Semantic Theory Type-Thory

Manfred Pinkal Stefan Thater

2008-04-24

Predicate Logic – Vocabulary

- Non-logical expressions:
 - Individual constants: CON
 - n-place relation constants: PREDⁿ, for all $n \ge 0$

3

• Individual variables: VAR

Overview

- A Reminder: First-Order Predicate Logic (FOL)
- Limits of Predicate Logic
- Type Theory
- Semantics Construction

Predicate Logic – Syntax

- Terms: TERM = VAR U CON
- Atomic formulas:
 - $R(t_1,...,\,t_n)~~for~R\in PRED^n$ and $t_1,\,...,\,t_n\in TERM$
 - $\label{eq:s} \mathsf{-s} = \mathsf{t} \qquad \quad \mathsf{for} \ \mathsf{s}, \ \mathsf{t} \in \mathsf{TERM}$
- Well-formed formulas: The smallest set FORM such that

2

- All atomic formulas are in FORM
- If φ, ψ are in FORM, then ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ → ψ), (φ ↔ ψ) are in FORM
- If x is individual variable, and ϕ is in FORM, then $\forall x\phi$ and $\exists x\phi$ are in FORM

Scope

- If ∀xφ (∃xφ) is a subformula of a formula ψ, then we call φ the scope of this occurrence of ∀x (∃x) in ψ.
- We distinguish distinct occurrences of quantifiers as there are formulae like ∀xA(x) ∧ ∀xB(x).

5

- Example:
 - $\exists x (\forall y (T(y) \leftrightarrow x=y) \land F(x))$

Free and Bound Variables

- An occurrence of a variable x in a formula φ is said to be free in φ if this occurrence of x does not fall within the scope of a quantifier ∀x or ∃x in φ.
- If ∀xψ (or ∃xψ) is a subformula of φ and x is free in ψ, then this occurrence of x is said to be bound by this occurrence of the quantifier ∀x (or ∃x).
- Examples:
 - $\forall x(A(x) \land B(x)) x \text{ occurs bound in } B(x)$
 - $\forall x A(x) \land B(x)$ x occurs free in B(x)
- A sentence is a formula without free variables.

6

Predicate Logic – Semantics

- Expressions of Predicate Logic are interpreted relative to model structures and variable assignments.
- Model structure: M = (U_M, V_M)
 - U_M is non-empty universe (individual domain)
 - V_M is an interpretation function assigning individuals ($\in U_M$) to individual constants and n-ary relations over U_M to n-place predicate symbols.

7

• Assignment function for variables g: VAR \rightarrow U_M

Predicate Logic – Semantics

- Interpretation of terms with respect to a model structure M and a variable assignment g:
 - $\llbracket \alpha \rrbracket^{M,g} = V_M(\alpha)$, if α is an individual constant
 - $\llbracket \alpha \rrbracket^{M,g} = g(\alpha)$, if α is a variable

Predicate Logic – Semantics Interpretation of formulas with respect to a model structure M and variable assignment g: $\begin{bmatrix} R(t_1, ..., t_n) \end{bmatrix}^{M,g} = 1 & \text{iff} \quad ([t_1]^{M,g}, ..., [t_n]^{M,g}) \in V_M(R) \\ [s = t]^{M,g} = 1 & \text{iff} \quad [s]^{M,g} = [t]^{M,g} \\ [\neg q]^{M,g} = 1 & \text{iff} \quad [g q]^{M,g} = 0 \\ [q \land \psi]^{M,g} = 1 & \text{iff} \quad [g q]^{M,g} = 1 \text{ or } [[\psi]^{M,g} = 1] \\ [q \lor \psi]^{M,g} = 1 & \text{iff} \quad [g q]^{M,g} = 1 \text{ or } [[\psi]^{M,g} = 1] \\ [q \leftrightarrow \psi]^{M,g} = 1 & \text{iff} \quad [f q q]^{M,g} = 0 \text{ or } [[\psi]^{M,g} = 1] \\ [q \leftrightarrow \psi]^{M,g} = 1 & \text{iff} \quad [f q q]^{M,g} = 0 \text{ or } [[\psi]^{M,g} = 1] \\ [q \leftrightarrow \psi]^{M,g} = 1 & \text{iff} \quad there is a d \in U_M \text{ such that } [[\phi]^{M,g[x/d]} = 1] \\ [\forall x \phi]^{M,g} = 1 & \text{iff} \quad for all d \in U_M, [[\phi]^{M,g[x/d]} = 1] \\ [\forall x \phi]^{M,g} = 1 & \text{iff} \quad for all d \in U_M, [[\phi]^{M,g[x/d]} = 1] \\ \end{bmatrix}$ except that it assigns the individual d to variable x.

Predicate Logic – Semantics

- A formula Φ is true in the model structure M iff $\llbracket \Phi \rrbracket^{M,g} = 1$ for every variable assignment g.
- A model structure M satisfies (or: is a model for) a set of formulas Γ iff every formula A ∈ Γ is true in M.
- A formula Φ is satisfiable iff there is at least one model structure M such that ϕ is true in M.
- A formula Φ is valid iff Φ is true in all model structures.
- A formula Φ is a contradiction iff there is no model structure M such that ϕ is true in M.

10

Entailment and Deduction

A set of formulas Γ entails a formula Φ (notation: Γ ⊨ A) iff Φ is true in every model of Γ.

9

- A (sound and complete) calculus for FOL allows to prove φ from Γ iff Γ ⊨ φ by manipulating the formulas syntactically: resolution, tableaux, natural deduction, ...
- Calculi can be implemented to obtain:
 - theorem provers: check entailment, validity, and unsatisfiability
 - model builders: check satisfiability, compute models
 - model checkers: determine whether model satisfies a formula

Logic and Language

- The meaning of a natural language sentence S can be approximated by the truth-conditions of S.
- We usually use logical expressions to represent the truthconditions of natural language sentences.

Limits of First-Order Logic

- Expressivity
 - non-intersective adjectives (e.g., "good", "alleged", ...)
 - higher-order predicates (e.g., "healthy")
 - higher-order quantification
 - ...
- Semantics construction
 - We want to be able to assign semantic representations to arbitrary syntactic constituents.

14

- [S [NP Peter] [VP likes Mary]] \Rightarrow like(p*, m*)
- [VP likes Mary] \Rightarrow ???

Limits of First-Order Logic

- (1) Max is a blond thief
- thief(max) ∧ blond(max)
- (2) Max is a good thief
- thief(max) A good(max) ?
- (3) Max is an alleged student
- thief(max) ^ alleged(max) ???
- (4) Max is a student
 - student(max)

- (1) + (4) entail that Max is a blond student,
- but (2) + (4) do not entail that Max is a good student.
- (3) does not even entail that Max is a thief.

Type Theory

- The types of non-logical expressions provided by FOL are not sufficient to describe the semantic function of all natural language expressions.
- Type theory provides a much richer inventory of types: higher-order relations and functions of different kinds.

18

Type Theory – Types

- Basic types:
 - e ("entities")
 - t ("truth-values")
- Complex types:
 - If $\sigma,\,\tau$ are types, then $\langle\sigma,\,\tau\rangle$ is a type.
- Complex types are the type of functions mapping arguments of type σ to values of type $\tau.$

Some useful Types Individual: e Sentence: t One-place predicates: (e,t) Two-place relation: (e,(e,t)) Sentence adverbial: (t,t) Attributive adjective: ((e,t),(e,t)),((e,t),(e,t)))

Type Theory – Vocabulary

- For every type τ a possibly empty, pairwise disjoint sets of non-logical constants CON_τ.
- For every type τ an infinite and pairwise disjoint sets of variables VAR $_{\tau}$.

21

• The usual logical operators: \forall , \exists , Λ , v, ...

Type Theory – Syntax

- The sets of well-formed expressions WE $_{\tau}$ for every type τ are given by:
 - (1) $CON_{\tau} \subseteq WE_{\tau}$, for every type τ
 - (2) If α is in WE_(σ, τ), β in WE_{σ}, then $\alpha(\beta) \in WE_{\tau}$.
 - (3) If A, B are in WE_t, then \neg A, (A ∧ B), (A ∨ B), (A → B), (A ↔ B) are in WE_t.
 - (4) If A is in WEt, then $\forall vA$ and $\exists vA$ are in WEt, where v is a variable of arbitrary type.
 - (5) If $\alpha,\,\beta$ are well-formed expressions of the same type, then α = β \in WE_t.

22

Building Well-Formed Expressions (1) Bill is a good student. good(student)(bill): t $good(student): (e, t) \qquad bill: e$ $good: ((e,t), (e,t)) \qquad student: (e,t)$

<section-header><section-header><equation-block><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

23

Type Theory – Semantics [1/3]

- Let U be a non-empty set of entities.
- The domain of possible denotations D_τ for every type τ is given by:

26

- (1) $D_e = U$
- (2) $D_t = \{0,1\}$
- (3) $D_{(\sigma, \tau)}$ is the set of all functions from D_{σ} to D_{τ}

Type Theory – Semantics [2/3]

- A model structure for a type theoretic language consists of a pair M = (U, V), where
 - ~U (or $U_{\mbox{\scriptsize M}})$ is a non-empty domain of individuals
 - V (or $V_M)$ is an interpretation function, which assigns to every member of CON_τ an element of $D_\tau.$
- Variable assignment g assigns every variable of type τ a member of D_{τ} .

Type Theory – Semantics [3/3]

- Interpretation with respect to model structure M and variable assignment g:
 - $$\begin{split} \llbracket \alpha \rrbracket^{M,g} &= V_{M}(\alpha), \text{ if } \alpha \text{ constant} \\ \llbracket \alpha \rrbracket^{M,g} &= g(\alpha), \text{ if } \alpha \text{ variable} \\ \llbracket \alpha(\beta) \rrbracket^{M,g} &= \llbracket \alpha \rrbracket^{M,g}(\llbracket \beta \rrbracket^{M,g}) \\ \llbracket \neg \varphi \rrbracket^{M,g} &= 1 \text{ iff } \llbracket \varphi \rrbracket^{M,g} &= 0 \\ \llbracket \varphi \land \psi \rrbracket^{M,g} &= 1 \text{ iff } \llbracket \varphi \rrbracket^{M,g} &= 1 \text{ and } \llbracket \psi \rrbracket^{M,g} &= 1, \text{ etc.} \\ \llbracket \alpha &= \beta \rrbracket^{M,g} &= 1 \text{ iff } \llbracket \alpha \rrbracket^{M,g} &= \llbracket \beta \rrbracket^{M,g} \end{split}$$
- if v ∈ VARτ:
 - $$\begin{split} \llbracket \exists v \varphi \rrbracket^{M,g} = 1 & \text{iff there is } d \in D_\tau \text{ such that } \llbracket \varphi \rrbracket^{M,g[v/d]} = 1 \\ \llbracket \forall v \varphi \rrbracket^{M,g} = 1 & \text{iff for all } d \in D_\tau : \llbracket \varphi \rrbracket^{M,g[v/d]} = 1 \end{split}$$

Type Theory

- The definition of the syntax and semantics of type theory is a straightforward extension of FOL.
- Notions like "satisfies," "valid," "satisfiable," "entailment" carry over almost verbatim from FOL.
- Type theory is sometimes called "higher-order logic:"
 - first-order logic allows quantification over individual variables (type e)
 - second-order logic allows quantification over variables of type (σ , τ) where σ and τ are atomic

- ...

29

Characteristic Functions

- Many natural language expression have a type (σ , t).
- These types are the type of functions mapping elements of type σ to true or false.
- Such function are also known as characteristic functions, and can be thought of as subsets of D_{σ} (i.e., sets of σ 's).
- Example: "blond" is a constant of type (e,t) and can be seen as characterising the set of blond individuals.

30

Currying

- All functional types are interpreted as one-place functions.
- How do we deal with functions with multiple arguments?

31

- Currying (a.k.a. "Schönfinkeln"):
 - simulate term P(a,b) as the term P(a)(b)
 - simulate type $\langle e \times e, t \rangle$ as the type $\langle e, \langle e, t \rangle \rangle$.

Examples

- "Max is a student"
 - [[student(max)]]^{M,g} = ...
- "Max is a blond student"
 - [[blond(student)(max)]]^{M,g} = ...