Semantic Theory

Type-Thory

Manfred Pinkal
Stefan Thater

2008-04-24

Overview

e A Reminder: First-Order Predicate Logic (FOL)
e Limits of Predicate Logic
e Type Theory

e Semantics Construction

Predicate Logic — Vocabulary

® Non-logical expressions:
- Individual constants: CON

- n-place relation constants: PRED", for alln = 0

e Individual variables: VAR

Predicate Logic — Syntax

e Terms: TERM = VAR u CON

e Atomic formulas:
- R(ty,..., tn) for R € PRED" and ty, ..., th € TERM
- s=t for s, t € TERM

e Well-formed formulas: The smallest set FORM such that
— All atomic formulas are in FORM

— If ¢, y are in FORM, then =@, (¢ A y), (¢ vV y), (¢ = @), (¢ & y)
are in FORM

- If x is individual variable, and ¢ is in FORM, then ¥x¢ and 3Ix¢
are in FORM

Scope

o If Vx¢ (Ix@) is a subformula of a formula y, then we call ¢
the scope of this occurrence of ¥x (3x) in y.

e We distinguish distinct occurrences of quantifiers as there
are formulae like VxA(x) A VxB(x).

e Example:
- x(Vy(T(y) © x=y) A F(x))

Free and Bound Variables

e An occurrence of a variable x in a formula ¢ is said to be
free in @ if this occurrence of x does not fall within the
scope of a quantifier Vx or 3Ix in @.

e |f Vxy (or Ixy) is a subformula of @ and x is free in y, then
this occurrence of x is said to be bound by this occurrence
of the quantifier ¥x (or 3x).

e Examples:
- Vx(A(x) A B(x)) - x occurs bound in B(x)

- Vx A(x) A B(x) - x occurs free in B(x)

e A sentence is a formula without free variables.

Predicate Logic — Semantics

e Expressions of Predicate Logic are interpreted relative to
model structures and variable assignments.

e Model structure: M = (Um, Vm)

- Uwm is non-empty universe (individual domain)

- Vwis an interpretation function assigning individuals (€Uwm) to
individual constants and n-ary relations over Um to n-place
predicate symbols.

e Assignment function for variables g: VAR — Um

Predicate Logic — Semantics

e |Interpretation of terms with respect to a model structure
M and a variable assignment g:
- [aI™9 = Vm(a), if a is an individual constant

- [alM9 = g(a), if a is a variable

Predicate Logic - Semantics

e |nterpretation of formulas with respect to a model
structure M and variable assignment g:
LR(ty, ..., ta) M9 = 1 iff (L taI"9, ..., [taI™9) € VM(R)
Is=tIMe=1 iff [sIMe=[tI"o
[-eIMo=1 iff [¢IM9=0
[ToayIMo=1 iff [eI™9=1land[yI"9=1
[ovyIMo=1 iff [eIM9=1orfyIMo=1
To—-yl"o=1 iff [oI"9=0orfyl"o=1
[o<ylmo=1 iff [oIMo=[yI"e
[3xe IM9 =1 iff thereisad € Umsuch that[¢ Moxdl =1
[Vxe IM9 =1 iff foralld € Uu, [¢ IMoxdl =1

e g[x/d] is the variable assignment which is identical to g
except that it assigns the individual d to variable x.

Predicate Logic — Semantics

e Aformula ® is true in the model structure M iff [0M9 =1
for every variable assignment g.

e A model structure M satisfies (or: is a model for) a set of
formulas I iff every formula A € T is true in M.

e A formula @ is satisfiable iff there is at least one model
structure M such that ¢ is true in M.

e A formula @ is valid iff ® is true in all model structures.

e A formula @ is a contradiction iff there is no model
structure M such that ¢ is true in M.

Entailment and Deduction

e A set of formulas I entails a formula ® (notation: I' = A)
iff ® is true in every model of I'.

e A (sound and complete) calculus for FOL allows to prove @
from I iff = @ by manipulating the formulas
syntactically: resolution, tableaux, natural deduction, ...

e Calculi can be implemented to obtain:

- theorem provers: check entailment, validity, and
unsatisfiability

- model builders: check satisfiability, compute models

- model checkers: determine whether model satisfies a formula

Logic and Language

e The meaning of a natural language sentence S can be
approximated by the truth-conditions of S.

e We usually use logical expressions to represent the truth-
conditions of natural language sentences.

Talking about students

(1) Max is a student

- student(max)
(2) Not all students passed [the exam]
- =Vx(student(x) = pass(x))

(3) Only Mary flunked.

- =pass(mary) A Vx(—pass(x) = x = mary)

Limits of First-Order Logic

® Expressivity
- non-intersective adjectives (e.g., “good”, “alleged”, ...)
- higher-order predicates (e.g., “healthy”)
- higher-order quantification

e Semantics construction

- We want to be able to assigh semantic representations to
arbitrary syntactic constituents.

— [S [NP Peter] [VP likes Mary]] = like(p*, m*)
- [VP likes Mary] = ??7?

Limits of First-Order Logic

(1) Max is a blond thief « (1) + (4) entail that Max is a
- thief(max) A blond(max) blond student,

e but (2) + (4) do not entail that

(2) Max is a good thief
Max is a good student.

- thief(max) A good(max) ?
¢ (3) does not even entail that

(3) Max is an alleged student Max is a thief.
- thief(max) A alleged(max) 777
(4) Max is a student

- student(max)

Limits of First-Order Logic

(1) Max and Mary have something in common

(2) Mary has all properties of a good student

Limits of First-Order Logic

(1) Max is always late

(2) Possibly, Max is a student.

Type Theory

e The types of non-logical expressions provided by FOL are
not sufficient to describe the semantic function of all
natural language expressions.

e Type theory provides a much richer inventory of types:
higher-order relations and functions of different kinds.

Type Theory - Types

e Basic types:
- e (“entities”)
- t (“truth-values”)
e Complex types:
- If g, T are types, then (o, 1) is a type.

e Complex types are the type of functions mapping
arguments of type o to values of type T.

Some useful Types

e Individual: e

e Sentence: t

e One-place predicates: (e,t)

e Two-place relation: (e,{e,t}))

e Sentence adverbial: (t,t)

e Attributive adjective: ({e,t),{e,t))

e Degree modifier: ({(e,t),{e,t)),{(e,t),(e,t)))

20

Type Theory — Vocabulary Type Theory — Syntax

e For every type T a possibly empty, pairwise disjoint sets of e The sets of well-formed expressions WE- for every type T
non-logical constants CONx. are given by:
e For every type T an infinite and pairwise disjoint sets of (1) CON: < WE,, for every type T
variables VAR«. (2) If ais in WE(g, v), B in WEg, then a(B) € WE-.
(3) If A, B are in WEt, then —A, (A A B), (A v B), (A= B), (A< B)

e The usual logical operators: V, 3, A, v, ... are in WE
| t.

(4) If Ais in WEt, then YVvA and 3vA are in WEt, where v is a
variable of arbitrary type.

(5) If a, B are well-formed expressions of the same type,
then a = B € WE:.

21 22

Building Well-Formed Expressions Building Well-Formed Expressions

(1) Bill is a good student. (1) Max works in Saarbrticken.

in(sb)(work(max)) : t
good(student)(bill) : t K M)
— work(max) : in(sb) : (t,
good(student) : (e, t) bill : e ‘ ﬁ\ in: (€L 5

- work : (e, max:e in:(e/(t, sb:e
good : {{e,t), (e,t)) student : (e,t)

23 24

Building Well-Formed Expressions

(1) A student works.
Ix(work(x) A student(x)) : t
|
work(x) A student(x) : t

/\
work(x) : t student(x) : t

/\ /\
work : (e,t) x:e student:(et) x:e

25

Type Theory — Semantics [1/3]

e Let U be a non-empty set of entities.

e The domain of possible denotations D+ for every type T is

given by:
(1) De=U
(2) Dt={0,1}

(3) Do, v is the set of all functions from Dy to D+

26

Type Theory — Semantics [2/3]

e A model structure for a type theoretic language consists
of a pair M = (U, V), where
- U (or Um) is a non-empty domain of individuals

- V (or Vw) is an interpretation function, which assigns to every
member of CON+ an element of Dx.

e \Variable assignment g assigns every variable of type Tt a
member of D-.

27

Type Theory - Semantics [3/3]

e Interpretation with respect to model structure M and
variable assignment g:
[a]™o
[al"e = g(a), if a variable
[o(B)I™e = [ad“o(IBI™9)
[-¢I"9 =1 iff [¢I"9=0
[A wI™o =1 iff [¢I"9 =1 and [yI"9 =1, etc.
[o=pIM9 =1 iff [al"o=[RI"9

Vm(a), if o constant

e if v € VART:
[3veIM9 =1 iff thereis d € D such that [¢"ovdl = 1
[vveIMe =1 iff foralld € D: [¢pIMolvdl =1

28

Type Theory

e The definition of the syntax and semantics of type theory
is a straightforward extension of FOL.

" ou ”ou

e Notions like “satisfies,” “valid,” “satisfiable,” “entailment”

carry over almost verbatim from FOL.

e Type theory is sometimes called “higher-order logic:”
- first-order logic allows quantification over individual variables
(type e)
- second-order logic allows quantification over variables of
type (o, T) where o and t are atomic

29

Characteristic Functions

e Many natural language expression have a type (o, t).

e These types are the type of functions mapping elements
of type o to true or false.

e Such function are also known as characteristic functions,
and can be thought of as subsets of Dg (i.e., sets of o’s).

e Example: “blond” is a constant of type (e,t) and can be
seen as characterising the set of blond individuals.

Currying

e All functional types are interpreted as one-place functions.

e How do we deal with functions with multiple arguments?

e Currying (a.k.a. “Schonfinkeln”):
- simulate term P(a,b) as the term P(a)(b)

- simulate type (e X e, t) as the type (e, (e,t)).

31

Examples

e “Max is a student”

- [student(max)I™9 = ...

e "Max is a blond student”
- [blond(student)(max)I™9 = ...

