
Semantic Theory: Lexical Semantics III

Summer 2008

M.Pinkal/ S. Thater

Figure 2. Network representation of three semantic relations among an illustrative variety of lexical concepts

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

WordNet Relations in FOL

... and in Description Logic ∀x(family(x)→group(x)) family ⊑ group ∀x(relative(x)→person(x)) relative ⊑ person ∀x(person(x) → ∃y(substance_m(y,x) ∧ body(y)) person ⊑ ∃substance_m.body ∀x(body(x) → ∃y(part_m(y,x) ∧ leg(y)) body ⊑ ∃part_m.leg

WordNet Relations in Description Logic

Body ⊑ Natural_object Relative ⊑ Person Sister ⊑ Relative Bone ⊑ Organic substance

Arm ⊑ ∃Substance_m.Flesh Body ⊑ ∃Part_m.Arm Person ⊑ ∃Substance_m.Body Family ⊑ Group Brother ⊑ Relative Flesh ⊑ Organic_substance Organic substance ⊑ Substance

Arm ⊑ ∃Substance_m.Bone Body ⊑ ∃Part_m.Leg Relative ⊑ ∃Member_m.Family

Description Logic: Terms

Atomic Concepts:

- Concepts A ≈ unary predicates in FOL
- Empty and universal concept:
- Roles R \approx binary relations in FOL

Complex concepts:

• Conjunction and disjunction of concepts: C1 \sqcap C2 , C1 \sqcup C2

⊥,⊤

JR.C

- Negation (complementary concept):
 ¬C
- Existential restriction:
- ("something that has an R which is a C")
 Value restriction: ∀R.C
- ("something all of whose R's (if any) are C")
- Number or Cardinality Restrictions: $\exists_{\leq m} R / \exists_{=m} R$ ("Something that has at most/ at least/ exactly m different Rs")

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

Formulas in Description Logic

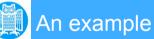
- Assertions encode world knowledge:
 - C(a), R(a,b)
 where C and R are TBox concepts and roles,
 a, b, c, ... are individual constants
- A set of assertions forms the "ABox"

woman(mary)	man(john)
man(sam)	woman(sue)
loves(john,mary)	loves(mary,sam)
married(sam,sue)	happy(sam)

Formulas in Description Logic

- · Axioms or Rules encode terminological knowledge
 - Inclusion

Equality


- $C \equiv D, R \equiv S$
- If the first concept of an equality axiom is atomic, the axiom is called a definition.

 $C \sqsubseteq D. R \sqsubseteq S$

 Axioms form the "TBox", containing the conceptual knowledge

bachelor = \neg 3 married. $\top \sqcap$ man married = married ⁻¹	<i>"bachelors are unmarried men"</i> (being married to so. is reflexive)
I married. $\top \sqsubseteq$ happy	"all married people are happy"
∃ ₂₂ love ⊑ ⊥	"you can love at most one person"
E married.woman \sqsubseteq E love.woman	"someone married to a woman
	is someone who loves a woman"

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

A T-BOX

bachelor = \neg 3 married. $\top \sqcap$ man	"bachelors are unmarried men"
married = married ⁻¹	(being married to so. is reflexive)
3 married. $\top \sqsubseteq$ happy	"all married people are happy"
∃ _≥ 2 love ⊑ ⊥	"you can love at most one person"
∃ married.woman ⊑ ∃ love.woman	"someone married to a woman
	is someone who loves a woman"

An A-BOX

woman(mary)	man(john)
man(sam)	woman(sue)
loves(john,mary)	loves(mary,sam)
married(sam,sue)	happy(sam)

Model-theoretic Interpretation

- · Like FOL model structure:
 - M = <D, /> (notational variant of <U, V>)
 - D is domain of individuals
 - / is interpretation function, providing DL expressions with appropriate value
- · Interpretation of concepts, roles, and individual constants:
 - $I(A) \subseteq D$ for atomic concepts A
 - $I(R) \subseteq D \times D$ for roles R
 - $I(a) \in D$ for individual constants a
 - $I(\perp) = \emptyset$
 - $I(\top) = D$
 - $/(C \sqcap D) = /(C) \cap /(D)$
 - $I(C \sqcup D) = I(C) \cup I(D)$
 - $I(\neg C) = D \setminus I(C)$
 - $I(\exists R.C) = \{a \in D | \text{ there is b with } <a,b>\in I(R) \text{ and } b\in I(C)\}$
 - $/(\exists R.C) = \{a \in D | \text{ for all } b \text{ with } \langle a, b \rangle \in /(R); b \in /(C) \}$

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

Model-theoretic Interpretation

- · Interpretation of formulas (axioms and assertions):
- $I(C \sqsubseteq D) = 1$ iff $I(C) \subseteq I(D)$
- $I(C \equiv D) = 1$ iff I(C) = I(D)
- I(C(a)) = 1 iff $I(a) \in I(C)$
- I(R(a, b)) = 1 iff $< I(a), I(b) > \in I(R)$

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

- Some Facts about Description Logic
- All versions of description logic are proper FOL fragments.
- Major reasoning tasks in description logic:
 - Subsumption check (Is C sub-concept of D? Inheritance!)
 - Satisfiability check (Are C and D compatible?)
- DL reasoning is much more efficient than FOL deduction.
- There are different versions of description logic, including or exluding, e.g., full term negation, union, number restrictions.
- Trade-off between expressive power and computational complexity
- DL reasoners: FaCT, Racer, Protégé, supporting different reasoning tasks for different DL versions.
- Description Logics form the core or backbone of Semantic Markup ٠ Languages for the Web (e.g., OWL) and various ontologies

- An ontology is a shared conceptualization of a domain
- An ontology is a set of definitions in a formal language for terms describing the world

(Definition taken from slides of Adam Pease)

- Another definition: Ontologies are
 - Hierarchical data structures
 - Providing formally rigorous information about concepts and relation
 - Within a specific domain (domain ontologies)
 - Or concepts and relations of foundational, domain-independent relevance (upper ontologies)
- Upper Ontologies:
 - DOLCE, CYC, SUMO

Event Semantics: Donald Davidson's Problem

- (1) The gardener killed the baron at midnight in the park \Rightarrow kill₄(g, b, m, p)
- (2) The gardener killed the baron at midnight \Rightarrow kill₃(g, b, m)
- (3) The gardener killed the baron in the park / . _

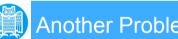
- (4) The gardener killed the baron
 - \Rightarrow kill₁(g, b)

A Problem

 Problem: How can the logical entailment relations between the different uses of kill be systematically explained?

- Naïve FOL interpretation does not solve the problem:
 - kill₄(g, b, m, p) l \neq kill₃(g, b, m)
 - kill₃(g, b, m) $I \neq$ kill₁(g, b)

Semantic Theory, SS 2008 © M. Pinkal, S. Thater


- etc.

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

Adjunct Interpretation: Second Attempt

- · Precompute the maximum arity of the underlying predicate, as a fixed number.
- Bind syntactically unrealized argument positions with existential quantifier.

 $(1) \Rightarrow kill(g, b, m, p)$ $(2) \Rightarrow \exists y \text{ kill}(g, b, m, y)$ $(3) \Rightarrow \exists x kill(g, b, x, p)$ $(4) \Rightarrow \exists x \exists y \text{ kill}(g, b, x, y)$

Another Problem

 What is the correct arity of an event verb/ its underlying predicate?

The gardener killed the baron at midnight in the park under cover of absolute darkness with a shotgun ...

Adjunct Interpretation: Third Attempt

- Model adjuncts in type theory as higher-order operators, i.e., as sentence modifiers (type <t,t>):
 - $(1) \Rightarrow$ in the park(at-midight(kill(g, b)))
- The arity problem is solved: An arbitrary number of adjuncts can be iteratively applied, leaving the type of the resulting expression (t) unchanged
- However: The systematic entailment information is lost again:

at-midnight(kill(g, b)) l≠ kill(g, b)

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

Compositional Event Semantics

- Problem: How are event semantic representations compositionally derived?
- Remember intersective adjectives:
 - Adjectives in attributive use are common noun modifiers (type: <<e,t>,<e,t>>)
 - The intersective semantics adjectives like *red* is modelled by its analysis as $red \Rightarrow \lambda F \lambda x [F(x) \land red(x)]$
- Accordingly, adjuncts are analysed as intersective modifiers for event predicates:
 - at midnight $\Rightarrow \lambda E \lambda e[E(e) \land time(e, midnight)]$
- The gardener killed the baron at midnight
 - $\Rightarrow \lambda E \lambda e[E(e) \land time(e, midnight)](\lambda e.kill(e, g, b))$
 - $\Leftrightarrow \lambda e.kill(e, g, b) \land time(e, midnight)$
- · In finite/tensed clauses, the event variable is eventually bound:
 - $\Rightarrow \exists e[kill(e, g, b) \land time(e, midnight)]$

Verbs expressing events have an additional event argument, which is not realised at linguistic surface:

 $kill \Rightarrow \lambda x \lambda y \lambda e.kill(e,x,y)$, where kill: <e,<e,<e,t>>>

- Generally, event verbs are represented by relations of a fixed arity (number of syntactic complements +1)
- Adjuncts express two-place relations between events and the respective "cirumstantial information" (a time, a location, ...)
- · The event variable is existentially bound:

The gardener killed the baron at midnight in the park

- $\Rightarrow \exists e[kill(e,g,b) \land time(e, m) \land location(e, p)]$
- Event semantics permits an arbitrary number of adjunct, entailment from sentence with adjunct to sentence without adjunct follows trivially:
 3e[kill(e,g,b) ^ time(e, m) ^ location(e, p)]
 - I= $\exists e[kill(e,g,b) \land time(e,m)]$
 - I= ∃e[kill(e,g,b)]
- · Note also: Verb semantics with events is much more intuitive.

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

- One semantic representation for PP modifiers used as adjuncts and in NO modification:
 in the park ⇒ λFλx[F(x) ∧ location(x, p)]
- Local adjunct as event modifier:
 [[The gardener killed the baron] in the park]
- Post-nominal modifier of an standard common noun: The [[pavillon] in the park]
- Event semantics provides a natural interpretation for deverbal common nouns and their modifiers: The [[murder] in the park]

Event Semantics and Thematic Roles

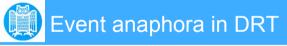
- · Complements can be treated like adjuncts:
 - Represent event verbs as one-place event predicates.
 - Thematic roles as two-place relations linking arguments to the event denoted by the verb.
 - The gardener killed the baron at midnight in the park
 - $\Rightarrow \exists e [kill(e) \land ag(e,g) \land pat(e,b) \land time(e,m) \land location(e,p)]$
 - or, using FrameNet frames and roles:

```
∃e [killing(e) ∧ killer(e,g) ∧ victim(e,b)]
```

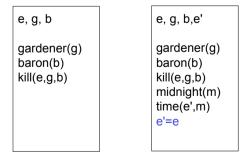
 "Neo-Davidsonian" semantics allows the partioning of semantic information into minimal pieces pieces of information: One-place and two-place predications.

Model theoretic semantics with events

- Model structure like in standard FOL, except that the universe is subdivided into
 - a set of standard individuals U_{S}
 - a set of events U_{E}


Semantic Theory, SS 2008 © M. Pinkal, S. Thater

– M = <U, V>, U = $U_S \cup U_E$, $U_S \cap U_E = \emptyset$


Semantic Theory, SS 2008 © M. Pinkal, S. Thater

Event anaphora in DRT

- Events as a new kind of individuals help also to give discourse semantics wider coverage:
- The gardener killed the baron . It happened at midnight.
- Yesterday, I went by train from Hamburg to Saarbrücken. That was a boring trip.
- Event referents
 - a new kind of discourse referents
 - are typically introduced by finite/ tensed clauses
 - $-\,$ can be referred to by nominal anaphoric expressions

•The gardener killed the baron . It happened at midnight.

Model theoretic semantics with events

- Model structure like in standard FOL, except that the universe is subdivided into
 - a set of standard individuals U_s, and
 - a set of events U_{E}
 - which is partially ordered by a "temporally precedes" relation.

 Event Semantics allows the explicit representation of tense and temporal relations in FOL/DRT
 John left ⇒ ∃e[leave(e, j*) ∧ e < e_u]

where < is interpreted as temporal precedence, and is the utterance event.

John left, after Peter had arrived

 $\Rightarrow \exists e_1 \exists e_2[\text{ leave}(e_1, j^*) \land e_1 < e_u \land \text{ arrive}(e_2, p) \land e_2 < e_1]$

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

Temporal relations in an Event Semantics

John left, after Peter had arrived

j, e, p, e' leave(e,j) e< e_u arrive(e',p) e'< e

Semantic Theory, SS 2008 © M. Pinkal, S. Thater