Semantic Theory
Semantics Construction

Manfred Pinkal
Stefan Thater

2008-05-06

Last Week: Type Theory

e Expressive limits of first-order logic (FOL)
- John is a blond / good / alleged thief
- Mary has all properties of a good student

e Solution: Generalise FOL to Type Theory
- basic types: e, t
- functional types (g, T)

- build logic from functional application and the usual logical
connectives (over higher-order constants and variables).

Type Theory — Syntax

® The sets of well-formed expressions WE+ for every type T
are given by:

CON- © WE-, for every type T

If ais in WE(g, 1), B in WEg, then a(B) € WE-.

If A, B are in WEt, then —=A, (A A B), (A v B), (A — B), (A< B)
are in WE:.

(4) If Ais in WEt, then VVvA and 3vA are in WE:, where v is a
variable of arbitrary type.

—_ o~~~
w N =
= ~— -

(5) If a, B are well-formed expressions of the same type,
then a = B € WE:.

Building well-formed expressions

e John is a good student
good(student)(john) : t

/\
good(student) : (e, t) john: e
/\
good : {{e,t), (e,t)) student : (e,t)

e A student works

Ix(work(x) A student(x)) : t
|
work(x) A student(x) : t
/\
work(x) : t student(x) : t

/\
work : (e,t) X:e student:(et) x:e

Type Theory - Semantics [1/3]

e |et U be a non-empty set of entities.

e The domain of possible denotations D« for every type T is

given by:
(1) De=U
(2) D= {0,1}

(3) Dqq, v is the set of all functions from Ds to D+

Type Theory — Semantics [2/3]

e A model structure for a type theoretic language consists
of a pair M = (U, V), where
- U (or Um) is a non-empty domain of individuals

- V (or Vwm) is an interpretation function, which assigns to every
member of CON: an element of Dx.

e Variable assignment g assigns every variable of type T a
member of D-.

Type Theory — Semantics [3/3]

e Interpretation with respect to model structure M and
variable assignment g:

[ag™s
[a]™o
[a(B)I™9
[—¢I%o =1
[Aypl"e=1
fa=pI"o=1
e ifvE VART:
[3veI™e =1
[vveIMe =1

iff
iff
iff

iff
iff

Vm(a), if o constant

g(a), if a variable
ToI™o(IR1IM9)

[$1"9 = 0

[dIM9 =1 and [wIM9 = 1, etc.
[ad™e = [BIM9

there is d € D such that [¢V-elvdl = 1
for alld € D : [¢Molvidl =1

Today: Semantics Construction

e FElementary semantics construction:

- the principle of compositionality

- compositional semantics construction using type theory

e Quantified noun phrases

e The lambda operator in type theory

The Principle of Compositionality

® The meaning of a complex expression is uniquely
determined by the meanings of its sub-expressions and
the syntactic rules by which they are combined.

e (The principle is also called “Frege’s principle”)

Two Levels of Interpretation

e Semantic interpretation is a two-step process

- Natural language (NL) expressions are assigned a semantic
representation (logical formulas).

- The semantic representation is truth-conditionally
interpreted.

e Truth-conditional interpretation of logical representations
is strictly compositional.

e We also want this for the process of computing logical
representations from NL expressions.

Compositional Semantics
Construction

e Basic idea: we start with a syntactic S
analysis of an NL expression, and C(a, C(B, V)
. . . /\
® assign each syntactic node in the syntax NP VP
tree a semantic representation C'(a) C(B., v)
I —
e by combining the representations of its PN \% NP
daughter nodes. ‘;‘ [i C':Y)
John loves PN
= =P \
I
Mary
=Y
Il
Basic Composition Rules
e Rule of functional application
B=pB: (o1 B=B:o A
C=>vy:0 or C=v: (071 /\
A=By):T A=>y(B):T B C

e Rule for non-branching nodes
B=B:T A

A=>B:T

Basic Composition Rules

e Rule for lexical nodes:

A=>B:T

e The semantic representation B for a word w is supplied by

the lexicon.
13
An Example
S
love(m*)(j*) : t
/\
NP VP
re love(m) : (e,t)

I /\
PN V NP
re love’ : (e,(e,t)) m : e
S !

John loves n
m*: e

Mary

Noun phrases and compositionality

John works = work’(j*)
Somebody works = Ax(work’(x))
Every student works = Vx(student’(x) = work’(x))
No student works = —3x(student’(x) A work’(x))

John and Mary work = work’(j*) A work(m¥*)

e What's the semantic representation of a noun phrase?

Towards a unified semantics of
Noun Phrases

e John works

j*:e work’ : (e,t)

work’(j*) : t

e FEvery student works

every-student’ : ((e,t),t) work’: {(e,t)

every-student’(work’) : t

Towards a unified semantics of
Noun Phrases

® John works

john’ : ({e,t),t) work’ : {(e,t)

john’(work’) : t

e FEvery student works

every-student’ : ((e,t),t) work’: (e,t)

every-student’(work’) : t

A Coverage Problem

e Swimming is healthy

swim’ : (e,t) healthy’ : ({e,t),t)

healthy’(swim’) : t

e Not smoking is healthy

e Drinking and driving is dangerous

Summing up

¢ We have the following kinds of problems:

- We want uniform semantic representations for noun phrases,
and we don’t seem to have the syntax to write them down.

- Some natural language expressions seem to require us to say
“an x with property P.”

e Solution: A-abstraction

A-Abstraction

e Syntax:
- If a € WEr and v € VARg, then Ava € WE,1).

e Example:
= Ax(drive(x) A drink(x))

¢ Notational conventions:
The scope of the A-operator is the smallest WE to its right.
Wider scope must be indicated by brackets.
We often use the “dot notation” Ax. ... indicating that the
A-operator takes widest possible scope.

20

A-Abstraction

e Ax[drive(x) A drink(x)]
e ... aterm of type (e,t)

e ... denotes the property of being “an x such that x drives
and drinks”

e A-abstraction is an operation that takes an expression and
“opens” a specific argument positions. The result of
abstraction over individual variable x in the formula
drive(x) A drink(x) results in the complex predicate
Ax[drive(x) A drink(x)].

21

A-Abstraction: Semantics

e [Ava IM9 is that function f : Do — D+ such that for all a €
Do, f(a) = [alM9lval (for a € WE+, v € VARG)

e Notice that of course f € Dg,1).

® |n general:
[(Ava)(B) IM9 = [o M9lv/LBIMg]

22

Ax(drive’(x) A drink’(x))

V(drive’)

V(drink’) [[Ax(drive’(x) A drink’(x))]l denotes the

(characteristic function of the) set of elements
which make drive’(x) A drink’(x) true

23

Back to the Coverage Problem

e Not smoking is healthy
- healthy(Ax.~smoke(x))

® Drinking and driving is unwise

- —wise(Ax.drink(x) A drive(x))

24

B-Reduction

¢ By the modified variable assignment, the value of the
argument of the A-expression is passed through its body
and becomes the value of all occurrences of variables
bound by the A-operator.

e We obtain the same result, if we first substitute the free
occurrences of the A-variable in Ava(B) by the argument j3,
and only then interpret the result:

- [Ava(B) M9 = [[o IMelv/ IBIMg] to
= [Ava(B) I¥9 = [[[B/v]a M@

e This is the basic idea behind the A-calculus.

25

Variable capturing

e Are Ava(B) and [B/v]a always equivalent?
Ax[drive’(x) A drink’(x)](j*) = drive’(j*) A drink’(j*)
Ax[drive’(x) A drink’(x)](y) = drive’(y) A drink’(y)
AX[Vy know’(x)(y)1(j*) = Vy know(j*)(y)

AX[Vy know’(x)(y)1(y) = Vy know(y)(y)

e |letv, v’ be variables of the same type, a any well-formed
expression. v is free for v’ in a iff no free occurrence of v’
in ais in the scope of a quantifier or a A-operator that
binds v.

26

Conversion rules in the A-calculus

e [-conversion:
Ava(B) < [B/v]a if all free variables in B are free for v in a.

® (-conversion:
Ava © AV'[v'/v]a if v’ is free for v in a.

® n-conversion:
Av(a(v)) e a

e The rule which we will use most in semantics construction
is B-conversion in the left-to-right direction (B-reduction),
which allows us to simplify representations.

27

An Example
e John drives and drinks.
drive' : {(e,t) x:e drink’ : {(e,t) x:e
drive'(x) : t drink’(x) : t
drive’(x) A drink’(x) : t

AX (drive’(x) A drink’(x)) : (e,t) j*:e
AX (drive’(x) A drink’(x)) (j*)

=g drive’(j*) A drink’(j*)

28

Back to Noun Phrases

e We were looking for a uniform representation for noun
phrases:

— All noun phrases are uniformly represented as terms of type
({e,t),t) i.e., expressions that denote sets of first-order
properties (type (e,t)).

- Interpretation of “John:” the set of properties P such that John
has property P.

- Interpretation of “every student:” the set of properties P such
that every student has P.

- andsoon...

29

Back to Noun Phrases

e Interpretation of “John:” the set of properties P such that
John has property P:

- AP(P(j*))

e Interpretation of “every student:” P belongs to the set if
every student has property P:
- AP(Vx(student’'(x) — P(x)))

¢ Interpretation of “a student:” P belongs to the set if a
student has property P:
- AP(3Ix(student’(x) A P(x)))

30

More Noun Phrases

John = AG(G(j*))
Somebody = AG IxG(x)
A student = AG 3Ix(student(x) A G(x))
No student = AG —3x(student(x) A G(x))
John = AG(G(j*))
John and Mary = AG(G(j*) A G(m*))

31

“John sleeps”

S
AP(P(j*))(sleep’) : t
=g Sleep’(j*) : t

/\

NP VP
AP(P(j*)) : ({e,t),t) sleep’ : (e,t)
N \
AP(P(j*)) : {{e,t),t) sleep’ : (e,t)

John sleeps

32

“Every student works”

S
AP Vx(student’'(x) = P(x))(work’) : t
=g VX(student’(x) = work’(x)) : t

/\

NP VP
AP Vx(student’(x) = P(x)) : {{e,t),t) work’ : {e,t)
/\ V
Every student work’ : (e,t)
works

33

Determiners

a, some = AFAG 3Ix(F(x) A G(x))
every = AFAG Vx(F(x) — G(x))
no = AFAG —3ax(F(x) A G(x))

most = most’ (a constant)

34

“Every student works.”

S
AG Vx(student’(x) = G(x))(work’) : t
=g Vx(student’(x) = work’(x)) : t

/\

NP VP
AFAG Vx(F(x) = G(x))(student’) : {(e,t),t) work’ : {e,t)

=g AG Vx(student’'(x) = G(x)) : {(e,t),t)

_— |

Det N V
AFAG Vx(F(x) = G(x)) : {{e,t),{{e,t),t)) student’ : (e,t) work’ : {(e,t)

Every student works

35

