Semantic Theory: Discourse Representation Theory II

Summer 2008

M.Pinkal/ S. Thater

Verifying embedding

- An embedding f of K in M verifies K in M :
$\mathrm{f} I={ }_{M} \mathrm{~K}$ iff f verifies every condition $\alpha \in \mathrm{C}_{\mathrm{K}}$.
- f verifies condition α in $M\left(f \mid={ }_{M} \alpha\right)$:
(i) $f \mid={ }_{M} R\left(x_{1}, \ldots, x_{n}\right) \quad$ iff $\left\{f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\rangle \in$ $V_{M}(R)$
(ii) $f \mid={ }_{M} x=a \quad$ iff $\quad f(x)=V_{M}(a)$
(iii) $f={ }_{M} x=y \quad$ iff $\quad f(x)=f(y)$
- Let
- U_{D} a set of discourse referents,
$-\mathrm{K}=\left\langle\mathrm{U}_{\mathrm{K}}, \mathrm{C}_{\mathrm{K}}\right\rangle$ a DRS with $\mathrm{U}_{\mathrm{K}} \subseteq \mathrm{U}_{\mathrm{D}}$,
$-\mathrm{M}=\left\langle\mathrm{U}_{\mathrm{M}}, \mathrm{V}_{\mathrm{M}}\right\rangle$ a FOL model structure appropriate for K .
- An embedding of K into M is a (partial) function f from U_{D} to U_{M} such that $U_{K} \subseteq$ Dom(f).

Example Computation

Let K be the example DRS from above:
$K=<\{x, y, z, u\}$,
$\{$ professor($x), \operatorname{book}(y)$, own $(x, y), \operatorname{read}(z, u), z=x, u=y\}>$
$\mathrm{f} \mid={ }_{\mathrm{M}} \mathrm{K}$ iff f verifies every condition $\alpha \in \mathrm{C}_{\mathrm{K}}$, i.e.:
$\mathrm{f}\left|=_{\mathrm{M}} \operatorname{professor}(\mathrm{x}) \wedge \mathrm{f}\right|=_{\mathrm{M}} \operatorname{book}(\mathrm{y}) \mathrm{f} \mid==_{M} \wedge \operatorname{own}(x, y) \wedge$
$f \mid={ }_{M}$ read $(z, u) \wedge f|=M z=x \wedge f|={ }_{M} u=y$
which holds iff:
$\mathrm{f}(\mathrm{x}) \in \mathrm{V}_{\mathrm{M}}($ professor $) \wedge \mathrm{f}(\mathrm{y}) \in \mathrm{V}_{\mathrm{M}}($ book $) \wedge\langle\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y})\rangle \in \mathrm{V}_{\mathrm{M}}(\mathrm{own}) \wedge$
$\langle f(z), f(u)\rangle \in V_{M}($ read $) \wedge f(z)=f(x) \wedge f(u)=f(y)$

Simplification

```
f |=MM iff
```



```
    \langlef(z),f(u)\rangle}\in\mp@subsup{V}{M}{(read) ^f(z) = f(x) ^f(u) = f(y)
iff
```



```
        f(x),f(u)\rangle\inV
iff
```



```
        ff(x), f(y)\rangle}\in\mp@subsup{V}{M}{(read)
```


DRS: Computation of truth conditions

- Compute conditions for verifying embedding.
- Simplify.
- Specify truth, based on (simplified) conditions for verifying embedding.
- Let K be a closed DRS and M be an appropriate model structure for K .
K is true in M iff there is a verifying embedding f of K in M such that $\operatorname{Dom}(\mathrm{f})=\mathrm{U}_{\mathrm{K}}$
- Let D be a discourse/text, K a DRS that can be constructed from D.
D is true with respect to K in M iff K is true in M.
- Let D be a discourse/text, which is true with respect to all DRSes that can be consructed from D :
D is true in M iff D is true with respect to all DRSes that can be constructed from D .

Basic features of DRT

- DRT models linguistic meaning as anaphoric potential (through DRS construction) plus truth conditions (through model embedding).
- In particular, DRT explains the ambivalent character of indefinite NPs: Expressions that introduce new reference objects into context, and are truth conditionally equivalent to existential quantifiers.
- $\operatorname{DRS} K=\left\langle\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\},\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}\right\}\right\rangle$

$x_{1} \ldots x_{n}$
$c_{1} \ldots c_{n}$

is truth-conditionally equivalent to the following FOL formula:

$$
\exists x_{1} \ldots \exists x_{n}\left[c_{1} \wedge \ldots \wedge c_{k}\right]
$$

Indefinite NPs and conditionals

Indefinite NPs and conditional clauses:

- If a student works, the professor is happy.
(1) $\exists x[\operatorname{student}(x) \wedge$ work $(x)] \rightarrow$ happy_prof
(2) $\forall x[$ student $(x) \wedge$ work $(x) \rightarrow$ happy_prof]
- Formulas (1) and (2) are logically equivalent:
$\exists x A \rightarrow B \Leftrightarrow \forall x[A \rightarrow B]$
given that x doesn't occur free in B.
- Conditionals, indefinites and anaphora
- Complex conditions
- Accessibility

Indefinite NPs, Conditionals, and Anaphora

- If a student works, he will be successful.
(1) $\exists x[$ student $(x) \wedge \operatorname{work}(x)] \rightarrow$ successful (x)
(2) $\exists x[\operatorname{student}(x) \wedge \operatorname{work}(x) \rightarrow$ successful $(x)]$
(3) $\forall x$ [student $(x) \wedge$ work $(x) \rightarrow$ successful $(x)]$
(1) is not closed
(2) has wrong truth conditions (much too weak)
(3) is correct, but how do you derive this compositionally?
- This is called the donkey sentence problem, with reference to the classical example by P.T. Geach (1967): If a farmer owns a donkey, he beats it.

Indefinite NPs and Discourse Structure

- A car is parked in front of Peter's garage. Peter needs to get to the office quickly. He doesn't know who owns the car. He calls the police, and it is towed away.
- Suppose a car is parked in front of Peter's garage. Peter needs to get to the office quickly. He doesn't know who owns the car. Then he will call the police, and it will be towed away.
- Let a and b be two positive integers. Let b further be even. Then the product of a and b is even too.

DRS for conditionals: An example

- If a professor owns a book, he reads it.

DRS for conditionals: An example

- If a professor owns a book, he reads it.

| $x y y$ |
| :--- | :--- |
| professor (x)
 $\operatorname{book}(y)$
 owns (x, y) |\Rightarrow| zv |
| :--- |
| reads
 $z=x$
 $v=y$ |

DRS Construction Rule for

Conditionals

- Triggering configuration:
$-\alpha$ is a reducible condition in DRS K of the form [s if [s β] (then) [s γ]]
- Action:
- Remove α from C_{K}.
- Add $\mathrm{K}_{1} \Rightarrow \mathrm{~K}_{2}$ to C_{K}, where
- $K_{1}=\langle\varnothing,\{\beta\}\rangle$ and
- $\mathrm{K}_{2}=\langle\varnothing,\{\gamma\}\rangle$
- Remark: $\mathrm{K}_{1} \Rightarrow \mathrm{~K}_{2}$ is called a duplex condition; K_{1} the "antecedent DRS" and K_{2} the "consequent DRS".

DRS (1st Extension)

- A discourse representation structure (DRS) K is a pair $\left\langle\mathrm{U}_{\mathrm{K}}, \mathrm{C}_{\mathrm{K}}\right\rangle$, where
$-U_{K}$ is a set of discourse referents
$-\mathrm{C}_{K}$ is a set of conditions
- (Irreducible) conditions:
$-R\left(u_{1}, \ldots, u_{n}\right) \quad R n$-place relation, $u_{i} \in U_{K}$
$-u=v \quad u, v \in U_{k}$
$-u=a \quad u \in U_{K}, a$ is a proper name
- $\mathrm{K}_{1} \Rightarrow \mathrm{~K}_{2} \quad \mathrm{~K}_{1}$ and K_{2} DRSes
- Reducible conditions: as before

Recap: DRT Embeddings

- Let
$-U_{D}$ a set of discourse referents,
$-K=\left\langle U_{K}, C_{K}\right\rangle$ a DRS with $U_{K} \subseteq U_{D}$,
$-\mathrm{M}=\left\langle\mathrm{U}_{\mathrm{M}}, \mathrm{V}_{\mathrm{M}}\right\rangle$ an FOL model structure appropriate for K .
- An embedding of K into M is a (partial) function f from U_{D} to U_{M} such that $U_{K} \subseteq \operatorname{Dom}(f)$.
- An embedding f of K into M verifies K in M :
$\mathrm{f} I={ }_{\mathrm{M}} \mathrm{K}$ iff f verifies every condition $\alpha \in \mathrm{C}_{\mathrm{K}}$.
- f verifies condition α in $M\left(f \mid={ }_{M} \alpha\right)$:
(i) $f \mid={ }_{M} R\left(x_{1}, \ldots, x_{n}\right) \quad$ iff $\left\{f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\rangle \in$

$$
V_{M}(R)
$$

(ii) $f \mid={ }_{M} x=a \quad$ iff $\quad f(x)=V_{M}(a)$
(iii) $f{ }_{=M} x=y \quad$ iff $\quad f(x)=f(y)$
(iv) $f={ }_{M} K_{1} \Rightarrow K_{2} \quad$ iff
for all $g \supseteq f$ s.t. $\operatorname{Dom}(\mathrm{g})=\operatorname{Dom}(\mathrm{f}) \cup \mathrm{U}_{\mathrm{K}_{1}}$ and $\mathrm{g} \mid={ }_{\mathrm{M}} \mathrm{K}_{1}$, we also have $\mathrm{g} \mid{ }_{\mathrm{M}} \mathrm{K}_{2}$

The definition seems to work

- If a professor owns a book, he reads it.

K1:

K2:	K3:
X y	Z V
```professor(x) book(y) owns(x, y)```	$\begin{aligned} & \text { reads(z, v) } \\ & z=x \\ & v=y \end{aligned}$

- An embedding $f$ of $K$ into $M$ verifies $K$ in $M$ : $f I={ }_{M} K$ iff $f$ verifies every condition $\alpha \in C_{K}$.
- $f$ verifies condition $\alpha$ in $M\left(f \mid={ }_{M} \alpha\right)$ :
(i) $f \mid={ }_{M} R\left(x_{1}, \ldots, x_{n}\right) \quad$ iff $\quad\left\langle f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\rangle \in$ $V_{M}(R)$
(ii) $f \mid=M x=a \quad$ iff $f(x)=V_{M}(a)$
(iii) $f \mid={ }_{M} x=y \quad$ iff $f(x)=f(y)$
(iv) $f={ }_{M} K_{1} \Rightarrow K_{2} \quad$ iff for all $g \supseteq_{U_{K_{1}}}$ fs.t. $g \mid={ }_{M} K_{1}$ there is a $\mathrm{h} \supseteq_{\mathrm{K}_{2}} \mathrm{~g}$ s.t. $\mathrm{h} \mid={ }_{M} \mathrm{~K}_{2}$


## DRS construction rule for negations

- Triggering configuration:
$-\alpha$ is a reducible condition in DRS K of the form [s $\beta$ [vp doesn't [vp $\gamma]$ ]]
- Action:
- Remove $\alpha$ from $C_{K}$.
- Add $\neg \mathrm{K}_{1}$ to $\mathrm{C}_{\mathrm{K}}$, where $\mathrm{K}_{1}=\langle\varnothing$, \{[s $\beta$ [vp $\left.\left.\gamma]\right]\right\}$,
- Triggering configuration:
$-\alpha$ is a reducible condition in DRS K; $\alpha$ contains a subtree [s [Np $\beta$ ] [vp $\gamma]$ ] or [vp [v $\gamma$ ] [np $\beta$ ]]
$-\beta=$ every $\delta$
- Action:
- Remove $\alpha$ from $C_{K}$.
- Add $\mathrm{K}_{1} \Rightarrow \mathrm{~K}_{2}$ to $\mathrm{C}_{\mathrm{K}}$, where
- $\mathrm{K}_{1}=\langle\{\mathrm{x}\},\{\delta(\mathrm{x})\}\rangle$ and
- $\mathrm{K}_{2}=\left\langle\varnothing,\left\{\alpha^{\prime}\right\}\right\rangle$
- obtain $\alpha^{\prime}$ from $\alpha$ by replacing $\beta$ by x


## Example

- A professor doesn't own a book.

- A professor doesn't own a book.



## Example

- A professor doesn't own a book.



## Example: A second reading

- A professor doesn't own a book.

- A professor doesn't own a book.



## DRS construction rule for clausal <br> disjunction

- Triggering configuration:
$-\alpha$ is a reducible condition in DRS K of the form
[s $[s \beta]$ or [s $\gamma]$ ]
- Action:
- Remove $\alpha$ from $C_{K}$.
- Add $\mathrm{K}_{1} \vee \mathrm{~K}_{2}$ to $\mathrm{C}_{\mathrm{K}}$, where
- $\mathrm{K}_{1}=\langle\varnothing,\{\beta\}\rangle$ and
- $\mathrm{K}_{2}=\langle\varnothing,\{\gamma\}\rangle$
- A professor doesn't own a book.



## An example

- A student reads a book, or a professor reads a paper.



## DRS (2nd Extension)

## Verifying embeddings

- A discourse representation structure (DRS) K is a pair $\left\langle\mathrm{U}_{\mathrm{K}}, \mathrm{C}_{\mathrm{K}}\right\rangle$, where
$-U_{K}$ is a set of discourse referents
$-C_{K}$ is a set of conditions
- (Irreducible) conditions:

$$
\begin{array}{ll}
-R\left(u_{1}, \ldots, u_{n}\right) & R n \text {-place relation, } u_{i} \in U_{K} \\
-u=v & u, v \in U_{K} \\
-u=a & u \in U_{\mathrm{K}}, a \text { is a proper name } \\
-K_{1} \Rightarrow K_{2} & K_{1} \text { and } K_{2} \text { DRSs } \\
-K_{1} \vee K_{2} & K_{1} \text { und } K_{2} \text { DRSs } \\
-\neg K_{1} & K_{1} \text { DRS }
\end{array}
$$

- $f$ verifies condition $\alpha$ in $M\left(f \mid={ }_{M} \alpha\right)$ :
(i) $\mathrm{f} \mid={ }_{\mathrm{M}} \mathrm{R}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ iff $\quad\left\langle\mathrm{f}\left(\mathrm{x}_{1}\right), \ldots, \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)\right\rangle \in \mathrm{V}_{\mathrm{M}}(\mathrm{R})$
(ii) $f \mid={ }_{M} x=a \quad$ iff $\quad f(x)=V_{M}(a)$
(iii) $f \mid={ }_{M} x=y \quad$ iff $\quad f(x)=f(y)$
(iv) $f \mid={ }_{M} K_{1} \Rightarrow K_{2} \quad$ iff $\quad$ for all $g \supseteq_{U_{K}} f$ s.t. $g \mid{ }_{M} K_{1}$ there is a $\mathrm{h} \underline{-}_{\mathrm{U}_{2}}$ g s.t. $\mathrm{h} \mid={ }_{\mathrm{M}} \mathrm{K}_{2}$
(v) $\left.\mathrm{fl}={ }_{\mathrm{M}}\right\urcorner \mathrm{K}_{1} \quad$ iff $\quad$ there is no $\mathrm{g} \supseteq_{\mathrm{U}_{1}}$ f.t. $\mathrm{g} \mid={ }_{\mathrm{M}} \mathrm{K}_{1}$
(vi) $\mathrm{fl}={ }_{\mathrm{M}} \mathrm{K}_{1} \vee \mathrm{~K}_{2} \quad$ iff $\quad$ there is a $\mathrm{g}_{1} \supseteq \bigcup_{\mathrm{K}_{1}} \mathrm{f}$ s.t. $\mathrm{g}_{1} \mid=\mathrm{M} \mathrm{K}_{1}$ or there is a $g_{2} \supseteq_{\mathrm{K}_{2}} \mathrm{~K}_{1}$ s.t. $\mathrm{g}_{2} \mid={ }_{\mathrm{M}} \mathrm{K}_{2}$


## Translation from DRT to FOL

- DRSs
$\mathrm{T}\left(\left\langle\left\{u_{1}, \ldots, \mathrm{u}_{\mathrm{n}}\right\},\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{n}\right\}\right\rangle\right)=\exists \mathrm{u}_{1} \ldots \exists \mathrm{u}_{n}\left[\mathrm{~T}\left(\mathrm{c}_{1}\right) \wedge \ldots \wedge \mathrm{T}\left(\mathrm{c}_{\mathrm{n}}\right)\right]$
- Conditions:

```
\(\mathrm{T}(\mathrm{c}) \quad=\mathrm{c}\) for atomic conditions c
\(\mathrm{T}\left(\neg \mathrm{K}_{1}\right) \quad=\neg \mathrm{T}\left(\mathrm{K}_{1}\right)\)
\(\mathrm{T}\left(\mathrm{K}_{1} \vee \mathrm{~K}_{2}\right)=\mathrm{T}\left(\mathrm{K}_{1}\right) \vee \mathrm{T}\left(\mathrm{K}_{2}\right)\)
\(\mathrm{T}\left(\mathrm{K}_{1} \Rightarrow \mathrm{~K}_{2}\right) \quad=\forall \mathrm{u}_{1} \ldots \forall \mathrm{u}_{\mathrm{n}}\left[\left(\mathrm{T}\left(\mathrm{c}_{1}\right) \wedge \ldots \wedge \mathrm{T}\left(\mathrm{c}_{\mathrm{n}}\right)\right) \rightarrow\right.\)
\(\left.\mathrm{T}\left(\mathrm{K}_{2}\right)\right]\),
 for \(\mathrm{K}_{1}=\left\langle\left\{\mathrm{u}_{1}, \ldots, \mathrm{u}_{n}\right\},\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{n}\right\}\right\rangle\)
```

- For every closed DRS K and every appropriate model M, $K$ is true in $M$ iff $T(K)$ is true in $M$.

