Semantic Theory
 Type-Thory

Manfred Pinkal
Stefan Thater
2008-04-24

Overview

- A Reminder: First-Order Predicate Logic (FOL)
- Limits of Predicate Logic
- Type Theory
- Semantics Construction

Predicate Logic - Vocabulary

- Non-logical expressions:
- Individual constants: CON
- n -place relation constants: PRED ${ }^{n}$, for all $\mathrm{n} \geq 0$
- Individual variables: VAR

Predicate Logic - Syntax

- Terms: TERM = VAR u CON
- Atomic formulas
- $\mathrm{R}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ for $\mathrm{R} \in \operatorname{PRED}$ and $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}} \in \operatorname{TERM}$
- $\mathrm{s}=\mathrm{t}$
for $s, t \in T E R M$
- Well-formed formulas: The smallest set FORM such that
- All atomic formulas are in FORM
- If φ, ψ are in FORM, then $\neg \varphi,(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi),(\varphi \leftrightarrow \psi)$ are in FORM
- If x is individual variable, and φ is in FORM, then $\forall \times \varphi$ and $\exists \times \varphi$ are in FORM

Scope

- If $\forall x \varphi(\exists x \varphi)$ is a subformula of a formula ψ, then we call φ the scope of this occurrence of $\forall x(\exists x)$ in ψ.
- We distinguish distinct occurrences of quantifiers as there are formulae like $\forall x A(x) \wedge \forall x B(x)$.
- Example:
- $\exists x(\forall y(T(y) \leftrightarrow x=y) \wedge F(x))$

Predicate Logic - Semantics

- Expressions of Predicate Logic are interpreted relative to model structures and variable assignments.
- Model structure: $M=\left\langle U_{M}, V_{M}\right\rangle$
- U_{M} is non-empty universe (individual domain)
- V_{M} is an interpretation function assigning individuals ($\in \mathrm{U}_{\mathrm{M}}$) to individual constants and n-ary relations over U_{M} to n-place predicate symbols.
- Assignment function for variables g: VAR $\rightarrow \mathrm{U}_{\mathrm{m}}$

Free and Bound Variables

- An occurrence of a variable x in a formula φ is said to be free in φ if this occurrence of x does not fall within the scope of a quantifier $\forall x$ or $\exists x$ in φ.
- If $\forall x \psi$ (or $\exists x \psi$) is a subformula of φ and x is free in ψ, then this occurrence of x is said to be bound by this occurrence of the quantifier $\forall x$ (or $\exists \mathrm{x}$).
- Examples:
- $\forall x(A(x) \wedge B(x))-x$ occurs bound in $B(x)$
- $\forall x A(x) \wedge B(x)-x$ occurs free in $B(x)$
- A sentence is a formula without free variables.

Predicate Logic - Semantics

- Interpretation of terms with respect to a model structure M and a variable assignment g :
- $\llbracket \alpha \rrbracket^{M, g}=V_{M}(\alpha)$, if α is an individual constant
- $\llbracket \alpha \rrbracket^{\mathrm{M}, \mathrm{g}}=\mathrm{g}(\alpha)$, if α is a variable

Predicate Logic - Semantics

- Interpretation of formulas with respect to a model structure M and variable assignment g


```
    |s=t \ \ M,g=1 iff |s \ \ \
    \llbracket \neg\varphi \mathbb{\},9=1 iff }\mathbb{|}\varphi\mp@subsup{\mathbb{M}}{}{M,g}=
```



```
    \llbracket\varphi\vee\psi \mp@subsup{\mathbb{\}}{}{M,g}=1}\mathrm{ iff }\mathbb{|}\varphi\mp@subsup{\mathbb{Z}}{}{M,g}=1\mathrm{ or }\mathbb{|}\psi\mp@subsup{\mathbb{\}}{}{M,g}=
```



```
    \llbracket\varphi\leftrightarrow\psi \mp@subsup{\mathbb{\}}{}{M,g}=1
        |}\exists\times\varphi\mp@subsup{\mathbb{I}}{}{M,g}=1\quad\mathrm{ iff there is a d }\in\mp@subsup{U}{M}{M}\mathrm{ such that }\mathbb{|}\varphi\mp@subsup{\mathbb{I}}{}{M,g[x/d] =1
```


- $g[x / d]$ is the variable assignment which is identical to g except that it assigns the individual d to variable x.

Entailment and Deduction

- A set of formulas Γ entails a formula Φ (notation: $\Gamma \vDash A$) iff Φ is true in every model of Γ.
- A (sound and complete) calculus for FOL allows to prove φ from Γ iff $\Gamma \vDash \varphi$ by manipulating the formulas syntactically: resolution, tableaux, natural deduction, ...
- Calculi can be implemented to obtain:
- theorem provers: check entailment, validity, and unsatisfiability
- model builders: check satisfiability, compute models
- model checkers: determine whether model satisfies a formula

Predicate Logic - Semantics

- A formula Φ is true in the model structure M iff $\llbracket \Phi \rrbracket^{M, g}=1$ for every variable assignment g
- A model structure M satisfies (or: is a model for) a set of formulas Γ iff every formula $A \in \Gamma$ is true in M.
- A formula Φ is satisfiable iff there is at least one model structure M such that φ is true in M.
- A formula Φ is valid iff Φ is true in all model structures.
- A formula Φ is a contradiction iff there is no model structure M such that φ is true in M.

Logic and Language

- The meaning of a natural language sentence S can be approximated by the truth-conditions of S.
- We usually use logical expressions to represent the truthconditions of natural language sentences.

Talking about students

(1) Max is a student

- student(max)
(2) Not all students passed [the exam]
$-\neg \forall x(s t u d e n t(x) \rightarrow \operatorname{pass}(x))$
(3) Only Mary flunked.
- \neg pass(mary) $\wedge \forall x(\neg \operatorname{pass}(x) \rightarrow x=$ mary $)$

Limits of First-Order Logic

(1) Max is a blond thief

- thief(max) ^ blond(max)
(2) Max is a good thief
- thief(max) $\wedge \operatorname{good}(\max)$
(3) Max is an alleged student
- (1) + (4) entail that Max is a blond student,
- but (2) + (4) do not entail that Max is a good student.
(3) does not even entail that Max is a thief.
- thief(max) ^ alleged(max) ???
(4) Max is a student
- student(max)

Limits of First-Order Logic

- Expressivity
- non-intersective adjectives (e.g., "good", "alleged", ...)
- higher-order predicates (e.g., "healthy")
- higher-order quantification

Semantics construction

- We want to be able to assign semantic representations to arbitrary syntactic constituents.
- [S [NP Peter] [VP likes Mary]] \Rightarrow like(p*, m*)
- [VP likes Mary] \Rightarrow ???

Limits of First-Order Logic

(1) Max and Mary have something in common
(2) Mary has all properties of a good student

Limits of First-Order Logic

(1) Max is always late
(2) Possibly, Max is a student.

Type Theory

- The types of non-logical expressions provided by FOL are not sufficient to describe the semantic function of all natural language expressions.
- Type theory provides a much richer inventory of types: higher-order relations and functions of different kinds.

Some useful Types

- Individual: e
- Sentence: t
- One-place predicates: $\langle\mathrm{e}, \mathrm{t}\rangle$
- Two-place relation: $\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle$
- Sentence adverbial: 〈t,t〉
- Attributive adjective: $\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle$
- Degree modifier: $\langle\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle,\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle\rangle$

Type Theory - Vocabulary

- For every type τ a possibly empty, pairwise disjoint sets of non-logical constants CON_{τ}
- For every type τ an infinite and pairwise disjoint sets of variables VAR $_{\tau}$
- The usual logical operators: $\forall, \exists, \wedge, v, \ldots$
(1) Bill is a good student.

$$
\operatorname{good:} \frac{\text { good(student)(bill) }: t}{\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle \quad \text { student }:\langle\mathrm{e}, \mathrm{t}\rangle}
$$

Building Well-Formed Expressions

Type Theory - Syntax

- The sets of well-formed expressions $W E E \tau_{\tau}$ for every type τ are given by:
(1) $\mathrm{CON}_{\tau} \subseteq W E_{\tau}$, for every type τ
(2) If α is in $W E_{(\sigma, \tau)}, \beta$ in $W E_{\sigma}$, then $\alpha(\beta) \in \mathrm{WE}_{\tau}$.
(3) If A, B are in $W E_{t}$, then $\neg A,(A \wedge B),(A \vee B),(A \rightarrow B),(A \leftrightarrow B)$ are in WE_{t}
(4) If A is in $W E_{t}$, then $\forall v A$ and $\exists v A$ are in $W E_{t}$, where v is a variable of arbitrary type.
(5) If α, β are well-formed expressions of the same type, then $\alpha=\beta \in W E_{\text {t }}$.

Building Well-Formed Expressions

(1) Max works in Saarbrücken.

$$
\frac{\text { work(max):t }}{\operatorname{work} \widehat{\langle e, t\rangle} \max : e \quad \text { in }:\langle\widehat{\langle\mathrm{m},\langle\mathrm{t}, \mathrm{t}\rangle\rangle} \quad \mathrm{sb})}: \mathrm{e}
$$

Building Well-Formed Expressions

(1) A student works.
$\exists x($ work(x) \wedge student(x)) : t
work(x) ^ student(x) : t
work $\widehat{\text { work }(x): t\rangle} \quad x: e \quad$ student $(x): t$

Type Theory - Semantics [1/3]

- Let U be a non-empty set of entities.
- The domain of possible denotations D_{τ} for every type τ is given by:
(1) $D_{e}=U$
(2) $D_{t}=\{0,1\}$
(3) $D_{(\sigma, \tau)}$ is the set of all functions from D_{σ} to D_{τ}
- A model structure for a type theoretic language consists of a pair $M=(U, V)$, where
- $U\left(o r U_{M}\right)$ is a non-empty domain of individuals
- $\mathrm{V}\left(\right.$ or $\left.\mathrm{V}_{\mathrm{M}}\right)$ is an interpretation function, which assigns to every member of CON_{τ} an element of D_{τ}.
- Variable assignment g assigns every variable of type τ a member of D_{τ}.

Type Theory - Semantics [2/3]

Type Theory - Semantics [3/3]

- Interpretation with respect to model structure M and variable assignment g :

$$
\llbracket \alpha \rrbracket^{M, g}=V_{M}(\alpha), \text { if } \alpha \text { constant }
$$

$\llbracket \alpha \rrbracket^{M, g}=g(\alpha)$, if α variable
$\llbracket \alpha(\beta) \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \alpha \rrbracket^{\mathrm{M}, \mathrm{g}}\left(\llbracket \beta \mathbb{\rrbracket}^{\mathrm{M}, \mathrm{g}}\right)$
$\llbracket \neg \phi \mathbb{1}^{\mathrm{M}, \mathrm{g}}=1$ iff $\llbracket \phi \mathbb{1}^{\mathrm{M}, \mathrm{g}}=0$
$\llbracket \phi \wedge \psi \mathbb{\rrbracket}^{M, 9}=1$ iff $\llbracket \phi \rrbracket^{M, g}=1$ and $\llbracket \psi \mathbb{Z}^{M, g}=1$, etc $\llbracket \alpha=\beta \rrbracket^{M, g}=1$ iff $\llbracket \alpha \rrbracket^{M, g}=\llbracket \beta \rrbracket^{M, g}$

- if $v \in \operatorname{VARt}$:
$\llbracket \exists v \phi \mathbb{M}^{M, g}=1$ iff there is $d \in D_{\tau}$ such that $\llbracket \phi \mathbb{I}^{M, g[v / d]}=1$
$\llbracket \forall v \phi \mathbb{\rrbracket}^{M, g}=1$ iff for all $d \in D_{\tau}: \mathbb{I} \phi \mathbb{\rrbracket}^{M, g[v / d]}=1$

Type Theory

- The definition of the syntax and semantics of type theory is a straightforward extension of FOL.
- Notions like "satisfies," "valid," "satisfiable," "entailment" carry over almost verbatim from FOL.
- Type theory is sometimes called "higher-order logic:"
- first-order logic allows quantification over individual variables (type e)
- second-order logic allows quantification over variables of type $\langle\sigma, \tau\rangle$ where σ and τ are atomic
- ...

Characteristic Functions

- Many natural language expression have a type (σ, t).
- These types are the type of functions mapping elements of type σ to true or false.
- Such function are also known as characteristic functions, and can be thought of as subsets of D_{σ} (i.e., sets of $\sigma^{\prime} s$).
- Example: "blond" is a constant of type $\langle e, t\rangle$ and can be seen as characterising the set of blond individuals.

Examples

- "Max is a student"
- \llbracket student $(m a x) \rrbracket^{\mathrm{M}, \mathrm{g}}=$..
- "Max is a blond student"
- \llbracket blond(student) $(\max) \rrbracket^{\mathrm{M}, \mathrm{g}}=\ldots$

