
Semantic Theory

Type-Thory

Manfred Pinkal

Stefan Thater

2008-04-24

Overview

• A Reminder: First-Order Predicate Logic (FOL)

• Limits of Predicate Logic

• Type Theory

• Semantics Construction

2

• Non-logical expressions:

– Individual constants: CON

– n-place relation constants: PREDn, for all n ! 0

• Individual variables: VAR

Predicate Logic – Vocabulary

3

• Terms: TERM = VAR " CON

• Atomic formulas:

– R(t1,…, tn) for R # PREDn and t1, …, tn # TERM

– s = t for s, t # TERM

• Well-formed formulas: The smallest set FORM such that

– All atomic formulas are in FORM

– If $, % are in FORM, then ¬$, ($ & %), ($ ' %), ($! %), ($ ↔ %)

are in FORM

– If x is individual variable, and $ is in FORM, then (x$ and)x$

are in FORM

Predicate Logic – Syntax

4

Scope

• If (x$ ()x$) is a subformula of a formula %, then we call $

the scope of this occurrence of (x ()x) in %.

• We distinguish distinct occurrences of quantifiers as there

are formulae like (xA(x) & (xB(x).

• Example:

–)x((y(T(y) ↔ x=y) & F(x))

5

Free and Bound Variables

• An occurrence of a variable x in a formula $ is said to be

free in $ if this occurrence of x does not fall within the

scope of a quantifier (x or)x in $.

• If (x% (or)x%) is a subformula of $ and x is free in %, then

this occurrence of x is said to be bound by this occurrence

of the quantifier (x (or)x).

• Examples:

– (x(A(x) & B(x)) – x occurs bound in B(x)

– (x A(x) & B(x) – x occurs free in B(x)

• A sentence is a formula without free variables.

6

• Expressions of Predicate Logic are interpreted relative to

model structures and variable assignments.

• Model structure: M = *UM, VM+

– UM is non-empty universe (individual domain)

– VM is an interpretation function assigning individuals (#UM) to

individual constants and n-ary relations over UM to n-place

predicate symbols.

• Assignment function for variables g: VAR ! UM

Predicate Logic – Semantics

7

Predicate Logic – Semantics

• Interpretation of terms with respect to a model structure

M and a variable assignment g:

– [[,]]M,g = VM(,), if , is an individual constant

– [[,]]M,g = g(,), if , is a variable

Predicate Logic – Semantics

• Interpretation of formulas with respect to a model

structure M and variable assignment g:

 [[R(t1, ..., tn)]]M,g = 1 iff ([[t1]]M,g, ..., [[tn]]M,g) # VM(R)

 [[s = t]]M,g = 1 iff [[s]]M,g = [[t]]M,g

 [[¬$]]M,g = 1 iff [[$]]M,g = 0

 [[$ & %]]M,g = 1 iff [[$]]M,g = 1 and [[%]]M,g = 1

 [[$ ' %]]M,g = 1 iff [[$]]M,g = 1 or [[%]]M,g = 1

 [[$! %]]M,g = 1 iff [[$]]M,g = 0 or [[%]]M,g = 1

 [[$ " %]]M,g = 1 iff [[$]]M,g = [[%]]M,g

 [[)x$]]M,g = 1 iff there is a d # UM such that [[$]]M,g[x/d] = 1

 [[(x$]]M,g = 1 iff for all d # UM, [[$]]M,g[x/d] = 1

• g[x/d] is the variable assignment which is identical to g

except that it assigns the individual d to variable x.

9

Predicate Logic – Semantics

• A formula - is true in the model structure M iff [[-]]M,g = 1

for every variable assignment g.

• A model structure M satisfies (or: is a model for) a set of

formulas . iff every formula A # . is true in M.

• A formula - is satisfiable iff there is at least one model

structure M such that $ is true in M.

• A formula - is valid iff - is true in all model structures.

• A formula - is a contradiction iff there is no model

structure M such that $ is true in M.

10

• A set of formulas . entails a formula - (notation: . / A)

iff - is true in every model of ..

• A (sound and complete) calculus for FOL allows to prove $

from . iff . / $ by manipulating the formulas

syntactically: resolution, tableaux, natural deduction, …

• Calculi can be implemented to obtain:

– theorem provers: check entailment, validity, and

unsatisfiability

– model builders: check satisfiability, compute models

– model checkers: determine whether model satisfies a formula

Entailment and Deduction

11

Logic and Language

• The meaning of a natural language sentence S can be

approximated by the truth-conditions of S.

• We usually use logical expressions to represent the truth-

conditions of natural language sentences.

12

(1) Max is a student

– student(max)

(2) Not all students passed [the exam]

– ¬(x(student(x) ! pass(x))

(3) Only Mary flunked.

– ¬pass(mary) & (x(¬pass(x) ! x = mary)

Talking about students

13

Limits of First-Order Logic

• Expressivity

– non-intersective adjectives (e.g., “good”, “alleged”, …)

– higher-order predicates (e.g., “healthy”)

– higher-order quantification

– …

• Semantics construction

– We want to be able to assign semantic representations to

arbitrary syntactic constituents.

– [S [NP Peter] [VP likes Mary]] 0 like(p*, m*)

– [VP likes Mary] 0 ???

14

Limits of First-Order Logic

(1) Max is a blond thief

– thief(max) & blond(max)

(2) Max is a good thief

– thief(max) & good(max) ?

(3) Max is an alleged student

– thief(max) & alleged(max) ???

(4) Max is a student

– student(max)

15

• (1) + (4) entail that Max is a

blond student,

• but (2) + (4) do not entail that

Max is a good student.

• (3) does not even entail that

Max is a thief.

Limits of First-Order Logic

(1) Max and Mary have something in common

(2) Mary has all properties of a good student

16

Limits of First-Order Logic

(1) Max is always late

(2) Possibly, Max is a student.

17

Type Theory

• The types of non-logical expressions provided by FOL are

not sufficient to describe the semantic function of all

natural language expressions.

• Type theory provides a much richer inventory of types:

higher-order relations and functions of different kinds.

18

Type Theory – Types

• Basic types:

– e (“entities”)

– t (“truth-values”)

• Complex types:

– If 1, 2 are types, then *1, 2+ is a type.

• Complex types are the type of functions mapping

arguments of type 1 to values of type 2.

19

Some useful Types

• Individual: e

• Sentence: t

• One-place predicates: *e,t+

• Two-place relation: *e,*e,t++

• Sentence adverbial: *t,t+

• Attributive adjective: **e,t+,*e,t++

• Degree modifier: ***e,t+,*e,t++,**e,t+,*e,t+++

20

Type Theory – Vocabulary

21

• For every type 2 a possibly empty, pairwise disjoint sets of

non-logical constants CON2.

• For every type 2 an infinite and pairwise disjoint sets of

variables VAR2.

• The usual logical operators: (,), &, ', …

Type Theory – Syntax

• The sets of well-formed expressions WE2 for every type 2

are given by:

(1) CON2 3 WE2, for every type 2

(2) If , is in WE*1, 2+, 4 in WE1, then ,(4) # WE2.

(3) If A, B are in WEt, then ¬A, (A & B), (A ' B), (A ! B), (A " B)

are in WEt.

(4) If A is in WEt, then (vA and)vA are in WEt, where v is a

variable of arbitrary type.

(5) If ,, 4 are well-formed expressions of the same type,

then , = 4 # WEt.

22

Building Well-Formed Expressions

23

(1) Bill is a good student.

good(student)(bill) : t

bill : egood(student) : !e, t"

student : !e,t"good : !!e,t", !e,t""

Building Well-Formed Expressions

24

(1) Max works in Saarbrücken.

in(sb)(work(max)) : t

in(sb) : !t,t"work(max) : t

max : ework : !e,t" sb : ein : !e,!t,t""

Building Well-Formed Expressions

25

(1) A student works.

work(x) ! student(x) : t

student(x) : twork(x) : t

x : ework : "e,t# x : estudent : "e,t#

$x(work(x) ! student(x)) : t

Type Theory – Semantics [1/3]

• Let U be a non-empty set of entities.

• The domain of possible denotations D2 for every type 2 is

given by:

(1) De = U

(2) Dt = {0,1}

(3) D(1, 2) is the set of all functions from D1 to D2

26

Type Theory – Semantics [2/3]

• A model structure for a type theoretic language consists

of a pair M = (U, V), where

– U (or UM) is a non-empty domain of individuals

– V (or VM) is an interpretation function, which assigns to every

member of CON2 an element of D2.

• Variable assignment g assigns every variable of type 2 a

member of D2.

27

Type Theory – Semantics [3/3]

• Interpretation with respect to model structure M and

variable assignment g:

 [[,]]M,g = VM(,), if , constant

 [[,]]M,g = g(,), if , variable

 [[,(4)]]M,g = [[,]]M,g([[4]]M,g)

 [[¬5]]M,g = 1 iff [[5]]M,g = 0

 [[5 & %]]M,g = 1 iff [[5]]M,g = 1 and [[%]]M,g = 1, etc.

 [[, = 4]]M,g = 1 iff [[,]]M,g = [[4]]M,g

• if v # VAR2:

 [[)v5]]M,g = 1 iff there is d # D2 such that [[5]]M,g[v/d] = 1

 [[(v5]]M,g = 1 iff for all d # D2 : [[5]]M,g[v/d] = 1

28

Type Theory

• The definition of the syntax and semantics of type theory

is a straightforward extension of FOL.

• Notions like “satisfies,” “valid,” “satisfiable,” “entailment”

carry over almost verbatim from FOL.

• Type theory is sometimes called “higher-order logic:”

– first-order logic allows quantification over individual variables

(type e)

– second-order logic allows quantification over variables of

type *1, 2+ where 1 and 2 are atomic

– …

29

Characteristic Functions

• Many natural language expression have a type (1, t).

• These types are the type of functions mapping elements

of type 1 to true or false.

• Such function are also known as characteristic functions,

and can be thought of as subsets of D1 (i.e., sets of 1’s).

• Example: “blond” is a constant of type *e,t+ and can be

seen as characterising the set of blond individuals.

30

Currying

• All functional types are interpreted as one-place functions.

• How do we deal with functions with multiple arguments?

• Currying (a.k.a. “Schönfinkeln”):

– simulate term P(a,b) as the term P(a)(b)

– simulate type *e 6 e, t+ as the type *e, *e,t++.

31

Examples

• “Max is a student”

– [[student(max)]]M,g = …

• ”Max is a blond student”

– [[blond(student)(max)]]M,g = …

32

