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Overview

• A Reminder: First-Order Predicate Logic (FOL)

• Limits of Predicate Logic

• Type Theory

• Semantics Construction
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• Non-logical expressions:

– Individual constants: CON

– n-place relation constants: PREDn, for all n ! 0

• Individual variables: VAR

Predicate Logic – Vocabulary
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• Terms: TERM = VAR " CON

• Atomic formulas:

– R(t1,…, tn) for R # PREDn and t1, …, tn # TERM

– s = t  for s, t # TERM 

• Well-formed formulas: The smallest set FORM such that

– All atomic formulas are in FORM

– If $, % are in FORM, then ¬$, ($ & %), ($ ' %), ($ ! %), ($ ↔ %) 

are in FORM

– If x is individual variable, and $ is in FORM, then (x$ and )x$ 

are in FORM

Predicate Logic – Syntax
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Scope

• If (x$ ()x$) is a subformula of a formula %, then we call $ 

the scope of this occurrence of (x ()x) in %.

• We distinguish distinct occurrences of quantifiers as there 

are formulae like (xA(x) & (xB(x).

• Example:

– )x((y(T(y) ↔ x=y) & F(x))
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Free and Bound Variables

• An occurrence of a variable x in a formula $ is said to be 

free in $ if this occurrence of x does not fall within the 

scope of a quantifier (x or )x in $.

• If (x% (or )x%) is a subformula of $ and x is free in %, then 

this occurrence of x is said to be bound by this occurrence 

of the quantifier (x (or )x).

• Examples:

– (x(A(x) & B(x)) – x occurs bound in B(x)

– (x A(x) & B(x) – x occurs free in B(x)

• A sentence is a formula without free variables.
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• Expressions of Predicate Logic are interpreted relative to 

model structures and variable assignments.

• Model structure: M = *UM, VM+

– UM is non-empty universe (individual domain)

– VM is an interpretation function assigning individuals (#UM) to 

individual constants and n-ary relations over UM to n-place 

predicate symbols.

• Assignment function for variables g: VAR ! UM

Predicate Logic – Semantics
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Predicate Logic – Semantics

• Interpretation of terms with respect to a model structure 

M and a variable assignment g:

– [[,]]M,g = VM(,), if , is an individual constant

– [[,]]M,g = g(,), if , is a variable



Predicate Logic – Semantics 

• Interpretation of formulas with respect to a model 

structure M and variable assignment g:

 [[ R(t1, ..., tn) ]]M,g = 1 iff ([[ t1]]M,g, ..., [[ tn]]M,g) # VM(R)

 [[ s = t ]]M,g = 1 iff  [[ s ]]M,g = [[ t ]]M,g

 [[ ¬$ ]]M,g = 1 iff  [[ $ ]]M,g = 0

 [[ $ & % ]]M,g = 1 iff  [[ $ ]]M,g = 1 and [[ % ]]M,g = 1

 [[ $ ' % ]]M,g = 1 iff  [[ $ ]]M,g = 1 or [[ % ]]M,g = 1

 [[ $ ! % ]]M,g = 1 iff  [[ $ ]]M,g = 0 or [[ % ]]M,g = 1 

 [[ $ " % ]]M,g = 1 iff  [[ $ ]]M,g = [[ % ]]M,g 

 [[ )x$ ]]M,g = 1 iff  there is a d # UM such that [[ $ ]]M,g[x/d] = 1 

 [[ (x$ ]]M,g = 1 iff  for all d # UM, [[ $ ]]M,g[x/d] = 1 

• g[x/d] is the variable assignment which is identical to g 

except that it assigns the individual d to variable x.
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Predicate Logic – Semantics

• A formula - is true in the model structure M iff [[-]]M,g  = 1 

for every variable assignment g.

• A model structure M satisfies (or: is a model for) a set of 

formulas . iff every formula A # . is true in M.

• A formula - is satisfiable iff there is at least one model 

structure M such that $ is true in M.

• A formula - is valid iff - is true in all model structures.

• A formula - is a contradiction iff there is no model 

structure M such that $ is true in M.

10

• A set of formulas . entails a formula - (notation: . / A) 

iff - is true in every model of .. 

• A (sound and complete) calculus for FOL allows to prove $ 

from . iff . / $ by manipulating the formulas 

syntactically: resolution, tableaux, natural deduction, …

• Calculi can be implemented to obtain: 

– theorem provers: check entailment, validity, and 

unsatisfiability 

– model builders: check satisfiability, compute models 

– model checkers: determine whether model satisfies a formula

Entailment and Deduction
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Logic and Language

• The meaning of a natural language sentence S can be 

approximated by the truth-conditions of S.

• We usually use logical expressions to represent the truth-

conditions of natural language sentences.
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(1) Max is a student

– student(max)

(2) Not all students passed [the exam]

– ¬(x(student(x) ! pass(x))

(3) Only Mary flunked.

– ¬pass(mary) & (x(¬pass(x) ! x = mary)

Talking about students
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Limits of First-Order Logic

• Expressivity

– non-intersective adjectives (e.g., “good”, “alleged”, …)

– higher-order predicates (e.g., “healthy”)

– higher-order quantification

– …

• Semantics construction

– We want to be able to assign semantic representations to 

arbitrary syntactic constituents.

– [S [NP Peter] [VP likes Mary]] 0 like(p*, m*)

– [VP likes Mary] 0 ???
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Limits of First-Order Logic

(1) Max is a blond thief

– thief(max) & blond(max)

(2) Max is a good thief

– thief(max) & good(max) ?

(3) Max is an alleged student

– thief(max) & alleged(max) ???

(4) Max is a student

– student(max)
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• (1) + (4) entail that Max is a 

blond student,

• but (2) + (4) do not entail that 

Max is a good student.

• (3) does not even entail that 

Max is a thief.

Limits of First-Order Logic

(1) Max and Mary have something in common

(2) Mary has all properties of a good student 
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Limits of First-Order Logic

(1) Max is always late

(2) Possibly, Max is a student.
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Type Theory

• The types of non-logical expressions provided by FOL are 

not sufficient to describe the semantic function of all 

natural language expressions.

• Type theory provides a much richer inventory of types: 

higher-order relations and functions of different kinds. 
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Type Theory – Types

• Basic types:

– e (“entities”)

– t (“truth-values”)

• Complex types:

– If 1, 2 are types, then *1, 2+ is a type.

• Complex types are the type of functions mapping 

arguments of type 1 to values of type 2.
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Some useful Types

• Individual: e

• Sentence: t 

• One-place predicates: *e,t+ 

• Two-place relation: *e,*e,t++

• Sentence adverbial: *t,t+

• Attributive adjective: **e,t+,*e,t++ 

• Degree modifier: ***e,t+,*e,t++,**e,t+,*e,t+++
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Type Theory – Vocabulary
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• For every type 2 a possibly empty, pairwise disjoint sets of 

non-logical constants CON2.

• For every type 2 an infinite and pairwise disjoint sets of 

variables VAR2.

• The usual logical operators: (, ), &, ', …

Type Theory – Syntax

• The sets of well-formed expressions WE2 for every type 2 

are given by:

(1) CON2 3 WE2, for every type 2

(2) If , is in WE*1, 2+, 4 in WE1, then ,(4) # WE2.

(3) If A, B are in WEt, then ¬A, (A & B), (A ' B), (A ! B), (A " B) 

are in WEt.

(4) If A is in WEt, then (vA and )vA are in WEt, where v is a 

variable of arbitrary type.

(5) If ,, 4 are well-formed expressions of the same type, 

then , = 4 # WEt.
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Building Well-Formed Expressions
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(1) Bill is a good student.

good(student)(bill) : t

bill : egood(student) : !e, t"

student : !e,t"good : !!e,t", !e,t""

Building Well-Formed Expressions
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(1) Max works in Saarbrücken.

in(sb)(work(max)) : t

in(sb) : !t,t"work(max) : t

max : ework : !e,t" sb : ein : !e,!t,t""



Building Well-Formed Expressions
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(1) A student works.

work(x) ! student(x) : t

student(x) : twork(x) : t

x : ework : "e,t# x : estudent : "e,t#

$x(work(x) ! student(x)) : t

Type Theory – Semantics [1/3]

• Let U be a non-empty set of entities.

• The domain of possible denotations D2 for every type 2 is 

given by:

(1) De = U

(2) Dt = {0,1}

(3) D(1, 2) is the set of all functions from D1 to D2 
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Type Theory – Semantics [2/3]

• A model structure for a type theoretic language consists 

of a pair M = (U, V), where 

– U (or UM) is a non-empty domain of individuals

– V (or VM) is an interpretation function, which assigns to every 

member of CON2 an element of D2.

• Variable assignment g assigns every variable of type 2 a 

member of D2.
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Type Theory – Semantics [3/3]

• Interpretation with respect to model structure M and 

variable assignment g:

 [[,]]M,g  = VM(,), if , constant

 [[,]]M,g  = g(,), if , variable

 [[,(4)]]M,g  =  [[,]]M,g([[4]]M,g)  

 [[¬5]]M,g = 1  iff [[5]]M,g = 0

 [[5 & %]]M,g = 1  iff [[5]]M,g = 1 and [[%]]M,g = 1, etc.

 [[, = 4]]M,g = 1  iff [[,]]M,g = [[4]]M,g

• if v # VAR2:

 [[)v5]]M,g = 1  iff there is d # D2 such that [[5]]M,g[v/d] = 1

 [[(v5]]M,g = 1  iff for all d # D2 : [[5]]M,g[v/d] = 1
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Type Theory

• The definition of the syntax and semantics of type theory 

is a straightforward extension of FOL.

• Notions like “satisfies,” “valid,” “satisfiable,” “entailment” 

carry over almost verbatim from FOL.

• Type theory is sometimes called “higher-order logic:”

– first-order logic allows quantification over individual variables 

(type e)

– second-order logic allows quantification over  variables of 

type *1, 2+ where 1 and 2 are atomic

– …
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Characteristic Functions

• Many natural language expression have a type (1, t).

• These types are the type of functions mapping elements 

of type 1 to true or false. 

• Such function are also known as characteristic functions, 

and can be thought of as subsets of D1 (i.e., sets of 1’s).

• Example: “blond” is a constant of type *e,t+ and can be 

seen as characterising the set of blond individuals. 
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Currying

• All functional types are interpreted as one-place functions.

• How do we deal with functions with multiple arguments?

• Currying (a.k.a. “Schönfinkeln”):

– simulate term P(a,b) as the term P(a)(b)

– simulate type *e 6 e, t+ as the type *e, *e,t++.
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Examples

• “Max is a student”

– [[student(max)]]M,g = … 

• ”Max is a blond student”

– [[blond(student)(max)]]M,g = … 
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