Semantic Theory Semantics Construction (ctd.)

Manfred Pinkal Stefan Thater

2008-05-08

Last Lecture: Semantics Construction

- Elementary semantics construction:
 - the principle of compositionality
 - compositional semantics construction using type theory
- Quantified noun phrases
- Lambda-abstraction and $\beta\text{-reduction}$

The Principle of Compositionality

- The meaning of a complex expression is uniquely determined by the meanings of its sub-expressions and the syntactic rules by which they are combined.
- (The principle is also called "Frege's principle")

Noun phrases and compositionality

John works ⇒ work'(j*)

Somebody works $\Rightarrow \exists x(work'(x))$ Every student works $\Rightarrow \forall x(student'(x) \rightarrow work'(x))$ No student works $\Rightarrow \neg \exists x(student'(x) \land work'(x))$

John and Mary work \Rightarrow work'(j*) \land work(m*)

What's the semantic representation of a noun phrase?

5

λ -Abstraction

- Syntax:
 - If $\alpha \in WE_{\tau}$ and $v \in VAR_{\sigma}$, then $\lambda v \alpha \in WE_{(\sigma,\tau)}$.
- Semantics:
 - $\begin{array}{l} \ \llbracket \lambda v \alpha \ \rrbracket^{M,g} \text{ is that function } f: D_{\sigma} \to D_{\tau} \text{ such that for all } a \in D_{\sigma}, \\ f(a) = \llbracket \alpha \rrbracket^{M,g[\nu/a]} \text{ (for } \alpha \in WE_{\tau}, \nu \in VAR_{\sigma}) \end{array}$
 - $\llbracket (\lambda v \alpha)(\beta) \rrbracket^{M,g} = \llbracket \alpha \rrbracket^{M,g[v / \llbracket \beta \rrbracket M,g]}$

Conversion rules in the λ -calculus

- β-conversion:
 λvα(β) ⇔ [β/v]α if all free variables in β are free for v in α.
- α -conversion: $\lambda v \alpha \Leftrightarrow \lambda v' [v'/v] \alpha$ if v' is free for v in α .
- η -conversion: $\lambda v(\alpha(v)) \Leftrightarrow \alpha$
- Let v, v' be variables of the same type, α any well-formed expression. v is free for v' in α iff no free occurrence of v' in α is in the scope of a quantifier or a λ -operator that binds v.

7

Noun Phrases

 $John \Rightarrow \lambda G(G(j^*))$ $Somebody \Rightarrow \lambda G \exists x G(x)$ $A \text{ student } \Rightarrow \lambda G \exists x(\text{student}(x) \land G(x))$ $No \text{ student } \Rightarrow \lambda G \neg \exists x(\text{student}(x) \land G(x))$ $John \text{ and } Mary \Rightarrow \lambda G(G(j^*) \land G(m^*))$

Back to Adjectives

- (1) John is a blond criminal
 criminal'(j*) Λ blond'(j*)
- (2) John is a famous criminalcriminal'(j*) Λ famous'(j*) ?

(3) John is an alleged criminal

– criminal'(j*) A alleged'(j*) ???

(4) John is a student

- (1) + (4) entail that John is a blond student,
- but (2) + (4) do not entail that John is a good student.
- (3) does not even entail that John is a criminal.

13

Back to Adjectives

- (1) John is a blond criminal
 - blond'(criminal')(j*)
- (2) John is a famous criminal
 - famous'(criminal')(j*)
- (3) John is an alleged criminal
 - alleged'(criminal')(j*)
- Now the unwanted inferences disappear ...
 (at the price of a less explicit semantic representation)

Adjectives

- We want:
 - compositional semantics construction
 - explicit and meaningful semantic representations
- We don't have this yet for (intersective) adjectives.
- We can get this in two different ways
 - use meaning postulates
 - use more explicit lambda terms

Meaning Postulates

- Characterise the meaning of a predicate that stands for a word (e.g., "blond") by using logical axioms.
- Meaning postulate for intersective adjectives ("blond"):
 ¬ ∀P∀x(blond'(P)(x) → P(x))
- These axioms would be part of our background knowledge.
- For example, we could infer "criminal(john)" from "blond(criminal)(john)" and this axiom.

More Explicit Lambda Terms

- For intersective adjectives, we can also do it by assigning the word a more elaborate lambda term:
 - blond' = $\lambda P \lambda x (P(x) \wedge blond^*(x))$
 - where "blond*" is a constant of type (e,t) which should denote the set of blond individuals in the universe.
- This will beta-reduce to the formula we want.

• A composition problem:

```
every student \Rightarrow \lambda F \forall x(student'(x) \rightarrow F(x)) : \langle \langle e,t \rangle, t \rangle
```

a paper $\Rightarrow \lambda G \exists y(paper'(y) \land G(y)) : \langle \langle e,t \rangle, t \rangle$

```
presented \Rightarrow present': \langle e, \langle e, t \rangle \rangle
```


"... presented a paper"

- a paper $\Rightarrow \lambda G\exists z(paper'(z) \land G(z))$
- presented $\Rightarrow \lambda Q \lambda x [Q(\lambda y [present*(y)(x)])]$
- presented a paper
 - $\Rightarrow \lambda Q \lambda x [Q(\lambda y [present^*(y)(x)])](\lambda G \exists z (paper'(z) \land G(z)))$
 - $\Rightarrow \lambda x[\lambda G\exists z(paper'(z) \land G(z))(\lambda y[present^*(y)(x)])]$
 - $\Rightarrow \lambda x[\exists z(paper'(z) \land \lambda y[present^*(y)(x)](z)]$
 - $\Rightarrow \lambda x[\exists z(paper'(z) \land present^*(z)(x)]$

23

Substitutability

- From the denotational version of the Principle of Compositionality, a substitution principle follows:
 - If A is sub-expression in a sentence S, and A and B have identical denotations, then A can be replaced by B in S without affecting the truth value of S.
- (1) George W. Bush is married to Laura Bush.
- (2) George W. Bush is the American president
- (3) The American president is married to Laura Bush.

Substitutability?

- (1) In 1977, George W. Bush married Laura Bush.
- (2) George W. Bush is the American president
- (3) In 1977, the American president married Laura Bush.

Substitutability?

- (1) By constitution, the American president is the Supreme Commander of the Armed Forces.
- (2) George W. Bush is the American president.
- (3) By constitution, George W. Bush is the Supreme Commander of the Armed Forces.

Substitutability?

- (1) Nine necessarily exceeds seven.
- (2) Nine is the number of planets
- (3) The number of planets necessarily exceeds seven.

27

Extensions vs. Intensions

- Two concepts have the same extension if they have the same interpretations:
 - "semantics lecture is taking place" and "2 + 2 = 4" are both true right now
 - "George W. Bush" and "the US president" refer to the same individual
- However, extensionally equal concepts may still have different "senses:" General truths vs. statements that may become false; can believe in one but not the other...
- These senses are also called intensions.

Intensions

- We need intensions to explain (non-) substitutability in many contexts:
 - propositional attitudes (believe, know, ...)
 - indirect speech (say, claim, ...)
 - tensed sentences (past, future, ...)
 - temporal adverbs (sometimes, always, tomorrow, ...) and connectives (before, during, ...)
 - modal adverbs (necessarily, perhaps, ...),
 - modal verbs (can, may, must, ...),
 - counterfactual conditionals

29

Modelling Intensions

- In order to capture the meaning of a NL expression completely, we must extend the logic to talk about intensions.
- Standard technique:
 - Introduce the concept of a "possible world";
 - define the extension of a term in each possible world;
 - the intension is the mapping of possible worlds to extensions.

Intensional Logics

- Model logic: mechanisms for talking about possible worlds
 - □p "it is necessarily the case that p" (universal quantification over possible worlds)
 - "is is possibly the case that p"
 (existential quantification over possible worlds)

31

Intensional Logics

- Temporal logic: mechanisms for talking about time
 - **F**p "it will at some stage be the case that p"
 - **G**p "it is always going to be the case that p"
 - Pp "it was at some stage the case that p"
 - **H**p "it always has been the case that p"

Substitutability, revisited

- (1) Nine necessarily exceeds seven. $\Box(9 > 7)$
- (2) Nine is the number of planets9 = the number of planets
- (3) The number of planets necessarily exceeds seven.□(the number of planets > 9)

Substitutability, revisited

- (1) John said that Mary kissed Bill.say'(j*, ^kiss'(m*, b*))
- (2) Bill is the smartest boy in classx = the smartest boy in class
- (3) John said that Mary kissed the smartest boy in class.
 say'(j*, ^kiss'(m*, the smartest boy in class))

35