Semantic Theory Semantics Construction

Manfred Pinkal
Stefan Thater

2008-05-06

Last Week: Type Theory

- Expressive limits of first-order logic (FOL)
- John is a blond / good / alleged thief
- Mary has all properties of a good student
- Solution: Generalise FOL to Type Theory
- basic types: e, t
- functional types $\langle\sigma, \tau\rangle$
- build logic from functional application and the usual logical connectives (over higher-order constants and variables).

Type Theory - Syntax

- The sets of well-formed expressions WE_{τ} for every type τ are given by:
(1) $\mathrm{CON}_{\tau} \subseteq W E_{\tau}$, for every type τ
(2) If α is in $\mathrm{WE}_{(\sigma, \tau)}, \beta$ in WE_{σ}, then $\alpha(\beta) \in \mathrm{WE}_{\tau}$.
(3) If A, B are in $W E_{t}$, then $\neg A,(A \wedge B)$, $(A \vee B),(A \rightarrow B),(A \leftrightarrow B)$ are in WEt.
(4) If A is in $W E_{t}$, then $\forall v A$ and $\exists v A$ are in $W E_{t}$, where v is a variable of arbitrary type.
(5) If α, β are well-formed expressions of the same type, then $\alpha=\beta \in \mathrm{WE}_{\mathrm{t}}$.

Building well-formed expressions

- John is a good student

```
                good(student)(john) : t
            good(student):\langlee,t\rangle john : e
good: \\langlee,t\rangle,\langlee,t\rangle\rangle student: <e,t\rangle
```

- A student works

$$
\begin{gathered}
\exists x(\operatorname{work}(x) \wedge \text { student }(x)): t \\
\quad \text { l } \\
\operatorname{work}(x) \wedge \operatorname{student}(x): t
\end{gathered}
$$

Type Theory - Semantics [1/3]

- Let U be a non-empty set of entities.
- The domain of possible denotations D_{τ} for every type τ is given by:
(1) $\mathrm{D}_{\mathrm{e}}=\mathrm{U}$
(2) $\mathrm{D}_{\mathrm{t}}=\{0,1\}$
(3) $D_{(\sigma, \tau)}$ is the set of all functions from D_{σ} to D_{τ}

Type Theory - Semantics [2/3]

- A model structure for a type theoretic language consists of a pair $M=(U, V)$, where
- $U\left(\right.$ or $\left.U_{M}\right)$ is a non-empty domain of individuals
- $V\left(\right.$ or $\left.V_{M}\right)$ is an interpretation function, which assigns to every member of CON_{τ} an element of D_{τ}.
- Variable assignment g assigns every variable of type τ a member of D_{τ}.

Type Theory - Semantics [3/3]

- Interpretation with respect to model structure M and variable assignment g:

$$
\begin{aligned}
& \llbracket \alpha \rrbracket^{M, g}=V_{M}(\alpha) \text {, if } \alpha \text { constant } \\
& \llbracket \alpha \rrbracket^{\mathrm{M}, \mathrm{~g}}=\mathrm{g}(\alpha) \text {, if } \alpha \text { variable } \\
& \llbracket \alpha(\beta) \rrbracket^{M, g}=\llbracket \alpha \rrbracket^{\mathrm{M}, 9}\left(\llbracket \beta \rrbracket^{\mathrm{M}, \mathrm{~g}}\right) \\
& \llbracket \neg \phi \mathbb{\rrbracket}^{M, g}=1 \text { iff } \llbracket \phi \mathbb{1}^{\mathrm{M}, g}=0 \\
& \llbracket \phi \wedge \psi \mathbb{\rrbracket}^{M, g}=1 \text { iff } \llbracket \phi \mathbb{\rrbracket}^{M, g}=1 \text { and } \llbracket \psi \mathbb{\rrbracket}^{M, g}=1 \text {, etc. } \\
& \llbracket \alpha=\beta \rrbracket^{\mathrm{M}, \mathrm{~g}}=1 \text { iff } \llbracket \alpha \rrbracket^{\mathrm{M}, 9}=\llbracket \beta \rrbracket^{M, 9}
\end{aligned}
$$

- if $v \in \operatorname{VARt}$:
$\llbracket \exists v \phi \mathbb{\rrbracket}^{M, g}=1$ iff there is $d \in D_{\tau}$ such that $\llbracket \phi \rrbracket^{M, g[v / d]}=1$ $\llbracket \forall v \phi \mathbb{I}^{M, g}=1$ iff for all $d \in D_{\tau}: \llbracket \phi \mathbb{I}^{M, g[v / d]}=1$

Today: Semantics Construction

- Elementary semantics construction:
- the principle of compositionality
- compositional semantics construction using type theory
- Quantified noun phrases
- The lambda operator in type theory

The Principle of Compositionality

- The meaning of a complex expression is uniquely determined by the meanings of its sub-expressions and the syntactic rules by which they are combined.
- (The principle is also called "Frege's principle")

Two Levels of Interpretation

- Semantic interpretation is a two-step process
- Natural language (NL) expressions are assigned a semantic representation (logical formulas).
- The semantic representation is truth-conditionally interpreted.
- Truth-conditional interpretation of logical representations is strictly compositional.
- We also want this for the process of computing logical representations from NL expressions.

Compositional Semantics Construction

- Basic idea: we start with a syntactic analysis of an NL expression, and
- assign each syntactic node in the syntax tree a semantic representation
- by combining the representations of its daughter nodes.

Basic Composition Rules

- Rule of functional application

$$
\begin{aligned}
& B \Rightarrow \beta:\langle\sigma, \tau\rangle \\
& C \Rightarrow \gamma: \sigma \\
& \hline A \Rightarrow \beta(\gamma): \tau
\end{aligned} \quad \text { or } \quad \begin{aligned}
& B \Rightarrow \beta: \sigma \\
&
\end{aligned}
$$

- Rule for non-branching nodes

$$
\frac{B \Rightarrow \beta: \tau}{A \Rightarrow \beta: \tau}
$$

Basic Composition Rules

- Rule for lexical nodes:

$$
A \Rightarrow \beta: \tau
$$

- The semantic representation β for a word w is supplied by the lexicon.

Noun phrases and compositionality

John works \Rightarrow work'(j*)
Somebody works $\Rightarrow \exists x\left(\right.$ work' $\left.^{\prime}(x)\right)$
Every student works $\Rightarrow \forall x\left(\right.$ student' $(x) \rightarrow$ work' $\left.^{\prime}(\mathrm{x})\right)$
No student works $\Rightarrow \neg \exists x\left(\right.$ student' $(x) \wedge$ work' $\left.^{\prime}(\mathrm{x})\right)$
John and Mary work \Rightarrow work' $^{\prime}\left(\mathrm{j}^{*}\right)$ ^ work(m^{*})

- What's the semantic representation of a noun phrase?

Towards a unified semantics of Noun Phrases

- John works

- Every student works

```
every-student' : \\langlee,t\rangle,t\rangle work' : \langlee,t\rangle
```

every-student'(work') : t

Towards a unified semantics of Noun Phrases

- John works

```
    john' : \\langlee,t\rangle,t\rangle work': \langlee,t\rangle
        john'(work'): t
```

- Every student works

$$
\text { every-student' : }\langle\langle e, t\rangle, t\rangle \text { work' : }\langle e, t\rangle
$$

every-student'(work') : t

A Coverage Problem

- Swimming is healthy

$$
\frac{\text { swim' }:\langle\mathrm{e}, \mathrm{t}\rangle \quad \text { healthy' }:\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle}{\text { healthy'(swim') }: \mathrm{t}}
$$

- Not smoking is healthy
- Drinking and driving is dangerous

Summing up

- We have the following kinds of problems:
- We want uniform semantic representations for noun phrases, and we don't seem to have the syntax to write them down.
- Some natural language expressions seem to require us to say "an x with property P."
- Solution: λ-abstraction

λ-Abstraction

- Syntax:
- If $\alpha \in \mathrm{WE}_{\tau}$ and $v \in \operatorname{VAR}_{\sigma}$, then $\lambda v \alpha \in \mathrm{WE}_{(\sigma, \tau)}$.
- Example:
- $\lambda x(\operatorname{drive}(x) \wedge \operatorname{drink}(x))$
- Notational conventions:

The scope of the λ-operator is the smallest WE to its right.
Wider scope must be indicated by brackets.
We often use the "dot notation" λx.... indicating that the λ-operator takes widest possible scope.

λ-Abstraction

- $\lambda x[\operatorname{drive}(x) \wedge \operatorname{drink}(x)]$
- ... a term of type $\langle\mathrm{e}, \mathrm{t}\rangle$
- ... denotes the property of being "an x such that x drives and drinks"
- λ-abstraction is an operation that takes an expression and "opens" a specific argument positions. The result of abstraction over individual variable x in the formula drive(x) $\wedge \operatorname{drink}(x)$ results in the complex predicate $\lambda x[\operatorname{drive}(x) \wedge \operatorname{drink}(x)]$.

λ-Abstraction: Semantics

- $\llbracket \lambda v \alpha \rrbracket^{M, g}$ is that function $f: D_{\sigma} \rightarrow D_{\tau}$ such that for all $a \in$ $D_{\sigma}, f(a)=\llbracket \alpha \rrbracket^{M, g[v / a]}\left(\right.$ for $\alpha \in W_{T}, v \in$ VAR $\left._{\sigma}\right)$
- Notice that of course $f \in D_{\langle\sigma, \tau\rangle}$.
- In general:
$\llbracket(\lambda \vee \alpha)(\beta) \rrbracket^{M, g}=\llbracket \alpha \mathbb{\rrbracket}^{M, g[v / \llbracket \beta \rrbracket \mathbb{M}, g]}$

$\lambda x\left(\right.$ drive $\left.^{\prime}(x) \wedge \operatorname{drink}^{\prime}(x)\right)$

Back to the Coverage Problem

- Not smoking is healthy
- healthy($\lambda x . \neg s m o k e(x))$
- Drinking and driving is unwise
- \neg wise(λx. $\operatorname{drink}(\mathrm{x}) \wedge$ drive (x))

β-Reduction

- By the modified variable assignment, the value of the argument of the λ-expression is passed through its body and becomes the value of all occurrences of variables bound by the λ-operator.
- We obtain the same result, if we first substitute the free occurrences of the λ-variable in $\lambda v \alpha(\beta)$ by the argument β, and only then interpret the result:
- $[[\lambda v \alpha(\beta)]]^{\mathrm{M}, \mathrm{g}}=[[\alpha]]^{\mathrm{M}, g[\mathrm{~V} /[\beta] \mathrm{M}, \mathrm{g}]}$ to
- $[[\lambda v \alpha(\beta)]]^{M, g}=[[[\beta / v] \alpha]]^{M, g}$
- This is the basic idea behind the λ-calculus.

Variable capturing

- Are $\lambda v \alpha(\beta)$ and $[\beta / v] \alpha$ always equivalent?
- $\lambda x\left[\operatorname{drive}^{\prime}(x) \wedge \operatorname{drink}^{\prime}(x)\right]\left(j^{*}\right) \Rightarrow \operatorname{drive}^{\prime}\left(\mathrm{j}^{*}\right) \wedge \operatorname{drink}^{\prime}\left(\mathrm{j}^{*}\right)$
- $\lambda x\left[\operatorname{drive}^{\prime}(x) \wedge \operatorname{drink}^{\prime}(x)\right](y) \Rightarrow \operatorname{drive}^{\prime}(\mathrm{y}) \wedge \operatorname{drink}^{\prime}(\mathrm{y})$
- $\lambda x[\forall y \operatorname{know}(x)(y)]\left(j^{*}\right) \Rightarrow \forall y \operatorname{know}\left(j^{*}\right)(y)$
- $\lambda x\left[\forall y \operatorname{know}^{\prime}(x)(y)\right](y) \nRightarrow \forall y \operatorname{know}(y)(y)$
- Let v, v^{\prime} be variables of the same type, α any well-formed expression. v is free for v^{\prime} in α iff no free occurrence of v^{\prime} in α is in the scope of a quantifier or a λ-operator that binds v.

Conversion rules in the λ-calculus

- β-conversion: $\lambda v \alpha(\beta) \Leftrightarrow[\beta / v] \alpha$ if all free variables in β are free for v in α.
- α-conversion: $\lambda v \alpha \Leftrightarrow \lambda v^{\prime}\left[v^{\prime} / v\right] \alpha$ if v^{\prime} is free for v in α.
- η-conversion:
$\lambda v(\alpha(v)) \Leftrightarrow \alpha$
- The rule which we will use most in semantics construction is β-conversion in the left-to-right direction (β-reduction), which allows us to simplify representations.

An Example

- John drives and drinks.

$$
\begin{aligned}
& \frac{\operatorname{drive}^{\prime}:\langle e, t\rangle \quad x: e}{\operatorname{drive}^{\prime}(x): t} \frac{\operatorname{drink}^{\prime}:\langle e, t\rangle \quad x: e}{\operatorname{drink}^{\prime}(x): t} \\
& \frac{\operatorname{drive}^{\prime}(\mathrm{x}) \wedge \operatorname{drink}^{\prime}(\mathrm{x}): \mathrm{t}}{\lambda \mathrm{x}\left(\operatorname{drive}^{\prime}(\mathrm{x}) \wedge \operatorname{drink}^{\prime}(\mathrm{x})\right):\langle\mathrm{e}, \mathrm{t}\rangle} \quad \mathrm{j}^{*}: \mathrm{e} \\
& \frac{\lambda x\left(\operatorname{drive}^{\prime}(\mathrm{x}) \wedge \operatorname{drink}^{\prime}(\mathrm{x})\right)\left(\mathrm{j}^{*}\right)}{} \\
& \Rightarrow \beta \operatorname{drive}^{\prime}\left(\mathrm{j}^{*}\right) \wedge \operatorname{drink}^{\prime}\left(\mathrm{j}^{*}\right)
\end{aligned}
$$

Back to Noun Phrases

- We were looking for a uniform representation for noun phrases:
- All noun phrases are uniformly represented as terms of type $\langle\langle e, t\rangle, t\rangle$ i.e., expressions that denote sets of first-order properties (type $\langle\mathrm{e}, \mathrm{t}\rangle$).
- Interpretation of "John:" the set of properties P such that John has property P.
- Interpretation of "every student:" the set of properties P such that every student has P.
- and so on ...

Back to Noun Phrases

- Interpretation of "John:" the set of properties P such that John has property P:
- $\lambda \mathrm{P}\left(\mathrm{P}\left(\mathrm{j}^{*}\right)\right)$
- Interpretation of "every student:" P belongs to the set if every student has property P:
- $\lambda P\left(\forall x\left(\right.\right.$ student $\left.\left.{ }^{\prime}(x) \rightarrow P(x)\right)\right)$
- Interpretation of "a student:" P belongs to the set if a student has property P:
- $\lambda P\left(\exists x\left(\right.\right.$ student $\left.\left.{ }^{\prime}(x) \wedge P(x)\right)\right)$

More Noun Phrases

```
        John \(\Rightarrow \lambda G\left(G\left({ }^{*}\right)\right)\)
        Somebody \(\Rightarrow \lambda G \exists x G(x)\)
        A student \(\Rightarrow \lambda G \exists x(\) student \((x) \wedge G(x))\)
        No student \(\Rightarrow \lambda G \neg \exists x(\) student \((x) \wedge G(x))\)
        John \(\Rightarrow \lambda G\left(G\left(j^{*}\right)\right)\)
John and Mary \(\Rightarrow \lambda G\left(G\left(j^{*}\right) \wedge G\left(m^{*}\right)\right)\)
```


"Every student works"

Determiners

$$
\begin{aligned}
\text { a, some } & \Rightarrow \lambda F \lambda G \exists x(F(x) \wedge G(x)) \\
\text { every } & \Rightarrow \lambda F \lambda G \forall x(F(x) \rightarrow G(x)) \\
\text { no } & \Rightarrow \lambda F \lambda G \neg \exists x(F(x) \wedge G(x)) \\
\text { most } & \Rightarrow \text { most }^{\prime} \quad \text { (a constant) }
\end{aligned}
$$

"Every student works."

