a book, he reads it.

+a professor

owns a book
he reads it
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DRS for conditionals: An example

• If a professor owns a book, he reads it.

+professor(x)

book(y)

owns(x, y)

x y

he reads it
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DRS for conditionals: An example

• If a professor owns a book, he reads it.

+professor(x)

book(y)

owns(x, y)

reads(z, v)

z = x

v = y

z vx y
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DRS (1st Extension)

• A discourse representation structure (DRS) K is a

pair !UK, CK", where

– UK is a set of discourse referents

– CK is a set of conditions

• (Irreducible) conditions:

– R(u1, . . . , un) R n-place relation, ui % UK

– u = v u, v % UK

– u = a u % UK, a is a proper name

– K1 + K2 K1 and K2 DRSes

• Reducible conditions: as before
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DRS Construction Rule for
Conditionals

• Triggering configuration:

– $ is a reducible condition in DRS K of the form

[S if [S ,] (then) [S -]]

• Action:

– Remove $ from CK .

– Add K1 + K2 to CK, where

• K1 = !., { , }"  and

• K2 = !., { - }"

• Remark: K1 + K2 is called a duplex condition; K1

the "antecedent DRS" and K2  the "consequent

DRS".
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Recap: DRT Embeddings

• Let

– UD a set of discourse referents,

– K = !UK, CK" a DRS with UK # UD,

– M = !UM, VM" an FOL model structure

appropriate for K.

• An embedding of K into M is a (partial) function f
from UD to UM such that UK # Dom(f).
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Verifying embeddings (1st extension,
preliminary)

• An embedding f of K into M verifies K in M:

f I=M K iff f verifies every condition $ % CK.

• f verifies condition $ in M (f |=M $):

(i) f |=M R(x1,…, xn) iff!f(x1), ... , f(xn)" %
VM(R)

(ii) f |=M x = a iff f(x) = VM(a)

(iii) f |=M x = y iff f(x) = f(y)

(iv)f |=M K1 + K
2

iff 

     for all g / f   s.t. Dom(g) = Dom(f) 0 UK1

     and g |=M K1, we also have g |=M K2
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Notation: Extending embeddings

Let f, g be partial functions (embeddings) on UD;

U # UD ; x, y % UD

We write

–  f /U g for "f / g and Dom(f) = Dom(g) 0 U"

– f /x g for "f /{x} g".

So we can write (iv) as follows:

(iv) f |=M K1 + K
2
 iff

          for all g / UK1
f  s.t. g |=M K1, we have g |=M K2
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The definition seems to work ...

• If a professor owns a book, he reads it.

+professor(x)

book(y)

owns(x, y)

reads(z, v)

z = x

v = y

z vx y

K1:
K2: K3:
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... but it doesn't really!

A slightly more complex example:

• Mary knows a professor.

If he owns a book, he gives it to a student.

+

z  v  w 
 

gives(z,v,w) 

z = x 

v = y 

student(w) 

x  y 
 

x = u

book (y) 

owns (x, y) 

s u 
 
s = Mary      professor(u)

Know(s, u)  
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Verifying embeddings for conditionals
(final)

• An embedding f of K into M verifies K in M:

f I=M K iff f verifies every condition $ % CK.

• f verifies condition $ in M (f |=M $):

(i) f |=M R(x1,…, xn) iff    !f(x1), ... , f(xn)" %
VM(R)

(ii) f |=M x = a iff    f(x) = VM(a)

(iii) f |=M x = y iff    f(x) = f(y)

(iv)f |=M K1 + K
2

iff    for all g /UK1
 f s.t. g |=M K1

there is a h /UK2
 g s.t. h |=M K2
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DRS construction rule for universal
NPs

• Triggering configuration:

– $ is a reducible condition in DRS K; $ contains

a subtree [S [NP ,] [VP -]] or [VP [V -] [NP ,]]

– , = every 1

• Action:

– Remove $ from CK.

– Add K1 + K2 to CK, where

• K1 = !{x}, {1(x)}"  and

• K2 = !., {$'}"

• obtain $' from $ by replacing , by x
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DRS construction rule for negations

• Triggering configuration:

– $ is a reducible condition in DRS K of the form

[S , [VP doesn't [VP -]]]

• Action:

– Remove $ from CK .

– Add ¬K1 to CK, where K1 = !., {[S , [VP -]]}",
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Example

• A professor doesn't own a book.

V

own

VP

S

Det N

booka

NP

Det N

professora

NP VP

doesn‘t
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Example

• A professor doesn't own a book.

V

own

VP

S

Det N

booka

NP

x VP

doesn‘t

x

professor (x)
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Example

• A professor doesn't own a book.

V

own

VP

S

Det N

booka

NP

x

x

professor (x)

¬

31Semantic Theory, SS 2008  © M. Pinkal, S. Thater

Example

• A professor doesn't own a book.

x

professor (x)

y 

book(y)

owns(x, y)

¬
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Example: A second reading

• A professor doesn't own a book.

V

own

VP

S

Det N

booka

NP

Det N

professora

NP VP

doesn‘t
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Example: A second reading

• A professor doesn't own a book.

¬

V

owns

VP

S

Det N

booka

NPDet N

professora

NP
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Example: A second reading

• A professor doesn't own a book.

x y 

professor (x)

book(y)

owns(x, y)

¬
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DRS construction rule for clausal
disjunction

• Triggering configuration:

– $ is a reducible condition in DRS K of the form

 [S [S ,] or [S -]]

• Action:

– Remove $ from CK .

– Add K1 2 K2 to CK, where

• K1 = !., {,}" and

• K2 = !., {-}"
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An example

• A student reads a book, or a professor

reads a paper.

2

x y u v

student(x)

book(y)

reads(x, y)

professor(u)

paper(v)

reads(u, v)
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DRS (2nd Extension)

• A discourse representation structure (DRS) K is

a pair !UK, CK", where

– UK is a set of discourse referents

– CK is a set of conditions

• (Irreducible) conditions:

– R(u1, . . . , un) R n-place relation, ui % UK

– u = v u, v % UK

– u = a u % UK, a is a proper name

– K1 + K2 K1 and K2 DRSs

– K1 2 K2 K1 und K2 DRSs

– ¬K1 K1 DRS
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Verifying embeddings

• f verifies condition $ in M (f |=M $):

(i) f |=M R(x1,…, xn) iff     !f(x1), ... , f(xn)" % VM(R)

(ii) f |=M x = a iff     f(x) = VM(a)

(iii) f |=M x = y iff     f(x) = f(y)

(iv) f |=M K1 + K
2

iff     for all g /UK1
 f s.t. g |=M K1 

                                                     there is a h /UK2
 g s.t. h |=M K2

(v) f I=M ¬K1 iff     there is no g /UK1
f s.t. g |=M K1

(vi) f I=M K1 2 K2 iff     there is a g1 /UK1
f s.t. g1|=M K1

                               or there is a g2 /UK2
f s.t. g2 |=M K2
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Translation from DRT to FOL

• DRSs
T(!{u1, …, un}, {c1, …, cn}") = 'u1 … 'un[T(c1) & … & T(cn)]

• Conditions:

T(c) = c for atomic conditions c

T(¬K1) = ¬T(K1)

T(K1 2 K2)= T(K1) 2 T(K2)

T(K1 + K2) = )u1 … )un[(T(c1) & … & T(cn)) (
T(K2)],

     for K1 = !{u1, … , un}, {c1, … , cn}"

• For every closed DRS K and every appropriate model M,

K is true in M iff T(K) is true in M.


