
Semantic Theory

Semantics Construction

Manfred Pinkal

Stefan Thater

2008-05-06

Last Week: Type Theory

• Expressive limits of first-order logic (FOL)

– John is a blond / good / alleged thief

– Mary has all properties of a good student

• Solution: Generalise FOL to Type Theory

– basic types: e, t

– functional types !", #$

– build logic from functional application and the usual logical

connectives (over higher-order constants and variables).

2

Type Theory – Syntax

• The sets of well-formed expressions WE# for every type #

are given by:

(1) CON# % WE#, for every type #

(2) If & is in WE!", #$, ' in WE", then &(') (WE#.

(3) If A, B are in WEt, then ¬A, (A) B), (A * B), (A ! B), (A ! B)

are in WEt.

(4) If A is in WEt, then +vA and ,vA are in WEt, where v is a

variable of arbitrary type.

(5) If &, ' are well-formed expressions of the same type,

then & = ' (WEt.

3

Building well-formed expressions

• John is a good student

• A student works

4

good(student)(john) : t

john : egood(student) : !e, t"

student : !e,t"good : !!e,t", !e,t""

work(x) ! student(x) : t

student(x) : twork(x) : t

x : ework : "e,t# x : estudent : "e,t#

$x(work(x) ! student(x)) : t

Type Theory – Semantics [1/3]

• Let U be a non-empty set of entities.

• The domain of possible denotations D# for every type # is

given by:

(1) De = U

(2) Dt = {0,1}

(3) D(", #) is the set of all functions from D" to D#

5

Type Theory – Semantics [2/3]

• A model structure for a type theoretic language consists

of a pair M = (U, V), where

– U (or UM) is a non-empty domain of individuals

– V (or VM) is an interpretation function, which assigns to every

member of CON# an element of D#.

• Variable assignment g assigns every variable of type # a

member of D#.

6

Type Theory – Semantics [3/3]

• Interpretation with respect to model structure M and

variable assignment g:

 [[&]]M,g = VM(&), if & constant

 [[&]]M,g = g(&), if & variable

 [[&(')]]M,g = [[&]]M,g([[']]M,g)

 [[¬-]]M,g = 1 iff [[-]]M,g = 0

 [[-) .]]M,g = 1 iff [[-]]M,g = 1 and [[.]]M,g = 1, etc.

 [[& = ']]M,g = 1 iff [[&]]M,g = [[']]M,g

• if v (VAR#:

 [[,v-]]M,g = 1 iff there is d (D# such that [[-]]M,g[v/d] = 1

 [[+v-]]M,g = 1 iff for all d (D# : [[-]]M,g[v/d] = 1

7

Today: Semantics Construction

• Elementary semantics construction:

– the principle of compositionality

– compositional semantics construction using type theory

• Quantified noun phrases

• The lambda operator in type theory

8

The Principle of Compositionality

• The meaning of a complex expression is uniquely

determined by the meanings of its sub-expressions and

the syntactic rules by which they are combined.

• (The principle is also called “Frege’s principle”)

9

Two Levels of Interpretation

• Semantic interpretation is a two-step process

– Natural language (NL) expressions are assigned a semantic

representation (logical formulas).

– The semantic representation is truth-conditionally

interpreted.

• Truth-conditional interpretation of logical representations

is strictly compositional.

• We also want this for the process of computing logical

representations from NL expressions.

10

• Basic idea: we start with a syntactic

analysis of an NL expression, and

• assign each syntactic node in the syntax

tree a semantic representation

• by combining the representations of its

daughter nodes.

Compositional Semantics

Construction

11

NP

C’(!)

S

C(!, C(", #))

VP

C(", #)

V

"

NP

C’(#)

PN

!

loves

$ "

John

$!

PN

#

Mary

$ #

Basic Composition Rules

• Rule of functional application

 B / ' : !",#$ B / ' : "

 C / 0 : " or C / 0 : !",#$

 A / '(0) : # A / 0(') : #

• Rule for non-branching nodes

 B / ' : #

 A / ' : #

12

B

A

C

B

A

Basic Composition Rules

• Rule for lexical nodes:

 A / ' : #

• The semantic representation ' for a word w is supplied by

the lexicon.

13

w

A

An Example

14

NP

S

VP

V NPPN

lovesJohn
PN

Mary

m* : e

m* : elove’ : !e,!e,t$$

love(m*) : !e,t$

love(m*)(j*) : t

j* : e

j* : e

m* : e

love’ : !e,!e,t$$ m* : ej* : e

j* : e love(m*) : !e,t$

love(m*)(j*) : t

15

 John works / work’(j*)

 Somebody works / ,x(work’(x))

 Every student works / +x(student’(x) ! work’(x))

 No student works / ¬,x(student’(x)) work’(x))

 John and Mary work / work’(j*)) work(m*)

• What’s the semantic representation of a noun phrase?

Noun phrases and compositionality

16

• John works

 j* : e work’ : !e,t$

 work’(j*) : t

• Every student works

 every-student’ : !!e,t$,t$ work’ : !e,t$

 every-student’(work’) : t

Towards a unified semantics of

Noun Phrases

17

• John works

 john’ : !!e,t$,t$ work’ : !e,t$

 john’(work’) : t

• Every student works

 every-student’ : !!e,t$,t$ work’ : !e,t$

 every-student’(work’) : t

Towards a unified semantics of

Noun Phrases

A Coverage Problem

• Swimming is healthy

 swim’ : !e,t$ healthy’ : !!e,t$,t$

 healthy’(swim’) : t

• Not smoking is healthy

• Drinking and driving is dangerous

18

Summing up

• We have the following kinds of problems:

– We want uniform semantic representations for noun phrases,

and we don’t seem to have the syntax to write them down.

– Some natural language expressions seem to require us to say

“an x with property P.”

• Solution: 1-abstraction

19

1-Abstraction

• Syntax:

– If & (WE# and v (VAR", then 1v& (WE(",#).

• Example:

– 1x(drive(x)) drink(x))

• Notational conventions:

The scope of the 1-operator is the smallest WE to its right.

Wider scope must be indicated by brackets.

We often use the “dot notation” 1x. … indicating that the

1-operator takes widest possible scope.

20

1-Abstraction

• 1x[drive(x)) drink(x)]

• … a term of type !e,t$

• … denotes the property of being “an x such that x drives

and drinks”

• 1-abstraction is an operation that takes an expression and

“opens” a specific argument positions. The result of

abstraction over individual variable x in the formula

drive(x)) drink(x) results in the complex predicate

1x[drive(x)) drink(x)].

21

1-Abstraction: Semantics

• [[1v&]]M,g is that function f : D" 2 D# such that for all a (

D", f(a) = [[&]]M,g[v/a] (for & (WE#, v (VAR")

• Notice that of course f (D!",#$.

• In general:

[[(1v&)(')]]M,g = [[&]]M,g[v / [[']]M,g]

22

1x(drive’(x)) drink’(x))

23

V(drink’)

V(drive’)

[[1x(drive’(x)) drink’(x))]] denotes the

(characteristic function of the) set of elements

which make drive’(x)) drink’(x) true

Back to the Coverage Problem

• Not smoking is healthy

– healthy(1x.¬smoke(x))

• Drinking and driving is unwise

– ¬wise(1x.drink(x)) drive(x))

24

'-Reduction

25

• By the modified variable assignment, the value of the

argument of the 1-expression is passed through its body

and becomes the value of all occurrences of variables

bound by the 1-operator.

• We obtain the same result, if we first substitute the free

occurrences of the 1-variable in 1v&(') by the argument ',

and only then interpret the result:

– [[1v&(')]]M,g = [[&]]M,g[v/ [[']]M,g] to

– [[1v&(')]]M,g = [[['/v]&]]M,g

• This is the basic idea behind the 1-calculus.

Variable capturing

• Are 1v&(') and ['/v]& always equivalent?

– 1x[drive’(x)) drink’(x)](j*) / drive’(j*)) drink’(j*)

– 1x[drive’(x)) drink’(x)](y) / drive’(y)) drink’(y)

– 1x[+y know’(x)(y)](j*) / +y know(j*)(y)

– 1x[+y know’(x)(y)](y) \/ +y know(y)(y)

• Let v, v’ be variables of the same type, & any well-formed

expression. v is free for v’ in & iff no free occurrence of v’

in & is in the scope of a quantifier or a 1-operator that

binds v.

26

Conversion rules in the 1-calculus

• '-conversion:

1v&(') 3 ['/v]& if all free variables in ' are free for v in &.

• &-conversion:

1v& 3 1v’[v’/v]& if v’ is free for v in &.

• 4-conversion:

1v(&(v)) 3 &

• The rule which we will use most in semantics construction

is '-conversion in the left-to-right direction ('-reduction),

which allows us to simplify representations.

27

An Example

• John drives and drinks.

 drive’ : !e,t$ x : e drink’ : !e,t$ x : e

 drive’(x) : t drink’(x) : t

 drive’(x)) drink’(x) : t

 1x (drive’(x)) drink’(x)) : !e,t$ j* : e

 1x (drive’(x)) drink’(x)) (j*)

 /' drive’(j*)) drink’(j*)

28

Back to Noun Phrases

• We were looking for a uniform representation for noun

phrases:

– All noun phrases are uniformly represented as terms of type

!!e,t$,t$ i.e., expressions that denote sets of first-order

properties (type !e,t$).

– Interpretation of “John:” the set of properties P such that John

has property P.

– Interpretation of “every student:” the set of properties P such

that every student has P.

– and so on …

29

Back to Noun Phrases

• Interpretation of “John:” the set of properties P such that

John has property P:

– 1P(P(j*))

• Interpretation of “every student:” P belongs to the set if

every student has property P:

– 1P(+x(student’(x) ! P(x)))

• Interpretation of “a student:” P belongs to the set if a

student has property P:

– 1P(,x(student’(x)) P(x)))

30

More Noun Phrases

 John / 1G(G(j*))

 Somebody / 1G ,xG(x)

 A student / 1G ,x(student(x)) G(x))

 No student / 1G ¬,x(student(x)) G(x))

 John / 1G(G(j*))

 John and Mary / 1G(G(j*)) G(m*))

31

“John sleeps”

32

1P(P(j*)) : !!e,t$,t$ sleep’ : !e,t$

1P(P(j*)) : !!e,t$,t$ sleep’ : !e,t$

1P(P(j*))(sleep’) : t

/' sleep’(j*) : t

NP

S

VP

V

sleeps

N

John

“Every student works”

33

work’ : !e,t$

1P +x(student’(x) ! P(x)) : !!e,t$,t$ work’ : !e,t$

1P +x(student’(x) ! P(x))(work’) : t

/' +x(student’(x) ! work’(x)) : t

NP

S

VP

V

works

Every student

Determiners

 a, some / 1F1G ,x(F(x)) G(x))

 every / 1F1G +x(F(x) 2 G(x))

 no / 1F1G ¬,x(F(x)) G(x))

 most / most’ (a constant)

34

“Every student works.”

35

student’ : !e,t$ work’ : !e,t$

1F1G +x(F(x) ! G(x))(student’) : !!e,t$,t$ work’ : !e,t$

1G +x(student’(x) ! G(x))(work’) : t

/' +x(student’(x) ! work’(x)) : t

/' 1G +x(student’(x) ! G(x)) : !!e,t$,t$

1F1G +x(F(x) ! G(x)) : !!e,t$,!!e,t$,t$$

NP

S

VP

VDet

worksEvery

N

student

