Semantic Theory Semantics Construction

Manfred Pinkal Stefan Thater

2008-05-06

Last Week: Type Theory

- Expressive limits of first-order logic (FOL)
 - John is a blond / good / alleged thief
 - Mary has all properties of a good student
- Solution: Generalise FOL to Type Theory
 - basic types: e, t
 - functional types (σ , τ)
 - build logic from functional application and the usual logical connectives (over higher-order constants and variables).

Type Theory – Syntax

- The sets of well-formed expressions WE_τ for every type τ are given by:
 - (1) $CON_{\tau} \subseteq WE_{\tau}$, for every type τ
 - (2) If α is in WE_(σ, τ), β in WE_{σ}, then $\alpha(\beta) \in$ WE_{τ}.
 - (3) If A, B are in WE_t, then \neg A, (A ∧ B), (A ∨ B), (A → B), (A ↔ B) are in WE_t.
 - (4) If A is in WE_t, then $\forall vA$ and $\exists vA$ are in WE_t, where v is a variable of arbitrary type.
 - (5) If α , β are well-formed expressions of the same type, then $\alpha = \beta \in WE_t$.

3

• John is a good student

good(student)(john) : t

good(student) : (e, t) john : e

good : $\langle (e,t), (e,t) \rangle$ student : $\langle e,t \rangle$

A student works

 $\exists x (work(x) \land student(x)) : t$ $work(x) \land student(x) : t$ work(x) : t student(x) : t work(x) : t student(x) : t vork(x) : t vork(x) : t student(x) : t

Type Theory – Semantics [1/3]

- Let U be a non-empty set of entities.
- The domain of possible denotations D_{τ} for every type τ is given by:
 - (1) $D_e = U$
 - (2) $D_t = \{0,1\}$
 - (3) $D_{(\sigma, \tau)}$ is the set of all functions from D_{σ} to D_{τ}

5

Type Theory – Semantics [2/3]

- A model structure for a type theoretic language consists of a pair M = (U, V), where
 - U (or U_M) is a non-empty domain of individuals
 - V (or $V_M)$ is an interpretation function, which assigns to every member of CON_τ an element of $D_\tau.$
- Variable assignment g assigns every variable of type τ a member of D_{τ} .

Type Theory – Semantics [3/3]

• Interpretation with respect to model structure M and variable assignment g:

```
\begin{split} \llbracket \alpha \rrbracket^{M,g} &= V_{M}(\alpha), \text{ if } \alpha \text{ constant} \\ \llbracket \alpha \rrbracket^{M,g} &= g(\alpha), \text{ if } \alpha \text{ variable} \\ \llbracket \alpha(\beta) \rrbracket^{M,g} &= \llbracket \alpha \rrbracket^{M,g}(\llbracket \beta \rrbracket^{M,g}) \\ \llbracket \neg \varphi \rrbracket^{M,g} = 1 \text{ iff } \llbracket \varphi \rrbracket^{M,g} = 0 \\ \llbracket \varphi \land \psi \rrbracket^{M,g} = 1 \text{ iff } \llbracket \varphi \rrbracket^{M,g} = 1 \text{ and } \llbracket \psi \rrbracket^{M,g} = 1, \text{ etc.} \\ \llbracket \alpha = \beta \rrbracket^{M,g} = 1 \text{ iff } \llbracket \alpha \rrbracket^{M,g} = \llbracket \beta \rrbracket^{M,g} \end{split}
```

• if $v \in VAR\tau$:

$$\begin{split} \llbracket \exists v \varphi \rrbracket^{M,g} &= 1 \quad \text{iff} \quad \text{there is } d \in \mathsf{D}_\tau \text{ such that } \llbracket \varphi \rrbracket^{M,g[v/d]} = 1 \\ \llbracket \forall v \varphi \rrbracket^{M,g} &= 1 \quad \text{iff} \quad \text{for all } d \in \mathsf{D}_\tau : \llbracket \varphi \rrbracket^{M,g[v/d]} = 1 \end{split}$$

7

Today: Semantics Construction

- Elementary semantics construction:
 - the principle of compositionality
 - compositional semantics construction using type theory
- Quantified noun phrases
- The lambda operator in type theory

The Principle of Compositionality

 The meaning of a complex expression is uniquely determined by the meanings of its sub-expressions and the syntactic rules by which they are combined.

9

• (The principle is also called "Frege's principle")

Two Levels of Interpretation

- Semantic interpretation is a two-step process
 - Natural language (NL) expressions are assigned a semantic representation (logical formulas).
 - The semantic representation is truth-conditionally interpreted.
- Truth-conditional interpretation of logical representations is strictly compositional.
- We also want this for the process of computing logical representations from NL expressions.

Noun phrases and compositionality

John works ⇒ work'(j*)

Somebody works $\Rightarrow \exists x(work'(x))$ Every student works $\Rightarrow \forall x(student'(x) \rightarrow work'(x))$ No student works $\Rightarrow \neg \exists x(student'(x) \land work'(x))$

John and Mary work \Rightarrow work'(j*) \land work(m*)

• What's the semantic representation of a noun phrase?

Towards a unified semantics of Noun Phrases

• John works

john' : ((e,t),t) work' : (e,t)

john'(work') : t

• Every student works

every-student' : ((e,t),t) work' : (e,t)

every-student'(work') : t

17

A Coverage Problem

• Swimming is healthy

swim' : (e,t) healthy' : ((e,t),t)

healthy'(swim') : t

- Not smoking is healthy
- Drinking and driving is dangerous

Summing up

- We have the following kinds of problems:
 - We want uniform semantic representations for noun phrases, and we don't seem to have the syntax to write them down.
 - Some natural language expressions seem to require us to say "an x with property P."
- Solution: λ-abstraction

λ -Abstraction

- Syntax:
 - If $\alpha \in WE_{\tau}$ and $v \in VAR_{\sigma}$, then $\lambda v \alpha \in WE_{(\sigma,\tau)}$.
- Example:
 - $\lambda x(drive(x) \wedge drink(x))$

Notational conventions: The scope of the λ-operator is the smallest WE to its right. Wider scope must be indicated by brackets. We often use the "dot notation" λx. ... indicating that the λ-operator takes widest possible scope.

λ -Abstraction

- λx[drive(x) ∧ drink(x)]
- ... a term of type (e,t)
- ... denotes the property of being "an x such that x drives and drinks"
- λ-abstraction is an operation that takes an expression and "opens" a specific argument positions. The result of abstraction over individual variable x in the formula drive(x) Λ drink(x) results in the complex predicate λx[drive(x) Λ drink(x)].

21

λ -Abstraction: Semantics

- $\llbracket \lambda v \alpha \rrbracket^{M,g}$ is that function $f : D_{\sigma} \rightarrow D_{\tau}$ such that for all $a \in D_{\sigma}$, $f(a) = \llbracket \alpha \rrbracket^{M,g[\nu/a]}$ (for $\alpha \in WE_{\tau}$, $\nu \in VAR_{\sigma}$)
- Notice that of course $f \in D_{(\sigma,\tau)}$.
- In general:
 [[(λνα)(β)]]^{M,g} = [[α]]^{M,g[ν / [[β]]M,g]}

β-Reduction

- By the modified variable assignment, the value of the argument of the λ-expression is passed through its body and becomes the value of all occurrences of variables bound by the λ-operator.
- We obtain the same result, if we first substitute the free occurrences of the λ-variable in λvα(β) by the argument β, and only then interpret the result:
 - [[$\lambda v \alpha(\beta)$]]^{M,g} = [[α]]^{M,g[v/ [[β]]M,g]} to
 - [[$\lambda v \alpha(\beta)$]]^{M,g} = [[[β/v] α]]^{M,g}
- This is the basic idea behind the λ -calculus.

25

Variable capturing

- Are λvα(β) and [β/v]α always equivalent?
 - λx [drive'(x) ∧ drink'(x)](j*) ⇒ drive'(j*) ∧ drink'(j*)
 - λx [drive'(x) ∧ drink'(x)](y) ⇒ drive'(y) ∧ drink'(y)
 - $\lambda x[\forall y \text{ know'}(x)(y)](j^*) \Rightarrow \forall y \text{ know}(j^*)(y)$
 - $\lambda x[\forall y \text{ know'}(x)(y)](y) \Rightarrow \forall y \text{ know}(y)(y)$
- Let v, v' be variables of the same type, α any well-formed expression. v is free for v' in α iff no free occurrence of v' in α is in the scope of a quantifier or a λ -operator that binds v.

Conversion rules in the λ -calculus

- β -conversion: $\lambda \lor \alpha(\beta) \Leftrightarrow [\beta/v] \alpha$ if all free variables in β are free for v in α .
- α -conversion: $\lambda v \alpha \Leftrightarrow \lambda v' [v'/v] \alpha$ if v' is free for v in α .
- η -conversion: $\lambda v(\alpha(v)) \Leftrightarrow \alpha$
- The rule which we will use most in semantics construction is β-conversion in the left-to-right direction (β-reduction), which allows us to simplify representations.

27

An Example

• John drives and drinks.

dr	ive' : (e,t)	x : e		drink' : (e,t)	x :	e
	drive'(x) : t			drink'(x) : t		
	drive'(x) ^ drink'(x) : t					•
	λx (drive'(x)			rink'(x)) : (e,t)		j* : e
	λx (dr	ive'(x) ۸	d	rink'(x)) (j*)		
	⇒ _β dri	ve'(j*) ʌ	dr	ˈink'(j*)		

Back to Noun Phrases

- We were looking for a uniform representation for noun phrases:
 - All noun phrases are uniformly represented as terms of type ((e,t),t) i.e., expressions that denote sets of first-order properties (type (e,t)).
 - Interpretation of "John:" the set of properties P such that John has property P.
 - Interpretation of "every student:" the set of properties P such that every student has P.
 - and so on ...

29

Back to Noun Phrases

- Interpretation of "John:" the set of properties P such that John has property P:
 - λP(P(j*))
- Interpretation of "every student:" P belongs to the set if every student has property P:
 - $\lambda P(\forall x(student'(x) → P(x)))$
- Interpretation of "a student:" P belongs to the set if a student has property P:
 - $\lambda P(\exists x(student'(x) \land P(x)))$

More Noun Phrases

 $\begin{array}{ll} John \ \Rightarrow \lambda G(G(j^*)) \\ Somebody \ \Rightarrow \lambda G \ \exists x G(x) \\ A \ student \ \Rightarrow \lambda G \ \exists x (student(x) \ \land \ G(x)) \\ No \ student \ \Rightarrow \lambda G \ \neg \ \exists x (student(x) \ \land \ G(x)) \\ John \ \Rightarrow \lambda G(G(j^*)) \\ John \ and \ Mary \ \Rightarrow \lambda G(G(j^*) \ \land \ G(m^*)) \end{array}$

